Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория упругости Решение с помощью функций

Г. Н. Савин, в 1940 г., опубликовал две работы [320, 321], посвященные вопросу определения напряжений и перемещений в основании, принимаемом за анизотропное тело, но имеющем одну плоскость симметрии в отношении изотропности материала. Автор получает решение с помощью функций комплексного переменного как смешанной задачи теории упругости.  [c.94]

При симметричной нагрузке сферической оболочки с помощью общих уравнений теории упругости решение можно представить, пользуясь одной бигармонической функцией ф, в форме  [c.324]


Абрамян Б. Л., Александров А. Я-, Осесимметричные задачи теории упругости. Труды второго всесоюзного съезда по теоретической и прикладной механике. Механика твердого тела, изд-во Наука , 1966, дан подробный обзор многообразных направлений исследований по пространственным задачам теории упругости перечислены работы 241 автора, Значительное место уделено (не рассмотренному в этой книге) методу решения осесимметричных задач с помощью функций комплексного переменного.  [c.917]

Введение. Теория упругости изучает механику деформируемых тел, которые восстанавливают свою первоначальную форму, после того как удалены силы, вызывающие деформацию. Обсуждение явлений упругости встречается уже в работах Гука (1676 г.). Однако первые реальные попытки создания теории упругости, исходя из понятия сплошной среды, позволяющего игнорировать молекулярное строение тела и описывать макроскопические явления с помощью функций координат пространства, относятся к первой половине восемнадцатого столетия ). С тех пор было приложено много усилий к изучению математической теории упругости и ее приложений к физике и инженерному делу. Судя по большому числу опубликованных работ по изучаемому предмету, исключается возможность с одинаковой полнотой изложить весь предмет в объеме одной книги. Настоящая работа имеет более ограниченную цель. В ней делается попытка дать краткий обзор некоторых разделов теории упругости и вместе с тем обсудить достаточное количество отдельных задач для того, чтобы дать некоторые представления относительно математического аппарата, необходимого для решения подобных задач. Даже в пределах этих ограниченных рамок в книге имеются значительные пробелы. В ней ничего, например, не говорится о такой важной теме как теория упругой устойчивости или о таком важном разделе как вычисление упругих постоянных кристаллов с помощью теории кристаллических решеток.  [c.7]

Решение плоской задачи с помощью функций комплексного переменного. При решении плоской задачи теории упругости широко  [c.40]

Уравнение (5-1) представляет собой уравнение Пуассона, для решения которого используются различные математические методы. Точные решения можно получить, например, с помощью функций комплексного переменного. Из приближенных методов используются метод конечных разностей, а также вариационные методы, позволяющие получить приближенное решение в аналитической форме. С математической точки зрения рассматриваемая задача эквивалентна задаче о кручении длинного бруса. Поэтому известные в теории упругости решения задач о кручении брусьев различной формы после некоторой переработки можно использовать для вычисления профилей скорости в трубах с такой же формой поперечного сечения. Решения уравнения (5-1) для труб различной формы содержатся во многих работах [Л. 1—7]. В последующих параграфах будут приведены некоторые из них.  [c.48]


Аппарат теории функций комплексного переменного может быть применен к построению специального класса решений задач динамической теории упругости. Этот класс решений может быть получен с помощью так называемых функционально-инвариантных решений волнового уравнения.  [c.430]

Один из методов решения задач теории упругости состоит в исключении компонент напряжения из уравнений (123) и (124) с помощью закона Гука и в вырал<ении компонент деформации через перемещения с использованием формул (2). Таким путем мы приходим к трем уравнениям равновесия, содержащим только три неизвестных функции и, и, w. Подставляя в первое из уравнений (123) нормальное напряжение  [c.250]

Если объемные силы и температура как функции координат известны и на границе заданы перемещения, то из уравнений (5.1) с известными начальными данными можно найти перемещения внутренних точек тела и таким образом решить задачу теории упругости в перемещениях. Напряжения после этого вычисляются с помощью закона Гука. Уравнения совместности деформаций при такой постановке задачи удовлетворяются автоматически, так как формулы, выражающие деформации через перемещения, представляют собой, как известно, общее решение уравнений совместности.  [c.343]

В теории упругости выдающиеся результаты были получены при разработке общих методов интегрирования дифференциальных уравнений равновесия упругого тела, приближенных методов их решения и в исследовании многочисленных частных задач. Это было продолжением и расширением исследований русских механиков дореволюционного периода. Но сложились также новые школы и направления. Систематически велись исследования по плоской задаче теории упругости с помощью методов теории функций комплексного переменного, большая группа ученых работала по теории пластинок и оболочек, приобретавшей все большее значение для техники. Меньше внимания уделялось контактным задачам, но гг они стали постоянным предметом исследований. Впервые после трудов Остроградского значительные результаты были получены в теории распространения упругих волн, которая разрабатывалась в связи с запросами сейсмологии. К этому списку надо добавить исследование устойчивости упругих систем, теорию стержневых систем, графические методы. Тут мы находимся на стыке теории упругости п таких прикладных дисциплин, как строительная механика и сопротивление материалов.  [c.291]

Обычно задачу о магистральных трещинах, развивающихся, в твердых телах, решают для прямолинейных трещин в предположении, что линия распространения трещины задана. Можно отказаться от этого ограничения, если рассматривать последовательность решений задачи теории упругости для одинаковых тел, каждое из которых содержит некоторый разрез (трещину), произвольной конфигурации. Эта последовательность составляет класс допустимых функций, из которых частное решение, отвечающее равновесию тела с трещиной, выбирается с помощью излагаемого здесь вариационного принципа.  [c.31]

Наиболее проста линейная постановка для цилиндрических оболочек разной длины, установленных с натягом. Без учета обжатия, т. е. когда в решение входят сосредоточенные поперечные силы на границе зоны контакта, задача изучена авторами работ [37, 38, 101, 102], где решены дифференциальные либо интегральные уравнения. Обжатие по модели Винклера введено в работах [39, 40], по модели упругого цилиндра и слоя — в [144, 145]. В двух последних работах контактное давление становится бесконечным на границах зон контакта. С помощью теории Тимошенко эта задача исследована в [197]. Решение такой же задачи получено [41] представлением контактного давления в виде суммы произведений неизвестных коэффициентов на заданные функции, ортонормированные на участке контакта. Коэффициенты вычисляются методом наименьших средних квадратов из кинематического условия контакта, граница зоны контакта уточняется итеративным путем. Этот подход позволяет существенно упростить расчеты, поскольку в нем не требуется решать дифференциальные или интегральные уравнения относительно контактного давления, результаты же полностью совпадают с данными [38, 39]. Такой же метод применен в работах [45—17] для анализа НДС двухслойного сильфона с промежуточным податливым кольцом.  [c.15]


Лля вывода уравнений слоя возьмем уравнения равновесия теории упругости (1.1.7). Граничные условия задаются те же, что и для однородного слоя. Неизвестными функциями будут три перемещения II, V, IV и относительное приращение объема е. Записав уравнения (1.1.7) относительно искомых функций с помощью закона упругости (1.3.9) и формул Коши (1.1.3) для деформаций и сделав замену переменных (1.2.3), будем искать их решение в виде рядов (1.2.4) по параметру е.  [c.57]

На примере расчета статически неопределимых систем проявляется формальная аналогия между решением задач упругости и решением задач пластичности методом переменных параметров упругости для стержней. В характеристику жесткости сечения стержня в упругом случае вносят поправку с помощью интегральной функции пластичности при упругопластическом деформировании задачу решают в деформациях, а не в напряжениях (усилиях), если приходится находить решение методом последовательных приближений. Например, теорему о трех моментах для многопролетных неразрезных балок при упругопластическом деформировании по ана-  [c.46]

Традиционные модели механики разрушения не учитывают появления в процессе нагружения пор и микротрещин, вследствие чего моделирование кинетики трещин их методами невозможно. Известны модели, в которых изменение механического поведения материала в окрестности вершины трещины описывается с помощью введения функции повреждения (типа Качанова-Работнова) [93, 94, 212. Этим моделям, к сожалению, присущ общий недостаток феноменологических подходов получение надежных предсказуемых результатов возможно только на основе обширной и соответственно трудоемкой экспериментальной программы. И кроме того, они опираются на использование линейной теории упругости, но линейная теория упругости, основанная на допущении о малости деформации, имеет в этих задачах в качестве решения напряжения и деформации, неограниченно возрастающие при приближении к особой точке, т. е. отнюдь не являющиеся малыми. Тем самым линейная теория вступает в противоречие сама с собой [183, 230, 234, 268, 400.  [c.253]

ДОЛЖНЫ быть известны как функция радиус-вектора г. В связи с этим решение задач теории многократного наложения больших деформаций более сложно, чем решение обычных задач нелинейной упругости или вязкоупругости при больших деформациях, и не может быть найдено с помощью стандартных пакетов прикладных программ, при разработке которых не была учтена указанная особенность.  [c.44]

В дальнейшем под термином аналитические методы будем понимать методы, позволяющие получить решение краевой задачи в виде аналитической функции (скалярной или векторной), удовлетворяющей точно или приближенно уравнениям и граничным условиям этой задачи. Если метод позволяет получить решение, которое точно удовлетворяет как уравнениям краевой задачи во всей области, в которой она решается, так и граничным условиям на всей границе этой области (или на той части границы, на которой они заданы), за исключением, возможно, конечного числа точек, то метод является точным для данной задачи или класса задач. Например, метод Колосова-Мусхелишвили 65] является точным методом решения плоских статических задач линейной теории упругости для односвязных областей, которые могут быть конформно отображены на единичный круг с помощью дробно-рациональной функции. Для многих классов задач точные аналитические решения неизвестны. Это, например, плоские статические задачи линейной упругости для многосвязных областей или статические задачи нелинейной теории упругости при конечных деформациях. Только отдельные задачи этих классов имеют точное аналитическое решение. Существуют методы, позволяющие свести решение таких задач к последовательному решению более простых задач, для каждой из которых точное аналитическое решение может быть найдено. Например, при решении задач линейной упругости для много-  [c.45]

Метод граничных элементов (МГЭ) — это метод решения краевых задач для дифференциальных уравнений в частных производных, появившийся в результате сочетания идей теории потенциала с методами современной теории аппроксимации. МГЭ, с точки зрения теории аппроксимации, имеет много общих черт с широко известным методом конечных элементов, но отличается от него существенным преимуществом дискретизация осуществляется, как правило, не внутри области, в которой ищется решение, а на ее границе. Такое упрощение достигается путем точного удовлетворения исходным дифференциальным уравнениям с помощью представлений решения в виде, характерном для теории потенциала. Указанные представления могут быть использованы в рамках МГЭ лишь в случае, когда известны в явном виде (точно или приближенно) фундаментальные решения (или функции Грина) для рассматриваемых дифференциальных уравнений 1 исследованы граничные свойства соответствующих потенциалов. Путем предельного перехода на границу в формулах представления решения получаются граничные интегральные уравнения (ГИУ), которые являются основным объектом аппроксимации Б МГЭ. Этим объясняется еще одно (более раннее) название МГЭ — метод граничных интегральных уравнений. Заметим, что возникающие в теории упругости и в других разделах механики деформируемого твердого тела ГИУ часто являются сингулярными интегральными уравнениями [114, 107, 84], методы аппроксимации которых далеко не тривиальны.  [c.3]


Плоские и осесимметричные контактные задачи для физически нелинейного (линейного геометрически) и геометрически нелинейного (гармонического типа) материала исследовались И. В. Воротынцевой [13] совместно с В. М. Александровым [3] и с Е. В. Коваленко [14]. С помощью соответствующих интегральных преобразований задачи сведены к решению интегральных уравнений с нерегулярными разностными ядрами. Структура этих уравнений совпадает со структурой соответствующих уравнений классической теории упругости, а свойства символов их ядер позволяют использовать для решения асимптотические методы больших и малых Л , развитые в работах В. М. Александрова. Влияние нелинейных свойств среды и начальных напряжений на контактную жесткость, функцию распределения контактных напряжений и величину вдавливающей силы в плоском случае исследовано в [13], в осесимметричном случае — в [3,14]. В работах установлено, что начальные напряжения не влияют на порядок особенности на краях штампа, но влияют на проникающую составляющую решения как в области контакта, так и вне ее. Исследованы условия потери внутренней устойчивости среды в зависимости от начальных напряжений. Для ряда конкретных нелинейно-упругих сред построены области эллиптичности линеаризованных уравнений, при переходе через границу которых происходит либо потеря поверхностной устойчивости, либо потеря поверхностной деформируемости, связанные с потерей эллиптичности. В работе установлено, что при стыковке решений, полученных методами больших и малых Л , значение относительной толщины Л, на которой стыкуются эти методы, существенно зависит от параметров начального напряженного состояния среды.  [c.237]

Для решения задачи 4.7 с помощью дислокационной аналогии, изложенной на основе теории функций комплексного переменного в 4. 5, рассмотрим плоскую задачу изотермической теории упругости для двусвязной области, ограниченной концентрическими  [c.125]

I. Некоторые гармонические функции, связанные с упругими смещениями. В плоской теории упругости существует тесная связь между решениями граничных задач (первой и второй) и теорией аналитических функций комплексной переменной. Эта связь основана на известных представлениях Колосова—Мусхелишвили (см. Мусхелишвили [1]) для составляющих смещений и напряжений, с помощью двух пар аналитических функций эти представления имеют следующий вид  [c.595]

В случае одной сосредоточенной силы, нормальной к границе полупространства оно может быть получено наложением особых решений, соответствуюш.их, во-первых, действию сосредоточенной силы в неограниченной упругой среде, во-вторых, линии центров расширения (элементарное решение второго типа). Решение для одной сосредоточенной силы далее легко обобщается с помощью принципа наложения на случай произвольной, распределённой по границе нормальной к ней нагрузки. Второй путь решения заключается в сведении рассматриваемой задачи к некоторой краевой задаче теории потенциала — оказывается (это можно получить, исходя из общего решения в форме П. Ф. Папковича), что задача теории упругости о разыскании напряжённого состояния в полупространстве при заданном значении нормального напряжения на границе полупространства и при отсутствии на ней касательных напряжений и сводится к разысканию одной гармонической функции, обладающей всеми характеристическими свойствами потенциала простого слоя, распределённого по плоской области загружения с плотностью, пропорциональной интенсивности нагрузки.  [c.90]

Впервые этот метод применил Г. В. Колосов Он показал, что интеграл бигармопического уравнения для функции напряжений, а также граничные условия в напряжениях или смещениях могут быть выражены через функции комплексного переменного. Ряд важных результатов получил Н. И. Мусхелишвили С помощью функций комплексного переменного можно легко получить решение плоской задачи теории упругости для внутренности круга. Если же задана некоторая односвязная область, отличная от круга, то в этом случае надо воспользоваться конформным отображением области на круг. Кроме того, использование интеграла тина Коши позволяет свести плоскую задачу теории упругости к интегральному уравнению Фредгольма второго рода, для решения которого существуют хорошо разработанные приближенные методы. В некоторых случаях (например, для  [c.252]

Исследование деформации упругих систем, как известно, заключается в составлении дифе-ренциального уравнения, характеризующего рассматриваемую деформацию, и затем в разыскании решения этого уравнения, удовлетворяющего известным граничным условиям рассматриваемой задачи. В то время как составление диференциальных ур-ий производится без особых затруднений помощью приложения к частным случаям общих выводов теории упругости, решение этих уравнений часто оказывается сопряженным с затруднениями чисто математич. характера, к-рые или не могут быть разрешены или приводят к результатам, мало пригодным для практич. использования вследствие слон -ности или отсутствия необходимой наглядности. Решение таким путем новых задач, могущих встретиться в инженерной практике, далеко выходя из рамок обычных расчетов и принимая характер научно-исследовательской работы, оказывается обычно невыполнимым в обстановке практической деятельности инженера. Применение метода потенциальной энергии, как известно, дает возможность более просто получить приближенное решение задачи, избегнув необходимости интегрирования соответствующего ей диференциального уравнения. Однако те же результаты, но гораздо проще, можно получить, и не прибегая к методу потенциальной энергии, а применив метод непосредственного интегрирования диференциального ур-ия помощью бесконечных рядов. Сущность этого метода заключается в том, что заранее задаемся подходящим видом искомой функции, входящей в диференциальное ур-ие рассматриваемой задачи, после чего, подставляя ее в это ур-ие, определяем входящие в нее неизвестные параметры. Под подходящим видом ф-ии в данном случае разумеется такой вид ее, при к-ром полностью удовлетворяются вытекающие для нее из условий задачи граничные условия и к-рый по возможности точно отвечает действительному виду этой ф-ии чем ближе к действительности окажется выбранный вид подходящей ф-ии, тем ббльшую точность будет иметь полученное решение. Т. к. любая из интересующих нас ф-ий м. б. представлена с любой точностью соответствующим тригонометрич. рядом Фурье, то, задаваясь подходящей ф-ией в виде такого ряда, будем получать в таком же общем виде и искомые решения задачи, к-рые затем м. б. вычислены с любой степенью точности. Получающееся таким путем общее решение очевидно представляет собой выраженную в виде ряда Фурье ф-ию, отве-  [c.97]

Важным прикладным методом решения пространственных задач теории упругости является метод, предложенный М. М. Фило-ненко-Вородичем [142], позволяющий с помощью теоремы Ка-стильяно и функций в виде косинусов-биномов  [c.351]

Как известно, задачи Дирихле и Неймана для уравнения Лапласа решаются с помощью потенциалов простого и двойного слоев, а при решении краевых задач для других дифференциальных уравнений применяются различного рода обобщенные потенциалы. Краевые задачи теории аналитических функций комплексного переменного, к которым приводятся задачи плоской теории упругости,  [c.135]


Волновая теория удара начала развиваться благодаря работам Бусинеску и Сен-Венана. Ими впервые была рассмотрена теоретическая задача о поперечном ударе двух твердых тел в предположении, что, полный период удара определяется временем, необходимым для прохождения через тело и обратного возвращения волны упругого сжатия. В предположении, что после удара груз движется вместе с балкой, с помощью метода Фурье было найдено решение в форме разложения динамического прогиба балки в ряд по фундаментальным функциям. Допущение, принятое в работе о совместном движении груза и балки после удара, не соответствует истине, так как скорость балки с момента соударения и до получения балкой наибольшего прогиба монотонно убывает до нуля, а скорость груза после удара монотонно возрастает. Кроме того, теория Сен-Венана и Бусинеску не учитывает местных пластических эффектов.  [c.8]

Уточненный расчет распределения напрял ений в таких соединениях произведен лишь в последние годы с помощью ЭВМ [15, 43, 47]. В работе [58] с использованием теории функций комплексного переменного и конформных преобразований определены напряжения в пазах соединения в условиях упругости при заданных нагрузках на контуре. Контактная упругая задача для трехзубого замка рассмотрена в работе, [67]. Решение выполнено методом конечных элементов и проверено методом фотоупругостн. Описанный в этой статье подход к решению коцтактной задачи использовался позднее в работе [47] для определения поля напряжения в деталях соединения в условиях ползучести.  [c.177]

Из-за авторского предпочтения приближенные уравнения задачи теории упругости будут часто выводиться из принципа виртуальной работы, поскольку он остается справедливым независимо от соотношений напряжения — деформации и суш,ество-вания потенциальных функций. Приближенный метод решения, использующий принцип виртуальной работы, будет называться обобш.енным методом Галеркина ). Для консервативных задач теории упругости результаты, получаемые с помощью сочетания принципа виртуальной работы и обобщенного метода Галеркина, эквивалентны результатам, получаемым с помощью сочетания принципа стационарности потенциальной энергии и метода Ре-лея—Ритца.  [c.21]

Используя принцип дополнительной виртуальной работы, можно предложить приближенный метод решения задач теории упругости. Такой подход аналогичен сформулированному в 1.5 и может быть назван обобщенным методом Галеркииа. Для простоты будем рассматривать двумерную задачу теории упругости для односвязного тела ). Боковая поверхность тела цилиндрическая, причем образующая цилиндра параллельна оси z, а деформация тела считается не зависящей от координаты г. Также предполагается, что компоненты напряжений т , т уг равны нулю. Остальные компоненты а , Оу и считаются функциями только от X и у и связаны с деформациями при помощи соотношений  [c.36]

Таким образом, видно, что метод Релея — Ритца в теории упругости при малых перемещениях ведет к формулировкам, эквивалентным тем, которые получены с помощью приближенных методов 1.5 и 1.7. Однако каждый метод имеет свои преимущества и недостатки в применении к задачам, отличным от задач теории упругости. Эти приближенные методы справедливы независимо от соотношений напряжения — деформации и потенциалов внешних сил, но обычно трудно доказать, что приближенное решение сходится к точному при увеличении п. С другой стороны, соотношения напряжения — деформации, объемные силы и поверхностные силы должны обеспечивать существование функций состояния Л, Л Ф и Ч при использовании вариационных формулировок метода Релея — Ритца. Однако доказательство сходимости решений здесь менее сложно, особенно когда найдено минимальное или максимальное значение функционалов.  [c.62]

Широко известно, что одним из первых математиков, принимавших участие в становлении МКЭ, был Курант. Он представил приближенный метод решения задачи кручения Сен-Венана с помощью принципа минимума дополнительной энергии, используя линейную аппроксимацию функции напряжений внутри каждого из совокупности треугольных элементов [1]. С другой стороны, наиболее важными и исторически первыми среди пионерских работ по МКЭ в задачах расчета конструкций считаются статьи Тёрнера, Клафа, Мартина и Топпа [2] и Аргириса и Келси [3]. После появления этих статей вариационный метод стал интенсивно использоваться в математических формулировках МКЭ. И обратно, быстрое развитие МКЭ сообщило мощный стимул к разработке вариационных методов за последнее десятилетие появились новые вариационные принципы, такие, как вариационные принципы со смягченными условиями непрерывности [4—8], принцип Геррмана для несжимаемых или почти несжимаемых материалов [9, 10] и для задач изгиба пластин [11, 12] и т. д. Цель части В состоит в том, чтобы дать краткий обзор достижений в области вариационных принципов, которые служат основой МКЭ в теории упругости и теории пластичности. С практическим использованием этих принципов при формулировке МКЭ читатель может ознакомиться по работам [5—7].  [c.340]

Сначала на примере неоднородного стержня показывается техника применения методики осреднения к нелинейным краевым задачам. С помощью этой методики задача о стержне решается точно. Затем подробно описывается решение квазистатической задачи неоднородной и анизотропной теории пластичности. Рассматриваются теория эффективного модуля и теория нулевого приближения. Большое место в главе уделяется построению теории малых упруго-пластических деформаций для анизотропной однородной среды. Для такой среды доказываются теорема единственности решения квазистатической задачи в перемещениях и напряжениях, теоремы о минимуме лагранжиана и максимума кастильяниана, теоремы о простом нагружении. Описывается схема экспериментов, необходимых для определения материальных функций исследуемой теории. Показано, как исходя из теории малых упруго-пластических деформаций А. А. Ильюшина для изотропной среды получить методом осреднения соотношения анизотропной теории пластичности.  [c.219]

Для решения задачи Д можно воспользоваться, например, методом усреднения [33]. Для решения квазистатической задачи До в случае простых вязкоупругих композитов можно применить обобщение метода аппроксимаций. Существо этого обобщения заключается в следующем [80]. Пусть получено решение соответствующей упругой задачи для анизотропной среды и пусть в этом решении встречается выражение типа f -)S, где S — известная величина, /( ) обозначает функцию от упругих модулей анизотропии. Подставляя вместо этих модулей их выражения через величины Ua, Еа, Кс, ш, 7, получим функцию всех этих параметров. Однако нас будет интересовать лишь то, каким образом эта функция зависит от ш, ибо в дальнейшем мы заменим ш на оператор ш и попытаемся расшифровать функцию от этого оператора. Итак, мы получим функцию / = /(w). Эта функция может быть довольно сложной и в отличие от задач изотропной теории упругости даже в самых простейших случаях не является рациональной функцией от ш. Поэтому мы аппроксимируем эту функцию с помощью величин фа и xpt соответствующих ядрам Фait) И Xp(t) В представлении (6.31). Таким образом  [c.332]

Интегральные представления комплексных потенциалов Ф (г) и Y (г) (1.145) являются общим решением двумерной бигармони-ческой задачи, содержащим две произвольные комплексные функции g (/) и q (/) (или четыре действительные функции), что позволяет с их помощью изучать самые разные краевые задачи для областей с разрезали . В частности, удовлетворив с помощью представления (1.145) и формул (1.26), (1.30), (1.42) граничным условиям плоской задачи теории упругости для бесконечной плоскости с разрезами, когда на одном берегу разреза заданы смещения, а на другом — напряжения, найдем сингулярные интегральные уравнения второго рода. При использовании условий неидеального контакта упругих тел, когда напряжения и смещения берегов разреза связаны линейными зависимостями (см. [40, 172, 175, 261]), легко получить сингулярные интегро-дифференциальные уравнения типа Прандтля для тел с тонкостенными упругими включениями 238]. Интегральные представления могут быть использованы при решении различных смешанных задач для тел с разрезами, задач о полосах пластичности, моделируемых скачками перемещений [23], и др.  [c.38]

Отчетливое понимание тех перспектив, которые открывает сокращение геометрической размерности задачи на единицу, и предвидение того, что будущее расчетных методов неизбежно связано с использованием ГИУ, ясно прослеживается и в конце 30-х—начале 40-х годов. Очень показательны в этом отношении исследования Н. И. Мусхелишвили, который, написав серию великолепных статей по созданию и исследованию ГИУ для плоской задачи теории упругости, завершил ее в 1937 г. работой [13], специально посвященной численному решению задач с помощью полученных им уравнений, и тут же вдохновил своих учеников А. Я- Горгидзе и А. К. Рухадзе осуществить такое решение. Их вышедшая в 1940 г. статья [14] содержит все компоненты того метода, который ныне именуется методом граничных элементов . Используется разбиение границы на элементы, аппроксимация функций в пределах этих граничных элементов, сведение к алгебраической системе, решение последней с нахождением неизвестных значений функций на элементах границы, вычисление напряжений в точках тела. Этим способом в работе решены две задачи — тестовая для круглого диска и иллюстративная для лемнискаты. Убедительно показано, что ГИУ могут служить не только целям теоретического анализа, но и универсальным средством решения разнообразных прикладных задач.  [c.267]


Исследование напряженного состояния пластинки, ослабленной эллиптическим отверстием, осуществлено Г. В. Колосовым [76, 771- Им заложены основы решения плоской задачи теории упругости с помощью теории функций комплексного переменного. Этим было предопределено развитие математической теории упругости па десятилетия вперед. В дальнейшем метод функции комплексного переменного и конформных отображений применительно к задачам теории упругости был развит в трудах Н. И. Мусхели-швили (113).  [c.7]

Конечно, Герц не имел, как имели мы здесь, уже готового предположения о распределении давления по поверхности плитки, при знании которого ему оставалось бы только доказать правильность решения. Он по этому вопросу не делал никаких предварительных предположений и нашел закон распределения давлений лишь в результате своих исследований. Герц пришел к своему результату, опираясь на то, что решение основных уравнений упругого равновесия может быть получено при помощи теории потенциала притягивающих или отталкивающих масс. Если представить себе, что между обоими телами помещен трехосный эллипсоид равномерной плотности, у которого ось, идущая в направлении нормали касательной плоскости, в сравнении с осями, расположенными в площадке сжатия, бесконечно мала, то для сил притяжения масс этого эллипсоида, подчиняющихся закону тяготения Ньютона, можно вычислить потенциал в виде функции от координат ауфпункта ) и для такого потенциала уже давно была выведена готовая формула. Как можно показать, не только сами составляющие сил притяжения, вычисляемые по соответствующим формулам, но и функции, получаемые из них путем диференцирования или интегрирования по координатам, будут представлять решения основных уравнений теории упругости, и вся задача заключается лишь в том, чтобы составить из них такое решение, которое удовлетворяло бы одновременно всем граничным условиям, относящимся к напряжениям и деформациям. Это и удалось сделать Герцу. Кто захотел бы ознакомиться с теорией сжатия упругих тел по оригинальным работам Герца, тот должен иметь соответствующие предварительные сведения из теории потенциала.  [c.230]

В настоящем столетии теория упругости значительно обогатилась трудами А. Ляв, С. П. Тимошенко и др., а также работами советской школы исследователей. Г. В. Колосов и Н. И. Мус-хелишвили предложили решение плоской задачи теории упругости при помощи теории функций комплексного переменного.  [c.15]

В. А. Свекло [57] исследовал задачу Лэмба для среды с тремя упругими постоянными. Им показано, что скорость волн Рэлея является функцией всех трех констант. F. liwal zyl , J. Rafa и Е. Wlodar zyl [91, 92] с помощью интегральных преобразований исследовали нестационарную плоскую задачу о равномерном движении по поверхности полупространства сосредоточенной силы. Показано, что аналитическое решение задачи может быть получено лишь для частных случаев упругих констант. Р. С. Pal [122] применительно к теории трещин рассмотрел задачу о неравномерном движении сосредоточенной силы по границе, разделяющей упругие анизотропные слой и полуплоскость.  [c.361]

Однако не следует думать, что задача теории упругости может быть сведена к интегрированию системы (3.11) или что величина в может быть найдена с помощью известных методов решения уравнения Лапласа. Величина в никогда не бывает задана па границе. Определить ее, решая задачу Дирихле ), не удается. Система (3.11) имеет двенадцатый порядок, тогда как исходная система (3.6) — шестого порядка (порядок системы можно определить как произведение порядка максимальной производной на количество уравнений). Чтобы определить бигармоническую функцию, па границе области необходимо задать два условия, например щ и дщ/дп, т. е. нормальную производную от щ, тогда как для решения системы (3.6) достаточно задать только величины щ в каждой точке поверхности. Относительно легко построить три бигармопические функции, принимающие на границе заданные значения, но они могут не удовлетворять уравнениям (3.6).  [c.58]

Рассмотренная в 4.7 и 4.8 задача о тепловых напряжениях в длинном полом цилиндре (или в круглом диске с центральным отверстием), обусловленных плоским неосесимметричным стационарным температурным полем, стала предметом исследований многих авторов. Впервые решение этой задачи с помощью метода, основанного на исследовании вспомогательной задачи о дислокациях цилиндра и на применении теории функций комплексного переменного, получил Н. И. Мусхелишвили [44, 45] ( 4.8). Позже метод, использующий теорию функций комплексного переменного, был применен для исследования указанной задачи Гейтвудом [8]. Решение аналогичной задачи дано Меланом и Паркусом без использования функций комплексного переменного в их методе применяется комбинация термоупругого потенциала перемещений и функции напряжений [42]. Приведенный в 4.7 метод решения заимствован из книги [5]. Решение упомянутых выше задач выполнено в предположении, что упругие характеристики и коэффициент линейного теплового расширения материала постоянны.  [c.94]

Установление этих связей в аналитической форме позволяет (А. Я. Александров см. ниже) выразить напряжения и смещения осесимметричного состояния через аналитические функции комплексного переменного, а это дает в свою очередь возможность свести осесимметричные задачи упругого равновесия к граничным задачам теории аналитических функций. К этим последним задачам в ряде случаев можно применить метод степенных рядов. При помощи этих же комплексных представлений осесимметричного напряженного состояния удается в частных случаях, например для шара и пространства с шаровой полостью, получить решение основных задач в замкнутой форме (в квадратурах). С этими и некоторыми другими результатами применения теории аналитических функций к пространственным задачам теории упругости можно познакомиться по работам А. Я. Александрова- [1—6], А. Я. Александрова и В. С. Вольперта [1], А. Я. Александрова и Ю. И. Соловьева [1 ],  [c.631]


Смотреть страницы где упоминается термин Теория упругости Решение с помощью функций : [c.208]    [c.144]    [c.322]    [c.329]    [c.56]    [c.313]    [c.6]   
Прочность, устойчивость, колебания Том 1 (1968) -- [ c.0 ]

Прочность, устойчивость, колебания Том 1 (1966) -- [ c.0 ]



ПОИСК



К упругих решений

РЕШЕНИЕ ОСЕСИММЕТРИЧНЫХ ЗАДАЧ ТЕОРИИ УПРУГОСТИ ПРИ ПОМОЩИ ОБОБЩЕННЫХ АНАЛИТИЧЕСКИХ ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО Обобщенные аналитические функции, определяющие осееимметричные поля

Решение с помощью ЭВМ

Теория упругости

Теория функция

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте