Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы приближений

Изложенный метод приближенного интегрирования может быть применен как в случае аналитического, так и в случае графического задания всех функций, входящих в уравнения (16.14)—  [c.349]

СИНТЕЗ МЕХАНИЗМОВ ПО МЕТОДУ ПРИБЛИЖЕНИЯ ФУНКЦИЙ  [c.77]

Различают методы приближений функций интерполирования, квадратического приближения, наилучшего приближения и др.  [c.78]

В последнее время предложены методы приближенного расчета параметров режима сварки статическим давлением, которые подтверждаются опытом. Длительность процесса образования физического контакта, заключающегося в смятии микронеровностей, рассчитывают по скорости ползучести. Длительность второй стадии — химического взаимодействия — оценивают по уравнению Больцмана как длительность периода активации.  [c.14]


В тех случаях, когда речь идет о численном решении задачи, она, разумеется, может быть приближенно доведена до конца, например обычными методами приближенного интегрирования дифференциальных уравнений. Если же, однако, речь идет о нахождении общего решения, т. е. об умении записать решение дифференциальных уравнений (28) в замкнутой форме, то задачу такого рода можно решить лишь для отдельных частных случаев функциональных зависимостей, выражающих силы. Теория дифференциальных уравнений гарантирует лишь то, что это решение существует и является единственным (при нестеснительных для механики ограничениях, наложенных на функции, выражающие силы) и что движение полностью определяется заданными начальными данными (29).  [c.63]

Однако вариационные принципы не позволяют непосредственно находить интегралы систем дифференциальных уравнений движения, вытекающие из теорем динамики. Но применяя эти принципы, можно построить прямые методы приближенного определения закона движения материальной системы. Об этом кратко сказано ниже при рассмотрении конкретных примеров.  [c.181]

В предыдущих параграфах были рассмотрены два метода приближенного интегрирования нелинейных дифференциальных уравнений, встречающихся в теории колебаний, — метода пере-  [c.296]

Большинство существующих в настоящее время методов приближенного решения уравнения (11.50) можно описать следующим образом  [c.331]

Полученное из принципа минимума потенциальной энергии условие Ji = U—2А = т п является очень эффективным для приближенных решений задач статики стержней. Дифференциальные уравнения, получающиеся при исследовании вариационных задач (например, уравнение равновесия стержня), интегрируются в конечном виде лишь в частных случаях. Поэтому возникает необходимость в разработке методов приближенного решения вариационных задач с использованием исходных функционалов [например, (4.217)], не переходя к дифференциальным уравнениям. Такие методы решения вариационных задач принято называть прямыми методами.  [c.180]

В соответствии с изложенным в 4.3 методом приближенного решения получаем два уравнения  [c.135]

Эти методы можно разделить па две группы. Первая составляет методы приближенного решения краевых задач для дифференциальных уравнений, к которым сводятся те или иные задачи прикладной теории упругости. Из числа этих методов прежде всего рассмотрим метод конечных разностей (МКР) и особенности его применения в плоской задаче и в задачах изгиба пластин. Далее излагаются метод Бубнова — Галеркина и метод Канторовича — Власова.  [c.228]


Другие методы приближенного решения уравнений  [c.64]

МЕТОД ПРИБЛИЖЕННОГО ОПРЕДЕЛЕНИЯ КОМПОНЕНТ ТЕНЗОРА НАПРЯЖЕНИЙ  [c.371]

Оставляя пока в стороне другие примеры качественного рассмотрения систем с одной степенью свободы с помощью фазовой плоскости, познакомимся с весьма распространенным методом приближенного количественного расчета интересующих нас систем, а именно с методом последовательных приближений. Не занимаясь применением этого известного метода в общем виде, разберем тот же случай маятника.  [c.25]

Существующие методы приближенного решения задачи о пограничном слое на профиле произвольной формы основаны на решении уравнения импульсов (XII.22). Не рассматривая всех известных способов решения, остановимся на более простом, получившем довольно широкое применение методе, предложенном  [c.313]

Полученная таким образом система дифференциальных уравнений, описывающая гидродинамику, теплообмен и массообмен, в общем случае является нелинейной, трехмерной, в частных производных. Получить в этом случае аналитическое ее решение невозможно. В связи с этим при анализе гидродинамики, теплообмена и массообмена используют приближенные аналитические и численные решения этой системы уравнений. Достоверность используемых решений проверяют опытным путем. В настоящее время наиболее эффективные методы приближенных решений базируются на теории пограничного слоя.  [c.277]

Отмеченное свойство интегрального уравнения (3.3.1) (неустойчивость решения задачи обращения преобразования Лапласа) заставляет с большой осторожностью использовать методы приближенного решения, связанные с заменой точного значения передаточной функции W p) приближенным. Даже если это приближенное значение Wi p) на всей полуоси [О, оо) мало отличается от точного значения W(p), приближенное значение весовой функции gi t), полученное из W p), может на конечных интервалах сильно отличаться от точного значения g t). Однако, несмотря на это, существует множество достаточно корректных методов приближенного обращения преобразования Лапласа, применимых к функциям W(p), которые при этом должны удовлетворять определенным условиям. Такими условиями, в частности, являются монотонность и ограниченность функции W р). Как будет видно в дальнейшем (см. гл. 4 и 5), характер протекания большинства химико-технологических процессов соответствует монотонным и ограниченным передаточным функциям, для которых существуют достаточно строгие методы приближенного определения весовой функции g i). Подробное изложение теории приближенного обращения преобразования Лапласа дано в работах [5, 6].  [c.109]

Метод приближенного определения предельной нагрузки путем подбора статически возможного состояния мы будем называть статическим методом. Если нам представляется возможность перебрать все статически возможные состояния и найти такое состояние, которому соответствует наибольшее значение нагрузки, то это значение будет точным.  [c.171]

Сущность вариационных методов приближенного решения дифференциальных уравнений заключается в том, что задается решение в виде приближенного аналитического выражения, аппроксимирующего искомую функцию в форме последовательности функций  [c.10]

МЕТОДЫ ПРИБЛИЖЕННОГО ОПРЕДЕЛЕНИЯ ОСНОВНОЙ ЧАСТОТЫ СВОБОДНЫХ КОЛЕБАНИЙ СИСТЕМЫ  [c.151]

Рассмотрим еще матричный метод приближенного определения основной частоты.  [c.155]

В синтезе механизмов по методу приближения функций можно выделить следуютцне этапы.  [c.77]

Уравнение (13.2) решается методом приближенного интегрирования (методами трапеций или Симптона) с помощью ЭВМ.  [c.506]

Решение обратных задач, связанное с интегрированием системы дифференциальных уравнений (1 ), представляет подчас значительные трудности и часто не может быть выполнено в квадратурах. (Тогда приходится систему (1 ) решать численно, применять иные методы приближенного инте1 рировапия, либо пользоваться вычислительными машинами.)  [c.28]

При синтезе механизмов передаточные функции, как и функции положения, задаются для обеспечения требуемых кинематических характеристик. Задача синтеза решается точными или приближенными методами. Точные методы применяются к малозвенным механизмам, имеющим простую структурную схему. Для сложных схем усложняются передаточные функции и функции положения, увеличивается число параметров синтеза. К тому же при синтезе многозвенных механизмов обычно удовлетворяют не только кинематические требования к механизму, но и часто требования к его динамике. В этих условиях более удобными оказываются приближенные методы кинематического синтеза. Кроме того, во многих случаях методы приближенного кинематического синтеза более приемлемы, так как истинные кинематические характеристики все равно отличаются от расчетных, полученных точным методом. Это объясняется тем, что в реальных механизмах из-за погрешностей изготовления и упругости звеньев всегда имеются зазоры между элементами кинематических пар, неточности в линейных размерах звеньев, вследствие чего траектории точек, скорости и ускорения звеньев неизбежно отличаются от расчетных. Если для сложных задач синтеза использовать приближенные методы, то при обеспечении допустимых пределов отклонения от заданных параметров затраты на расчет окажутся значительно меньшими, чем при использовании точных методов.  [c.60]


Метод решения вариационного уравнения Лагранжа. Уравнение Лагранжа (6.41) дает удобный метод приближенного решения задач МДТТ без дифференцирования напряжений. Это особенно важно при решении задач теории пластичности. Представим выражение Oijbeij в виде  [c.128]

Этот алгорифм продолжаем дальше, пока не получим в разложениях (II. 267а) — (П.267Ь) членов с достаточно высокими степенями а. При продолжении разложения найдем для определения частоты р алгебраическое уравнение, к которому, в свою очередь, приходится применять один из методов приближенных вычислений.  [c.299]

Хотя R x) и обращается в нуль на концах тела, но производная R (х) обращается в бесконечность, т. с. тело оказывается неззостренным поэтому, строго говоря, лежащее в основе метода приближение вблизи самых концов НСЦ()ИМе1И1М0.  [c.647]

Изложенный метод приближенного решения уравнения равновесия с использованием принципа возможных перемещений потребовал сведения системы уравнений равновесия первого порядка к одному уравнению четвертого порядка, что приводит к громоздким промежуточным преобразованиям, особенно для стержней переменного сечения и при нелинейной зависимости приращений сил Aq, Ар, ДРг, АТ от перемещения точек осевой линии и или от угла в з- Например, для стержня переменного сечения (см. рис. 4.10) (стержень нагружен дополнительной осевой силой Pi = Pioii, поэтому Qio=Pio4 0) получаем следующую систему четырех уравнений равновесия при следящих силах  [c.173]

Существует два способа расчета параметров жидкости в пограничном слое. Первый способ заключается в численном решении системы дифференциальных уравнений пограничного слоя, впервые полученных Прандтлем, и основывается на использева-нии вычислительных машин. В настоящее время разработаны различные математические методы, позволяющие создавать рациональные алгоритмы для решения уравнений параболического типа, к которому относится уравнение пограничного слоя. Такой подход широко используется для определения характеристик ламинарного пограничного слоя. Развиваются приближенные модели турбулентности, применение которых делает возможным проведение расчета конечно-разностными численными методами и для турбулентного потока. Второй способ состоит в нахождении методов приближенного расчета, которые позволяли бы получить необходимую информацию более простым путем. Такие методы можно получпть, если отказаться от нахождения решений, удовлетворяющих дифференциальным уравнениям для каждой частицы, и вместо этого ограничиться отысканием решений, удовлетворяющих некоторым основным уравнениям для всего пограничного слоя и некоторым наиболее важным граничным условиям на стенке и на внешней границе пограничного слоя. Основными уравнениями, которые обычно используются в этих методах, являются уравнения количества движения и энергии для всего пограничного слоя. При этом, однако, необходимо задавать профили скорости и температуры. От того, насколько удачно выбрана форма этих профилей, в значительной степени зависит точность получаемых результатов. Поэтому получили распространение методы расчета параметров пограничного слоя, в которых для нахождения формы профилей скорости и температуры используются дифференциальные уравнения Прандтля или их частные решения. Далее расчет производится с помощью интегрального уравнения количества движения.  [c.283]

Среди многочисленных методов приближенного, пеаиалитического решения уравнения Лапласа большим распространением в гидротехнических расчетах пользуется метод графического решения, заключаюгцш шя в геометрическом построении ортогональной сетки линий равных напоров и линий тока, удовлетворяющих заданным граничным условиям задачи.  [c.325]

Среди прямых методов решения вариационных задач наиболее широкое применение получили метод Ритца, метод Канторовича н метод Бубнова—Галеркина — метод приближенного решения диффе-  [c.97]

Точное решение задачи о свободных колебаниях в нелинейных диссипативных системах в подавляющем большинстве случаев наталкивается на весьма большие и очень часто неразрешимые трудности. Поэтому (как и в случае консервативных систем) приходится искать методы приближенного расчета, которые с заданной степенью точности позволили бы найти количественные соотношения, определяющие движения в исследуемой системе при заданных начальных условиях. Из ряда возможных приближенных методов рассмотрим в первую очередь метод поэтапного рассмотрения. Мы уже указывали, что этот метод заключается в том, что в соответствии со свойствами системы все движение в ней заранее разбивается на ряд этапов, каждый из которых соответствует такой области изменения переменных, где исследуемая система с достаточной точностью описывается или линейным дифференциальным уравнением, или нелинейным, но заведомо интегрируемым уравнением. Записав решения для всех выбранных этапов, мы для заданных начальных условий находим уравнение движения для первого этапа, начинающегося с заданных начальных значений. Значения переменных 1, х, у = х) конца первого этапа считаем начальными условиями для следующего этапа. Повторяя эту операцию продолжения решения от этапа к этапу со сшиванием поэтапных решений на основе условия непрерывности переменных х и у = х, мы можем получить значения исследуемых величин в любой момент времени. Если разбиение всего движения системы на этапы основано на замене общей нелинейной характеристики ломаной линией с большим или меньшим числом прямолинейных участков, то подобный путь обычно называется кусочно-линейным методом. В этом случае на каждом этапе система описывается линейным дифференциальным уравнением. Условие сшивания решений на смежных этапах — непрерывность х я у = х — необходимо и достаточно для системы с одной степенью свободы при наличии в ней двух резервуаров энергии и двух форм запасенной энергии (потенциальной и кинетической, электрической и магнитной). Существование двух видов резервуаров энергии является также необходимым условием для возможности осуществления в системе свободных колебательных движений, хотя для диссипативных систем оно недостаточно. При большом затухании система и с двумя резервуарами энергии может оказаться неколебательной — апериодической.  [c.60]


Для получения весовых функций и(0 и g2i t) необходимо применить обратное преобразование Лапласа к функциям W p) и Wiiip). Сначала определим gu t). Найти аналитическое выражение для обратного преобразования Лапласа от функции Wn p) нельзя, поэтому для определения вида функции g n(0 воспользуемся одним из методов приближенного обращения преобразования Лапласа (см. раздел 3.3).  [c.126]

Треффц ) предложил другой метод приближенного определения функции напряжений ф. По его методу приближенная величина крутящего момента оказывается больше точного значения. Следовательно, используя совместно методы Треффца и Ритца, можно установить границы погрешности приближенного решения.  [c.325]


Смотреть страницы где упоминается термин Методы приближений : [c.281]    [c.80]    [c.174]    [c.317]    [c.270]    [c.381]    [c.227]    [c.69]    [c.382]    [c.679]   
Основы прогнозирования механического поведения каучуков и резин (1975) -- [ c.345 , c.346 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте