Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упругие волны сжатия

В результате реверсивных упругих волн (сжатия — растяжения) в некоторой конусообразной зоне над зарядом происходит разрушение (дробление) грунта, которое усиливается давлением газов расширяющейся вверх полости. Над газовым пузырем образуется конусообразная зона разрушенных пород, непрерывно деформирующаяся за счет изменения формы поверхности вокруг эпицентра взрыва и формы расширяющегося газового пузыря.  [c.45]


Если частота тока такова, что длина стержня / мала по сравнению с длиной упругой волны сжатия на этой частоте, то деформация стержня по его длине однородна. Тогда, если один из концов стержня неподвижно закреплен, то скорость смещения у второго конца найдем, умножая скорость деформации стержня на его длину, и получим  [c.72]

Стекло является одним из традиционных модельных материалов в экспериментальных исследованиях хрупких сред. Для силикатных стекол характерен довольно высокий ( 6 —9 ГПа) предел упругости на ударной адиабате, причем их продольная сжимаемость в упругой области аномально возрастает по мере сжатия. Из-за аномальной сжимаемости упругие волны сжатия расширяются по мере распространения, а волны разгрузки в упругой области трансформируются в ударные волны разрежения. Эксперименты со статическим [85, 86] и динамическим [87, 88] сжатием обнаружили явление необратимого уплотнения стекол— возрастание остаточной плотности в результате обработки давлением. В частности, для кварцевого стекла при давлении ударного сжатия 10—15 ГПа необратимое уплотнение доходит до 15%.  [c.110]

Начиная с этого момента пластическая волна уменьшенной амплитуды будет двигаться вперед вдоль проволоки от точки Р, а упругая волна будет двигаться в обратном направлении этот эффект имеет характер внутреннего отражения в точке Р. Обе волны, возникшие вследствие такого отражения, являются волнами растяжения, причем скорости частиц по разные стороны от точки Р равны между собой. Из условий равенства значений напряжения и скорости по обе стороны от точки Р после отражения можно определить амплитуды двух возникших волн. На фиг. 40, г показана пластическая волна уменьшенной амплитуды, движущаяся вдоль проволоки от точки Ру и отраженная упругая волна, распространяющаяся в обратном направлении к концу проволоки. На фиг. 40, эта волна достигла конца проволоки и условия для напряжений и скоростей подобны тем, которые имели место на фиг. 40, а, только скорость частицы между концом проволоки и фронтом пластической волны имеет меньшее значение. Затем повторяется полный цикл и, когда вторая волна сжатия распространяется вдоль проволоки и настигает фронт пластической волны, ее амплитуда уменьшается еще раз, так что остаточная деформация в проволоке имеет ступенчатый характер ). Каждая ступень соответствует точке, в которой упругая волна сжатия догоняет фронт пластической волны.  [c.159]

Уайт [157] рассмотрел эту задачу для материала, у которого зависимость напряжение — деформация имеет вид, показанный на фиг. 39, и изобразил диаграмму распространения фронтов различных волн на плоскости (д , /). Такая диаграмма показана на фиг. 41 для стержня, испытавшего удар на одном конце, тогда как другой его конец закреплен. Упругие волны показаны на фигуре тонкими линиями, а пластические волны — жирными линиями. Предположено, что длина стержня равна 01, а постоянное сжимающее напряжение приложено в течение времени ОТ, после чего снято. Зависимость (х, ) для фронта начальной упругой волны обозначена О А, а зависимость для фронта пластической волны обозначена ОР. Из точки и распространяется волна разгрузки со скоростью упругих волн и встречает пластическую волну в точке Р . Затем упругая волна сжатия движется в обратном направлении к концу стержня, тогда как пластическая волна с уменьшенной амплитудой, но с той же скоростью распространяется к точке Рд, где она еще раз встречает упругую волну, отраженную от конца стержня, и этот процесс повторяется в точках Р , Р и т. д., причем амплитуда пластической волны при каждой встрече уменьшается. Тем временем упругая волна достигает закрепленного конца стержня в точке А. Так как в момент отражения напряжение между фронтом пластической волны и закрепленным концом стержня всюду равно пределу пропорциональности, избыточное напряжение, возникающее при отражении, распространяется в обратном направлении как пластическая волна это показано на фиг. 41 в виде прямой АВ. Эта волна встречает  [c.160]


При быстром открытии клапана в переходный период взаимодействуют разобщенные массы жидкости (рис. 42.4, а) и по трубе распространяется упругая волна сжатия со скоростью  [c.537]

Эти упругие волны сжатия и разрежения, возникающие в воздухе при колебаниях тел, и есть звуковые волны, или звук. Звук возникает и распространяется не только в воздухе и газах, но также в жидкостях и твёрдых телах.  [c.53]

Мы должны здесь несколько забежать вперёд и указать на то, что упругие волны сжатия и разрежения могут возникать и распространяться не только в газообразной среде, но и в твёрдых телах такое тело представляет собой наша пластинка. При колебаниях пластинки по толщине в ней происходят сжатия и разрежения, распространяющиеся с определённой скоростью — скоростью упругих волн в кварце. Эти волны, доходя до поверхности пластинки, отражаются от неё и начинают двигаться в противоположном направлении.  [c.165]

Мы должны здесь несколько забежать вперед и указать на то, что упругие волны сжатия и разрежения могут возникать и распространяться не только в газообразной среде, но и в твердых телах такое тело представляет собой наша пластинка. При колебаниях пластинки по толщине в ней происходят сжатия и разрежения, распространяющиеся  [c.168]

Следует отметить, что имеются работы, показывающие роль упругих волн сжатия и волн расширения в оболочке и их взаимодействие при восприятии энергии частиц, падающих на внешнюю поверхность оболочки [П9].  [c.123]

Если внешнее давление р -< р р, по телу побежит одна упругая волна сжатия со скоростью (рис. 11.37, а состояние I на диаграмме Огг, V рис. 11.36). Если же приложенное давление р > Ркр> то в теле окончательно достигается состояние 2 на диаграмме У- Однако в этом случае по телу бежит уже не одна, а две волны упругая с амплитудой Ркр и состоянием за фронтом Г, а вслед за нею пластическая с  [c.580]

При распространении упругой волны распространяются волна скоростей, несущая с собой кинетическую энергию, и волна деформаций, несущая с собой потенциальную энергию. Происходит перенос энергии так же, как при распространении отдельного импульса. Течение энергии в определенном направлении происходит так же, как и в случае одного импульса. Деформированные элементы стержня движутся и при этом передают свою потенциальную и кинетическую энергию следующим элементам стержня. Энергия течет по стержню с той же скоростью, с какой распространяется волна. Но, как мы видели при движении сжатого упругого тела, энергия течет в направлении движения тела наоборот, при движении растянутого тела энергия течет в направлении, противоположном движению тела. Поэтому, хотя направление движения слоев стержня дважды изменяется за период, но вместе с тем меняется и знак деформации, так что энергия все время течет в направлении +х, т. е. в направлении распространения бегущей волны.  [c.680]

При постоянном модуле упругости импульс напряжений может распространяться на значительное расстояние без изменения формы, изменение модуля упругости приводит к искажению импульса напряжений конечной амплитуды. Для большинства деформируемых тел уменьшается за пределом упругости и в материале при достаточно больших деформациях возникают пластические волны, распространяющиеся со скоростью, меньшей скорости распространения упругой волны. Однако существуют такие деформируемые тела (резины, полимерные материалы), в которых большие деформации приводят к ориентации длинных молекулярных цепочек, что вызывает возрастание модуля упругости . Поэтому при распространении возмущений в таких материалах зарождаются волны особой природы, называемые ударными волнами. В деформируемых телах ударные волны возникают и в том случае, когда распространяются волны расширения большой амплитуды. Как показано Бриджменом, зависимость между средней деформацией е и средним напряжением а в твердых телах может иметь вид е = (—аа + Ьо )/3, где а, Ь — постоянные величины. Модуль объемного сжатия К при малых давлениях стремится к постоянной 1/а, при высоких давлениях принимает значение 1/(а — 2Ьа) (т. е. при высоких давлениях К растет). Упругие волны расширения распространяются со скоростью а , но модуль К при высоких давлениях возрастает, это приводит к тому, что скорость волны большой амплитуды больше скорости волны малой амплитуды. В результате образуется ступенчатый фронт, характерный для ударной волны. Модуль сдвига G в этом случае играет незначительную роль, так как задолго до достижения достаточно высокого давления предел текучести будет пройден и материал ведет себя подобно жидкости.  [c.38]


Предложенные Н. А. Кильчевским уточнения квазистатической теории Герца соударения трехмерных упругих тел, основанные на учете динамических эффектов, не внесли существенных поправок и подтверждают ее справедливость при этом следует отметить, что теория соударения Герца экспериментально подтверждена многими исследователями. Следует отметить также, что вывод Б. М. Малышева [2, 3, 31, 29] о том, что уточненная теория соударения Н. А. Кильчевского лучше согласуется с опытом, чем теория Герца, неверен. Ошибочность такого утверждения объясняется тем, что при расчете продолжительности удара т по теории Герца вместо скорости распространения пространственных волн сжатия была взята скорость распространения волн в стержне.  [c.133]

Влияние волн напряжений на процесс соударения трехмерных упругих тел рассматривалось Б. М. Малышевым [29], который экспериментально изучал продолжительность удара г стальной линзы по массивному телу с плоскостью. Линза имела сферическую поверхность с центром в точке контакта, возникающие при ударе сферические волны сжатия после отражения от свободной поверхности фоку-  [c.133]

Первый эффект состоит в том, что продольные упругие волны разгрузки имеют большую скорость С -- чем скорость волны гидростатического сжатия С, определяемая дифференцированием  [c.256]

Существует много различного вида волн сейсмические, звуковые, электромагнитные и т.п. Эти волны различной физической природы относятся к разным средам и могут носить различный характер. При изучении, например, гидравлического удара (см. гл. 9) мы сталкивались с волнами сжатия упругой среды (волнами повышенного или пониженного давления). Встречаются так называемые внутренние волны, т.е. волны, возникающие на поверхности  [c.611]

Возрастание скорости распространения возмущений с ростом интенсивности нагрузки, вызванное возрастанием жесткости материала при сжатии, приводит к тому, что элементы волны сжатия с более высоким уровнем напряжений догоняют ее элементы, соответствующие более низкой величине напряжений, формируя ударный фронт. В отличие от упруго-пластической волны, на ударном фронте параметры материала меняются скачком, образуя разрыв (в математическом смысле) значений массовой скорости, напряжений, деформаций и плотности при прохождении по материалу ударной волны.  [c.162]

Влияние вязкости существенно сказывается на конфигурации фронта волны нагрузки в области, прилегающей к поверхности нагружения в течение времени одного порядка с временем релаксации напряжений [266]. Это влияние заключается в снижении амплитуды упругого предвестника и приводит к скорости распространения отдельных участков фронта пластической волны, изменяющейся в пределах от скорости упругой волны (при малых давлениях, близких к амплитуде упругого предвестника) до нуля (при давлениях, мало отличающихся от максимальной величины в волне нагрузки). При этом кривая сжатия материала располагается выше стационарной кривой сжатия, асимптотически приближаясь к ней по мере распространения волны и протекания эффектов релаксации.  [c.230]

В случае распространения слабой упруго-пластической волны, как показано на диаграмме (х, t) волновых процессов при плоском соударении пластин (рис. 118, а), в обе стороны от поверхности соударения распространяются центрированные волны сжатия, отражающиеся от свободных поверхностей в виде волн разгрузки С+ и С , симметричное взаимодействие которых формирует поле растягивающих напряжений. Область разрушения Р (см. рис. 118), в которой уровень растягивающих напряжений достигает максимальной величины Стр (абсолютная  [c.234]

Распространение упруго-пластической волны амплитудой значительно выше предела упругости по Гюгонио характеризуется тем, что фронт волны сжатия является ударным от поверхности соударения распространяется волна с крутым передним фронтом постоянной длительности, и при отражении ударной волны от свободной поверхности генерируется центрированная волна разгрузки (см. рис. 118, б). В этом случае область взаимодействия волн разгрузки не является симметричной и скорость изменения напряжений в каждой из волн разгрузки (если принимать, как и ранее, линейное изменение напряжений во времени в волнах разгрузки) зависит от расположения плоскости откола относительно свободных границ.  [c.236]

Измерение амплитуды и профиля упругой волны сжатия, д также параметров в области течения между фронтами упругой я пластической волн дает информацию о высокоскоростном деформировании упругопластической среды и его особенностях. Д.чя этого наиболее широко используются методы емкостного датчика [31, 32] и оптического затйора [33], позволяющие осуществлять непрерывную регистрацию движения свободной поверхности. Возможна также постановка измерений с использованием манганинового и диэлектрического датчиков. Однако в этом случае точность измерений хуже. Результаты исследований указывают на сложную, до конца не изученную картину процесса деформирования металлов в одномерных ударных волнах. Многочисленными экспериментами показано, что в большинстве металлов и их сплавов в согласии с основными представлениями о характере поведения упругопластической среды при ударно-волновом нагружении образуется двухволновая конфигурация. При этом упругая волна может иметь четко выраженный фронт (ударный разрыв), как, например, у сталей, либо представлять собой течение типа простой волны сжатия  [c.198]


Через 1,85 мкс после выхода фронта импульса сжатия на тыльную поверхность образца плавленного кварца на профиле W(t) фиксируется короткий отрицательный выброс скорости, вызванный выходом переотраженной волны. По времени циркуляции волн определяется средняя скорость механических Возмущений, составившая в данном случае 5,6 км/с, что близко к средней скорости распространения возмущений в упругой волне сжатия (5,05-5,9 км/с).  [c.114]

Рассмотренные до сих пор в этой главе пластические волны возникали при растяжении проволоки выше предела упругости. Точно такой же анализ можно распространить на задачу о внезапном сжатии эта теория была применена к соударению стержней Уайтом [157] и Де Югасом [30]. Если один конец стержня внезапно сжат выше предела упругости и напряжение здесь поддерживается, то вдоль стержня будет распространяться упругая волна сжатия, за которой будет следойать, но медленнее, пластическая волна. При снятии напряжения вдоль стержня начнет распространяться волна разгрузки, которая в этом случае будет волной растяжения. Поскольку ее скорость больше скорости пластической волны, то она настигнет фронт последней и при этом, как показано в предыдущем параграфе, уменьшит ее амплитуду. В стержне конечной длины упругая волна отражается от другого его конца, причем если этот конец закреплен, то при отражении возникает пластическая волна. Таким образом, если один конец стержня сжат на короткое время, а затем освобожден, то несколько различных волн будут распространяться в обоих направлениях, и распределение напряжений через некоторое время после удара становится чрезвычайно запутанным.  [c.160]

Ударная волна, достигшая торца трубы, сжимала центральный составной стержень. При этом по стержню снизу вверх распространялась упругая волна сжатия, под действием которой на верхней и нижней поверхностях диска 1 из пьезокерамики ВаТ10з возникали электрические. заряды. Толщина диска I была равна 1,5 мм, а диаметр — 10 мм. Образовавшийся импульс напряжения через цинковые стержни 2 и < и обратный коаксиальный провод 5, изготовленный из меди, подавался на вход катодного повторителя и далее кабелем РК-50 на осциллограф ОК-17. Упругая акустическая волна, пройдя пьезокерамику, уходила вверх по цинковому стержню.  [c.61]

Так можно поступать только в том случае, когда давления достаточно велики, и эффекты, связанные с прочностью твердых тел и существованием сдвиговых деформаций и напряжений, не играют роли. Если нагрузки малы, необходимо принимать во внимание упругостпые свойства твердого тела, отличающие его от жидкости. Это существенным образом влияет на характер динамических процессов и, в частности, на распространение упругих волн сжатия и разрежения. Так, оказывается, что в твердом теле акустические волны могут распространяться с различными Скоростями, в зависимости от конкретных условий. Прежде чем рассматривать эти динамические явления, посмотрим, как ведет себя твердое тело при статических нагрузках. При этом считаем, что деформации и нагрузки малы, так что справедлива линейная теория упругости.  [c.570]

Примером возникновения и распространения У. в. может служить сжатие газа в трубе поршнем. Если поршень вдвигается в газ медленно, то по газу со скоростью звука а бежит акустич. (упругая) волна сжатия. Если же скорость поршня не мала по сравнению со скоростью звука, возникает У. в., скорость распространения к-рой по невозмущённому газу больше, чем скорость движения ч-ц газа (т. н. массовая скорость), совпадающая со скоростью поршня. Расстояния между ч-цами в У. в. меньше, чем в невозмущённом газе, вследствие сжатия газа. Если поршень сначала вдвигают в газ с небольшой скоростью и постепенно ускоряют, то У. в. образуется не сразу. Вначале возникает волна сжатия с непрерывными распределениями плотности р и давления р. С течением времени крутизна передней части волны сжатия нарастает, т. к. возмущения от ускоренно движущегося поршня догоняют её и усиливают, вследствие чего возникает резкий скачок всех гидродинамич. величин, т. е. У. в.  [c.778]

Уравнения (22,11.) и (22,12) предсталляют собой обычные волновые уравнения (в трех измерениях). Каждое из них соответствует распространению упругой волны со скоростью соответственно i или t. Одна из этих волн (щ) не связана с изменением объема (в силу div щ = 0), а другая (u[) сопровождается объемными сжатиями и расширениями.  [c.127]

Процессы распространения упругих волн в кристаллах много сложнее процессов распространения электромагнитных волн. Электромагнитные волны всегда поперечны, упругие (звуковые) полны могут быть поперечными н продолы ыми. Продольные волны — волны сжатий и растяжений, поперечные — вдлны деформаций сдвига. В каждом заданном нанравлении в кристалле распрост-раняются в J общем случае три поляризован-  [c.143]

Звуковая волна, как и всякая упругая волна, представляет собой волны смещений, скоростей и деформаций,. связанные между собой и распространяющиеся вместе в среде. В гармонической звуковой волне в каждой точке смещения, скорости и деформации (сжатия) меняются по синусоидальному закону. Вместе с тем в каждой точке происходят изменения давления, обусловленные изменением степени сжатия газа. Изменения давления, вызванные звуковой волной, накладываются на то среднее давление, которое существует в газе (в случае свободной атмосферы — атмосферное давление). Эти изменения давления называют избыточным звуковым давлением или просто звуковым давлением. Единицей звукового давления служит бар — давление в 1 дн1см . Бар составляет, следовательно, около 10 атмосферного давления ).  [c.722]

Источником звука является всякое тело, колеблющееся с частотой, лежащей в пределах звукового диапазона, и возбуждающее в окружающей упругой среде (обычно в воздухе) звуковые волны. Этот процесс возбуждения волн в окружающей среде носит название излучения волн. Различные тела в разной степени обладают способностью излучать звуковые волны. Например, колеблющийся камертон сам по себе излучает очень слабо. Это объясняется малыми размерами ножек камертона и характером их колебаний. Как и в случае отдельного импульса ( 134), колеб пощаяся ножка камертона вызывает сжатие воздуха с одной стороны и в то же время разрежение — с другой. Вследствие того, что выравнивание давления в воздухе происходит со скоростью звука, эти сжатия и разрежения в сильной степени компенсируют друг друга. Вместо того, чтобы возбуждать упругую волну в окружающем воздухе, колеблющаяся ножка камертона лишь перекачивает прилегающие к ней слои воздуха с одной стороны на другую. Звуковые волны возбуждаются только постольку, поскольку это перекачивание происходит не полностью.  [c.738]

При распространении упругих волн в среде возникают механические деформации сжатия и сдвига, которые переносятся волнами из одной точки среды в другую. При этом происходит перенос энергии упругой деформации в отсутствие потока вен1ества.  [c.155]

Под скоростью звука понимают скорость распространения в теле малых возмущений, в частности упругих волн малой амплитуды. Слабые упругие волны называют звуковыми. В распространяющейся звуковой волне процессы сжатия и расширения происходят настолько быстро, что теплообмен между той частью тела, через которую проходит звуковая волна, и другими его чa т ми практически не успевает произойти. Поэтому изменение состояния тела при прохождении через него звуковой волны осуществляется без подвода или отвода теплоты, т. е. адиабатически. Так как вследствие малости изменений состояния действие внутреннего трения оказывается исчезающе малым, то звуковые колебания можно рассматривать как обратимый адиабатический или изоэнтропический процесс, независимо от того, как меняется состояние всего тела в целом. Скорость звука представляет собой характерную для данного вещества величину, изменяющуюся в зависимости от его состояния, и определяется по формуле  [c.104]


Отсутствие удобного для анализа аналитического решения даже при использовании наиболее простого уравнения состояния, включающего вязкость, затрудняет получение ясного представления о связи характера деформирования материала под нагрузкой с закономерностями волновых процессов в стержнях. Экспериментально установленное распространение волн догрузки со скоростью упругих волн при растяжении (сжатии) [239, 344, 377, 426] и кручении [25] подтверждает теорию Мальвер-на—Соколовского, в то время как многие эффекты, связанные с распространением упруго-пластических волн (например, распределение остаточных деформаций по длине длинного стержня, постоянная скорость распространения деформаций и др.), удовлетворительно описываются деформационной теорией.  [c.146]

При плоском соударении пластин откольное разрушение развивается под действием растягивающих напряжений в области взаимодействия встречных волн разгрузки. Диаграмма х, t) и (Ог, и) волновых процессов для материала, кривая сжатия в плоской волне которого аг(ег) может быть аппроксимирована билинейной зависимостью с угловыми коэффициентами Кг= = дог1дгг, равными К =ра1 и Kn = pD соответственно для области упругого и упруго-пластического сжатия, представлены на рис. 107.  [c.228]

Зависимость сопротивления сдвигу от уровня всестороннего давления (величины средних сжимающих напряжений), следующая по результатам работ [14, 187] и обсуждаемая в работе [188], влияет на ход кривой сжатия при нагрузке и разгрузке. Однако при условии, что упругий участок на кривой разгрузки не снижает давление до величины ниже нуля при экспериментальной регистрации движения свободной поверхности (или давления, соответствующего адиабате сжатия мягкого материала при регистрации давления на границе образца с мягким материалом), определение величины растягивающих напряжений как точки пересечения лучей, исходящих из максимума (точка 1) и минимума (точка 2) скоростей (давлений), автоматически учитывает зависимость сопротивления сдвигу от давления, поскольку влияние последнего сказывается только на положении точек 1 я 2 (штриховая диаграмма на рис. 117, а). Угловой коэффициент луча 2К при этом определяется жесткостью упруго-пластического сжатия в области отрицательных давлений. Из-за отсутствия в настоящее время данных о жесткости материала при одноосном деформировании в области растягивающей нагрузки приходится либо использовать жесткость, определенную при малых растягивающих нагрузках, либо принимать допустимым использование одного закона об1ъемного сжатия в плоских волнах для области растягивающих и сжимающих нагрузок. Следует отметить, что, по данным работы [21], давления до 100-10 кгс/см2 в стали 20 и алюминиевом сплаве В95 не оказывают существенного влияния на сопротивление сдвигу.  [c.230]

В стержнях может быть три типа упругих волн, распространяющихся вдоль оси предольные (волны растяжения — сжатия), крутильные и изгибные. Если длина волны велика по сравнению с поперечными размерами стержня, продоль-  [c.317]

На эталонной установке 9316 ударное движение формируют, применяя электрогидродинамнческий эффект. На наружной поверхности стального сферического волновода устанавливают поверяемый ударный акселерометр и емкостной измеритель перемещения дифференциального типа, выходы которых через согласующие устройства соединяют с электронным осциллографом. Во внутренней полости сферического волновода, заполненной водой, располагают рабочий разрядник, на который поступает импульс тока от высоковольтных конденсаторов. Импульс давления, возникающий на рабочем разряднике внутри сферического волновода, возбуждает на внутренней поверхности волновода сферическую упругую волну напряжения-сжатия. Максимальное давление в этой волне зависит от предела упругости материала волновода. Вследствие сферической формы возбуждаемой волны ударные ускорения на наружной поверхности сферического волновода одинаковы. Это позволяет обеспечить основное условие сличения показаний поверяемого акселерометра с показаниями емкостного измерителя перемещения, которые размещены в любой точке экваториальной плоскости сферического волновода.  [c.373]

Для исследования динамических диаграмм напряжение — деформация материалов при нормальных температурах используют мерные стержни Гопкинсона. Сущность метода испытаний сводится к тому, что образец располагают между торцами двух мерных стержней и нагружают импульсом давления, возбуждаемым в одном из стержней. Напряжение, деформацию, скорость деформации образца определяют по известным соотношениям теории упругих волн из условий равенства усилий и перемещений соприкасающихся торцовых сечений образца и стержней. При этом предполагают, что амплитуда импульса давления и предел прочности исследуемого материала образца ниже предела пропорциональности материала стержней. Применение указанного метода при повышенных температурах связано с трудностями измерений упругих характеристик материала стержней и деформаций. На рис. 8 приведена функциональная схема устройства для исследования влияния температуры на динамические прочностные характеристики металлов при одноосном сжатии. Исследуёмый образец 6 расположен между мерными стержнями 5 и S. Импульс давления возбуждают в стержне 5 с помощью взрывного нагружающего устройства, состоящего из тонкого слоя взрывчатого вещества 1, ударника 2 и демпфера 3. При взрыве в стержне возникает импульс сжатия трапецеидальной формы, характеристики которого зависят от плотности материала и диаметра демпфера, а также соотношения толщины демпфера и слоя взрыв-  [c.111]

Таким образом, качественная картина развития трещин в композитах может выглядеть следующим образом. В матрице, возмущенной присутствием стохастически распределенных неоднородностей, инициируется цилиндрическая ударная волна, которая по мере продвижения от канала разряда вырождается в волну сжатия, и волны, набегая на неоднородности, создают вокруг них локальные области повышенных напряжений, которые могут вызвать разупрочнение границы включение-матрица, вплоть до образования микротрещин. Рост трещин, которые в нашем случае начинаются от источника нагружения и развиваются радиально к периферии образца, происходит под действием упругой энергии, запасаемой в матрице. От канала разряда отходит определенное количество трещин, зависящее от параметров нагружения (максимального давления в канале разряда), а магистральными, т.е. прорастающими до конца образца, становятся те, которые направлены в сторону наиболее опасного сечения. Роль источника информации для определения предпочтительного направления развития трещин могут играть волны релаксации напряжений, интенсивность излучения которых наибольшая из областей расположения включений. Волны напряжений, генерируемые развивающейся магистральной трещиной, взаимодействуют с дефектными структурами в областях неоднородностей, также ориентируя движение трещин на включения. Таким образом, следует  [c.140]


Смотреть страницы где упоминается термин Упругие волны сжатия : [c.197]    [c.131]    [c.15]    [c.273]    [c.41]    [c.87]    [c.70]    [c.74]    [c.233]    [c.252]   
Линейные и нелинейные волны (0) -- [ c.209 , c.210 ]



ПОИСК



Волна сжатия

Волны упругие

Сжатие упругих тел



© 2025 Mash-xxl.info Реклама на сайте