Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория и задачи линейно-упругих тел

ТЕОРИЯ И ЗАДАЧИ ЛИНЕЙНО-УПРУГИХ ТЕЛ  [c.47]

Обращение компонент напряжений в бесконечность у конца щели не следует рассматривать как коренное противоречие результатов линейной теории упругости в этой задаче опытам. Наоборот, в рамках линейной теории упругости и сильно упрощенной схематизированной постановки задачи это обстоятельство является хорошим отражением действительности. Использование модели линейно упругого тела в этой задаче, так же как и широко используемые идеализации во многих других случаях (абсолютно твердое тело, поверхности сильных разрывов, явление удара и т. д.), связано с некоторыми эффектами, которые в той или иной степени противоречат опыту. Важно, однако, чтобы такие противоречия не имели существенного значения для распределения искомых величин в основной части тела и для получения нужных выводов при решении поставленных задач ).  [c.514]


В основе М. лежат три закона Ньютона. Первые два справедливы по отношению к т, н. инерциальной системе отсчёта. Второй закон даёт осн. ур-ния для решения задач динамики точки, а вместе с третьим — для решения задач динамики системы материальных точек. В М. сплошной среды, кроме законов Ньютона, используются закона, отражающие свойства данной среды и устанавливающие для неё связь между тензором напряжений и тензорами деформаций или скоростей деформаций. Таковы Дука закон для линейно-упругого тела и закон Ньютона для вязкой жидкости (см. Вязкость). О законах, к-рым подчиняются др. среды, см. в ст. Пластичности теория. Реология.  [c.127]

При решении задач прочности тела с трещинами необходимо провести детальный анализ напряженно-деформированного состояния у вершины трещины и сформулировать критерии, определяющие критическое состояние материала. Обе задачи очень трудны и в теоретическом, и в экспериментальном плане. Это связано с тем, что для линейно-упругого тела в соответствии с аналитическими методами решения плоских краевых задач теории упругости напряжение у вершины трещины стремится к бесконечно большому значению 179, 127, 3411,  [c.6]

Отсюда следует, что задача линейной вязкоупругости в изображениях совпадает с соответствуюш ей задачей для упругого тела. Следовательно, и решения этих задач совпадают, с той лишь разницей, что постоянная 1/ 2G) заменяется изображением J. Модуль объемной деформации в решении сохраняется. Если решение линейной задачи теории упругости известно, то будут известны изображения сг , e j. Построив по найденным изображениям оригиналы, определим искомые решения (Tij t, ж), Sij t,x).  [c.54]

Книга содержит систематическое изложение теоретической механики и основ механики сплошных сред. Большое внимание уделено фундаментальным понятиям и законам механики Ньютона — Галилея, законам изменения и сохранения импульса, кинетического момента и энергии, уравнениям Лагранжа, Гамильтона и Гамильтона — Якоби для класса обобщенно-потенциальных сил, а также законам механики сплошных сред, на единой основе которых рассматриваются идеальная и вязкая жидкости, упругое тело. В книге подробно излагаются-, задача двух тел и классическая теория рассеяния, законы изменения импульса, кинетического момента и энергии относительно неинерциальных систем отсчета, теория линейных колебаний систем под действием потенциальных, гироскопических и диссипативных сил, метод Крылова — Боголюбова для слабо нелинейных систем, методы усреднения уравнений движения. Книга содержит большое количество примеров интересных для физиков, в частности рассматриваются примеры на движения зарядов в заданных электромагнитных полях, задачи на рассеяние частиц, колебания молекул, нелинейные колебания, колебания систем с медленно меняющимися параметрами, примеры из магнитогидродинамики. Книга рассчитана на студентов и аспирантов физических специальностей.  [c.2]


Для упрочняющихся тел А. А. Ильюшин (1948) предложил метод упругих решений, сводящий решение граничной задачи для нелинейно упругого тела к бесконечной последовательности соответствующих задач для линейно упругих тел с дополнительными объемными силами. Значительные результаты получены А. А. Ильюшиным (1944—1950) в теории несущей способности пластин и оболочек из упруго-пластического материала и, в частности, при потере устойчивости.  [c.392]

Решения задач о трещинах в линейно-упругом теле указывают на неограниченные деформации и большие повороты, т. е. противоречат условиям применения линейной теории упругости. Необходимо выяснить, как следует отнестись к таким решениям. В определенной степени это можно сделать, основываясь на интерпретациях линейной теории, введенных ниже (см. З.2.).  [c.68]

Данные модели, однако, с чисто механической точки зрения внутренне не противоречивы и обладают одним немаловажным достоинством они позволяют найти соответствующие им точные решения задач о трещине. При удалении от края трещины поля напряжений и деформаций, отвечающие этим двум моделям (и соответственно - линейной теории упругости), сближаются и, если деформации и повороты вдали от трещины малы, становятся неразличимыми. Это дает основания полагать, что влияние геометрической нелинейности в данных задачах носит локальный характер и что там, где она не проявляется, результаты линейной теории правильны. Область, вне которой влияние геометрической нелинейности несущественно, для обычных жестких материалов оказывается достаточно малой, что оправдывает применение геометрически линейной теории не только для упругого, но и для упругопластического тела. При этом зависимости для напряжений и перемещений у края трещины в линейно-упругом теле следует  [c.68]

S — граница j = x — декартовы координаты точек Q (в линейной теории различие между дг и а при постановке задачи исчезает). Если тело является линейно упругим, то в области й имеют место следующие соотнощения  [c.54]

Задачи, в которых компоненты тензора напряжений aij (л ), а следовательно на основании (4.5) и компоненты тензора де( рмации tj (Xh), определяющие напряженно-деформированное состояние упругого тела, являются линейными функциями координат Xi, его точек или постоянными величинами, называются простейшими задачами теории упругости.  [c.83]

Основное предположение линейной механики разрушения состоит в том, что трещина распространяется тогда, когда величина коэффициента интенсивности достигает критического значения, характерного для данного материала. Совершенно эквивалентная формулировка этого предположения состоит н том, что сила G, движущая трещину, превосходит критическое значение — сопротивление распространению трещины. Формула (19.4.4) утверждает эквивалентность двух этих формулировок. Что касается механического содержания принятой гипотезы и всей теории в целом, на этот вопрос можно ответить по-разному, а в рамках формальной теории вообще его можно не ставить. Тем не менее некоторые соображения могут быть высказаны. В оригинальной работе Гриффитса предполагалось, что освобождающаяся при росте трещины упругая энергия расходуется на увеличение поверхностной энергии если есть поверхностная энергия на единицу площади, то сила сопротивления движению трещины G = Анализ Гриффитса в течение долгих лет считался безупречным, хотя в нем содержится некоторый органический дефект. Энергия поверхностного натяжения вводится в уравнения теории как нечто данное и постороннее по отношению к упругому телу. На самом деле, поверхностная энергия есть энергия поверхностного слоя, свойства которого в той или иной мере отличаются от свойств остального материала и при решении задачи теории упругости этот поверхностный слой нужно как-то моделировать. Простейшая схема будет состоять в том, чтобы рассматривать поверхностный слой как бесконечно тонкую пленку с постоянным натяжением 7. Если контур свободного отверстия имеет кривизну, то поверхностное натяжение дает нормальную составляющую силы на контуре. При переходе к разрезу, в вершине которого кривизна становится бесконечно большой, поверхностное натяжение создаст сосредоточенные силы. В результате особенность у кончика трещины оказывается более высокого порядка, а именно, вида 1/г, а не 1/У г. На это обстоятельство было обращено внимание Гудьером, однако полное решение задачи было опубликовано много позже. В связи с этим можно выразить сомнение, связанное с тем, в какой мере пригодно представление о поверхностном натяжении в твердом теле как о натянутой бесконечно тонкой пленке, а особенно в какой мере эта идеализация сохраняет смысл при переходе к пределу, когда отверстие превращается в бесконечно топкий разрез.  [c.664]


В этой главе рассматриваются задачи линейной теории упругости, выводы которой справедливы для тела однородного и изотропного, у которого между компонентами деформации и компонентами напряжений существует наиболее простая линейная связь (обобщенный закон Гука), а самые деформации предполагаются малыми, т. е. такими, когда компоненты деформации (относительные удлинения, относительные сдвиги) пренебрежимо малы по сравнению с единицей.  [c.50]

Третье решение, равное разности двух решений, удовлетворяющих всем уравнениям теории упругости, мо кно трактовать как решение задачи линейной теории упругости рассматриваемого тела при условии, что объемные и поверхностные силы отсутствуют, а перемещения , г , ю на границах тела равны нулю.  [c.57]

Отметим, что в задачах о равновесии и движении упругих тел (за исключением задачи вида II, когда заранее задаются перемещения границы) поверхность деформируемого тела, на которой задаются граничные условия, заранее неизвестна и должна быть найдена в процессе решения задачи. Однако в линейной теории упругости предполагается, что деформированная поверхность тела мало отличается от его начальной недеформированной поверхности. В этом случае, пренебрегая малыми второго порядка, можно считать, что граничные условия должны выполняться на недеформированной, а следовательно, известной поверхности (см. гл. VII т. 1). Именно так мы поступали при решении задач о простом растяжении бруса и о деформации трубы под действием заданных внутреннего и внешнего давлений.  [c.342]

Для расчета конструкций в упругой области применяются различные методы и программы решения на ЭВМ основных краевых задач теории упругости (см. гл. 3). При выполнении упругопластического расчета возникающая физически нелинейная задача решается итерационным путем таким образом, чтобы на каждой итерации задача была линейной. Такая процедура соответствует решению последовательности краевых задач для неоднородных упругих тел с одинаковыми граничными условиями и внешней объемной нагрузкой (метод переменных параметров упругости) либо задач для исходного тела с меняющейся объемной и поверхностной нагрузкой (метод дополнительных нагрузок).  [c.129]

Физические уравнения для упругого тела представляют собой обобщенный закон Гука и имеют тот же вид, что и в геометрически линейных задачах теории упругости (5.2).  [c.97]

Систематически излагаются постановки пространственных контактных задач линейной теории упругости и методы их решения, не требующие математического аппарата, выходящего за рамки курса высшей математики для технических университетов. Изучаются контактные задачи для системы штампов, строятся асимптотические модели одностороннего дискретного контакта и рассматриваются вопросы равновесия твердого тела, опирающегося на шероховатую плоскость в нескольких точках. Подробно изложена техническая теория упругого ненасыщенного контакта шероховатых поверхностей.  [c.2]

Вектор смещений точек упругого полубесконечного тела и (х) служит решением следующей задачи линейной теории упругости  [c.126]

В гл. 1 и 2 книги мы будем рассматривать теорию упругости при малых перемещениях (геометрически линейную теорию упругости) и выведем принцип виртуальной работы и связанные с ним вариационные принципы для задачи о статическом равновесии упругого тела, находящегося под действием массовых (объемных) сил, при заданных граничных условиях [1,2 ]. Для описания трехмерного пространства, в котором рассматривается тело, применяются ортогональные декартовы координаты (х, у, z). В геометрически линейной теории упругости компоненты перемещений и, V, W в точке тела считаются столь малыми, что уравнения задачи выполняются в линейном приближении. Запишем эти линеаризованные уравнения  [c.23]

Находясь в рамках применимости линейной теории, можно сформулировать другой вариационный принцип, двойственный к вариационному принципу виртуальной работы для задачи теории упругости, поставленной в 1.1. Рассмотрим тело, находящееся в состоянии равновесия при заданных массовых силах и граничных условиях, и обозначим компоненты деформации и перемещений в этом теле через е .,. .., и и, v, w соответственно. Очевидно, что  [c.34]

Выведенные до сих пор вариационные принципы касались краевой задачи теории упругости. В последних двух параграфах этой главы рассмотрим вариационные формулировки задачи о свободных колебаниях упругого тела при малых перемещениях. Задача формулируется так, что тело свободно на 5 и закреплено на S . Поскольку мы ограничиваемся случаем малых перемещений, все уравнения задачи линейны, а перемещения и напряжения в теле изменяются гармонически во времени. Обозначив амплитуды напряжений, деформаций и перемещений через. ......., и,  [c.66]

Приведенные выше формулы теории напряженного и деформированного состояния применимы как для упругих, так и неупругих тел. Для решения контактных задач необходимо знать количественные зависимости между напряжениями и деформациями. Рассмотрим их для случая линейно упругих, изотропных тел.  [c.96]

Решение нек-рых контактных задач для упругих тел впервые дано Г. Герцем (G. Hertz). В основу его теории К. н. положены след, предположения материал со прикасающихся тел в зоне контакта однородеи и следует закону Гука линейные размеры площадки контакта малы по сравнению с радиусом кривизны и линейными размерами соприкасающихся иоверхностей в окрест-иости точек контакта силы трения между соприкасающимися телами пренебрежимо малы. При этом найдено, что при сжатии двух тел, ограниченных плавными поверхностями, площадка контакта имеет форму эллипса (в частности, круга или полоски), а пнтенспвпость распределения К. н. но этой площадке следует эллипсоидальному закону.  [c.445]


Задание закона состояния приводит к замкнутой системе дифференциальных уравнений, по которой определяется реализуе- мое в теле напряженное состояние и вектор перемещения точек среды. Из сказанного следует, что в линейной постановке задача определения формы и размеров упругого тела в конечном состоянии отодвигается на второй план—их находят после того, как задача решена в предполон<ении неизменности начальной формы тела. Этот прием позволяет избежать серьезной трудности нелинейной теории упругости, когда напряженное состояние приходится разыскивать в 1/-объеме — в теле с неизвестной наперед границей О. Его законность подтверждается тем, что при решении задач нелинейной теории упругости методом последовательных приближений, например в форме ряда по степеням параметра ма.пости, характеризующего малость градиента вектора перемещения, исходное приближение, получаемое при пренебрежении слагаемыми, содержащими этот параметр, представляет решение задачи для линейно-упругого тела, когда определяющие уравнения отнесены к начальному объему и начальной форме его границы.  [c.102]

В случае волокнистых однонаправленных композитных материалов, армированных короткими волокнами (волокнами конечных размеров в продольном направлении), взаимодействие между соседними волокнами может реализоваться как в плоскости поперечного сечения (между соседними параллельными волокнами), так и в продольном направлении (между соседними волокнами в направлении действия сжимающих напряжений). Исследование таких проблем в рамках трехмерной линеаризированной теории устойчивости деформируемых тел существенно усложняется, так как в этом случае получаем неоднородное (двухмерное или трехмерное) докритическое состояние вполне очевидно, что в рассматриваемых задачах конкретные результаты можно получить лишь при помощи современных численных методов. При вышесказанном подходе рассматриваемая проблема начала разрабатываться лишь в последние два года. Так, в случае волокнистых однонаправленных композитных материалов, армированных короткими волокнами, при малой концентрации наполнителя приходим к простейшей эталонной задаче об устойчивости одного короткого волокна (волокна конечных размеров в продольном направлении) в бесконечной матрице при сжатии па бесконечности усилиями постоянной интенсивности, направленными вдоль волокна. Заметим, что в случае одного короткого волокна также получаем задачу с неоднородным докри-тическим состоянием конкретные результаты даже в этой эталонной простейшей задаче, характерной для рассматриваемой проблемы, получаются с привлечением только численных методов. При вышеизложенной постановке в рамках плоской задачи при моделировании матрицы и волокна линейно-упругим сжимаемым телом ряд конкретных результатов изложен в [8, 9]. Настоящую статью можно рассматривать как продолжение исследований [8] для однонаправленных волокнистых композитных материалов, армированных короткими волокнами, применительно к материалам с малой концентрацией наполнителя, когда можно выделить два соседних волокна (вдоль направления действия сжимающих напряжений), для которых (в силу близкого их размещения) необходимо учитывать взаимодействие двух волокон при потере устойчивости. Исследование проводится также в рамках плоской задачи при моделировании матрицы и волокон линейно-упругим сжимаемым телом при этом приводится сравнительно краткая информация о применяемом численном методе решения задач и его реализации, поскольку более подробно указанные вопросы могут быть изложены в публикации в другом издании. Основное внимание в настоящей статье уделено анализу полученных закономерностей о взаимовлиянии двух коротких волокон в матрице при потере устойчивости  [c.332]

Необходимо подчеркнуть, что теорема единственности доказана нами для геометрически линейной постановки задачи теории упругости. Если условие (8.4.8) не выполнено, единственности может не существовать. Это может означать одно из двух о либо принятая модель сплошной среды некорректна, либо материал неустойчив. При- Рис. 8.4.1 мером такого неустойчивого материала служит материал с падающей диаграммой растяжения, подобной изображенной на рис. 8.4.1. Видно непосредственно, что одному п тому же значению напряжения на этой диаграмме соответствуют два разных значения деформации. Вопрос о действительном существовании таких неустойчивых упругих материалов остается открытым диаграммы вида изображенной на рис. 8.4.1 наблюдаются при описании пластического поведения и представляют зависшюсть условного напряжения, т. е. растягивающей силы от деформации. Пример неустойчивости такого рода был рассмотрен в 4.13. Для геометрически нелинейных систем теорема единственности несправедлива нарушение единственности соответствует потере устойчивости упругого тела. Рассмотрению подобного рода задач в элементарной постановке была посвящена вся четвертая глава.  [c.247]

Здесь г ) — непрерывная функция, удовлетворяющая уравнению Пуассона. Задача состоит в определении вектора и смещения в неограниченнол упругом теле таким образом, чтобы при обходе по любому контуру, окруягающе-му трубку дислокации, этот вектор получал приращение, равное постоянному вектору Бюргерса Ъ. Трубкой дислокации мы будем называть тор(>-идальную полость, окружающую замкнутую линию дислокации Г и такую, что вне этой полости кристалл может считаться хорошим. В переводе на язык механики сплошной среды это значит, что путь обхода не должен приближаться к линии Г настолько, чтобы уравнения линейной теории упругости потеряли силу.  [c.457]

При наличии в теле трещины для суждения о характере ее распространения и тем самым для суждения о прочности также необходимо знание напряженного состояния. Задача онределения нанряжешюго состояния около конца трещины отличается от обычных задач онределения концентрации напряжений тем, что геометрически линеаризованная постановка краевых условий и физически линейная теория упругости приводят к бесконечным напряжениям и бесконечным градиентам напряжений в конце тонкого разреза. При этом понятие коэффициента концентрации напряжений теряет смысл. Разумеется, мол<ио было бы пытаться сохранить числовое безразмерное выражение коэффициента концентрации напряжений посредством учета сложных детальных особенностей деформации материала у конца разреза. Однако для решения задач о трещине совсем не обязательно интересоваться, детальными процессами, идущими в весьма малой окрестности конца разреза [155, 168]. Достаточно знать характер и интенсивность напряженного состояния в области, окружающей конец разреза вместе с малым объемом, где сосредоточен механизм разрушения (рис. 12.1). Это означает отказ от использования коэффициента концентрации напряжений в пользу a HMntoTH4e Koro  [c.79]

В задаче термоупругости определяются напряжения и деформации, возникающие вследствие неоднородного распределения темп-ры в теле. При матам, постановке этой задачи в правую часть первых трёх ур-ний (1) добавляется член — (ЗХ-)-2 а)аГ, где а—коэф. линейного температурного расширения, T(xi, Х2, J 3)—заданное поле темп-ры. Аналогичным образом строится теория электромагнито-упругости и упругости тел, подвергаемых облучению.  [c.235]

Возможен случай, когда механическая система является системой с распределенными пара,метрами. К тако.му случаю относятся задачи о деформировании упругих тел магнитным полем. Эти задачи могут быть нелинейными, даже если упругие перемещения малы и справедливы уравнения линейной теории упругости. Нелинейность при этом обусловливается зависимостью пондеромоторных сил от перемещений. К указанному классу относятся два типа задач- о равновесии ферромагнитных тел, расположенных на расстояниях, сравнимых с малыми упругими перемещениями, и о равновесии близко расположенных проводящих стержней с токами. Постановка этих задач и некоторые результаты их исследования приведены в работе [16]. Математически аналогичная задача о равновесии электростатически заряженных капель рассмотрена в работе [181.  [c.340]


Итак, мы получили все определяющие соотношения для задачи линейной теории упругости уравнения равновесия (1.4), соотношения деформации—перемещения (1.5), соотношения напряжения—деформации (1.6) внутри тела V и граничные условия в напряжениях и перемещениях (1.12), (1.14) на границе тела S. Эти соотношения показывают, что мы имеем 15 неизвестных, а именно 6 компонент напряжений, 6 компонент дефотмаций, 3 компоненты перемещения в 15 уравнениях (1.4) и (1. , (1.6). Нашей задачей является решить эти 15 уравнений при граничных условиях (1.12) и (1.14). Поскольку все уравнения линейны, то для построения решений может быть использовано правило суперпозиции. Следовательно, мы получили линейные соотношения между заданными величинами, скажем нагрузками на Si, и неизвестными, какими являются напряжения и перемещения внутри тела.  [c.26]

Пластическая деформация тел сопровождается развитием линий скольжения. При незначительном градиенте напряжений линии скольжения могут равномерно распределяться по всему объему тела. Такая закономерность имеет место при развитой пластической деформации для упрочняющегося материала. Для материалов, обладающих четко выраженной площадкой текучести (для металлов типа мягкой стали, склонных к запаздьтанию текучести), а также при наличии неоднородного поля напряжений с большим градиентом появляются изолированные линии скольжения, занимающие незначительный объем тела по сравнению с упругой частью [4]. Следовательно, изучение пластических деформаций на первых стадиях их развития может быть сведено к разрывным задачам линейной теории упругости. Этот факт впервые был отмечен и изучен М.Я. Леоновым и его сотрудниками [26, 27].  [c.164]

Напомним (см., налример, [15]), что в линейной теории при рассмотрении тонкой оболочки как трехмерного упругого тела напряженное состояние складывается из внутреннего напряженного состояния и пограничного слоя. Последний локализуется в окрестности края оболочки на расстоянии порядка ее толщины Л и не описывается двухмерными уравнениями. Показатель изменяемости пограничного слоя t = 1. Внутреннее состояние с погрешностью, неограниченно убывающей вместе с толпщной оболочки, может быть описано двухмерными уравнениями теории оболочек. Во многих случаях (в частности, для рассматриваемой задачи о растяжении полусферы внутренним давлением) внутреннее состояние складывается из безмоментного состояния с изменяемостью = О и простого краевого эффекта с изменяемостью t = 1/2, локализующегося в окрестности края s = S2 оболочки и приближенно описываемого уравнением  [c.366]

Поставим задачу определить количество высвобожденной энергии при росте трещины от длины а до (а + 6а). При постоянной нагрузке высвобожденная потенциальная энергия равна высвобожденной энергии деформации в условиях заданной деформации при ба О. Вместо общего энергетического подхода Гриффитса сконцентрируем внимание на области вершины трещины, малой по срав- нению с размерами тела в целом, но достаточно большой по отношению к межатомным расстояниям, что дает возможность применить линейно-упругую теорию. На рис. 52 показано распределение напряжений перед трещиной длиной а и перемещений у трещины длиной а -f Ьа). Из решения Вестергаарда, изменив оси (гл. П1, раздел 7), имеем  [c.101]

Предположение о малости перемещения и поворотов влечет соблюдение малости удлинений и сдвигов. Однако обратное утверждение несправедливо. В то же время существует только общее рассуждение о критерии малости перемещений относительно линейного размера тела. Есть основание полагать, что для тел с микроструктурой необходимо сравнивать перемещения с размерами структурных элементов. Подчеркнем, что в основе классической теории малых деформаций лежит допущение о малости поворотов и перемещений. Если в основу положить малость удлинений и сдвигов по сравнению с единицей, то перемещения и повороты могут быть значительны. Эти преднолон ешш соответствуют линейной теории упругости, в которой реигаются задачи упругого равновесия, сильного изгиба стержней, оболочек и т, п, В этом случае тензор деформации имеет вид  [c.100]

Интегральные представления комплексных потенциалов Ф (г) и Y (г) (1.145) являются общим решением двумерной бигармони-ческой задачи, содержащим две произвольные комплексные функции g (/) и q (/) (или четыре действительные функции), что позволяет с их помощью изучать самые разные краевые задачи для областей с разрезали . В частности, удовлетворив с помощью представления (1.145) и формул (1.26), (1.30), (1.42) граничным условиям плоской задачи теории упругости для бесконечной плоскости с разрезами, когда на одном берегу разреза заданы смещения, а на другом — напряжения, найдем сингулярные интегральные уравнения второго рода. При использовании условий неидеального контакта упругих тел, когда напряжения и смещения берегов разреза связаны линейными зависимостями (см. [40, 172, 175, 261]), легко получить сингулярные интегро-дифференциальные уравнения типа Прандтля для тел с тонкостенными упругими включениями 238]. Интегральные представления могут быть использованы при решении различных смешанных задач для тел с разрезами, задач о полосах пластичности, моделируемых скачками перемещений [23], и др.  [c.38]

Однако из числа экспериментальных результатов такого типа и, в частности, огромного количества статей, посвяш,енных краевым задачам линейной теории упругости, лишь немногие представляют глубокий научный интерес. В этой книге я не ставил перед собой непосильной задачи проследить во всех подробностях развитие и современное состояние исследования краевых задач со всеми его успехами и неудачами, не говоря уже об оценке их значения для развития техники. Кроме того, в самом начале работы я решил исключить из рассмотрения большую часть обширной литературы по разрушению, прежде всего потому, что трехсотлетний опыт разрушения образцов из материалов всех видов, начиная от костей кита и кончая сталью, при почти всех возможных комбинациях условий проведения испытаний, не вскрыл пока каких-либо общих черт поведения твердых тел. Главная часть этой книги связана, таким образом, с основной проблемой экспериментальной механики твердого тела установлением определяющих соотношений.  [c.27]


Смотреть страницы где упоминается термин Теория и задачи линейно-упругих тел : [c.399]    [c.58]    [c.357]    [c.73]    [c.332]    [c.745]    [c.10]    [c.149]    [c.8]    [c.104]    [c.104]   
Смотреть главы в:

Прикладная механика деформируемого твердого тела  -> Теория и задачи линейно-упругих тел



ПОИСК



ВА i ЗИЕ 1РАНИЧШХ ЗАДАЧ ТЕОРИИ УПРУГОСТИ ДЛЯ ПРОСТРАНСТВА ЗДНОРОДЕЮСТЯМИ Дифференциальные уравнения линейной теории упругости

Граничные задачи равновесия в линейной теории упругости

Задача упругости

Задачи аксиально-симметрические линейной теории упругости

Задачи теории упругости

Контактные задачи линейной теории упругости

Краевые задачи для стационарной системы линейной теории упругости

Линейная задача

Линейная теория

Методы решения задач линейной теории упругости

Основные зависимости геометрически линейной теории упругости (А.ЗЛокОБЩИЕ ТЕОРЕМЫ ТЕОРИИ УПРУГОСТИ И СТРОИТЕЛЬНОЙ МЕХАНИКИ, ВАРИАЦИОННЫЕ ПРИНЦИПЫ И ИХ ИСПОЛЬЗОВАНИЕ ДЛЯ РЕШЕНИЯ ЗАДАЧ МЕХАНИКИ ДЕФОРМИРУЕМОГО ТВЕРДОПостнов)

ПОСТАНОВКА ОСНОВНЫХ ЛИНЕЙНЫХ ЗАДАЧ ТЕОРИИ УПРУГОСТИ И ВЯЗКОУПРУГОСТИ

Постановка задачи линейной динамической теории упругости

Постановка задачи линейной теории упругости

Постановка задачи теории упругости линейной вязкоупругости

Приближенные методы решения линейных задач теории упругости

Применение МКЭ для решения задач линейной теории упругости

ТЕОРИЯ УПРУГОСТИ Линейная теория упругости

Теорема о единственности решения задачи линейной теории упругости

Теоремы существования и единственности решения задачи линейной теории упругости

Теория упругости

Теория упругости линейная

Упругости линейная

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте