Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Точные решения основного дифференциального уравнения

Сплошной линией обозначены также перемещения, полученные при помощи точного решения основного дифференциального уравнения в предположении, что до момента t = О система была невозмущенной. В показанном примере было принято, что период собственных колебаний системы равен Тр 2 и что в системе есть критическое затухание.  [c.198]

Точный решения основного дифференциального уравнения  [c.13]

Однако точное решение задачи получить не всегда возможно, поэтому на практике широко применяют приближенные методы, основанные либо на приближенном представлении самой искомой функции, либо на приближенном численном решении основного дифференциального уравнения.  [c.256]


Невозможность точного интегрирования основного дифференциального уравнения расчета вращающегося диска в общем случае переменного профиля и произвольных зависимостей от радиуса модуля упругости и коэффициента поперечной деформации привела к необходимости разработки приближенных методов расчета. Существующие в настоящее время решения задачи могут быть в основном разбиты на три группы.  [c.115]

Прежде чем сформулировать соответствующее определение, введем ряд обозначений. Пусть R(u)=0 — вся совокупность уравнений, входящих в краевую задачу, т. е. основное дифференциальное уравнение и краевые условия. Уравнения сеточной краевой задачи запишем в аналогичном в иде Rh(Uh)=0. Погрешностью аппроксимации схемы на точном решении называется сеточная функция ah = Rh u), возникающая при подстановке точного решения краевой задачи в уравнение схемы.  [c.76]

Все приближенные методы решения, основанные на вычислении кинетической и потенциальной энергии колеблющегося стержня, имеют один общий недостаток. Он заключается в том, что при вычислении потенциальной энергии оперируют со второй производной предполагаемой кривой прогибов. Последнее часто приводит к грубым отклонениям от точных значений собственной частоты. Это неудобство можно устранить тем, что, кроме граничных условий, используют также и основные дифференциальные уравнения задачи.  [c.85]

Основное дифференциальное уравнение ) и его точное решение  [c.71]

Метод граничных элементов (МГЭ) — это метод решения краевых задач для дифференциальных уравнений в частных производных, появившийся в результате сочетания идей теории потенциала с методами современной теории аппроксимации. МГЭ, с точки зрения теории аппроксимации, имеет много общих черт с широко известным методом конечных элементов, но отличается от него существенным преимуществом дискретизация осуществляется, как правило, не внутри области, в которой ищется решение, а на ее границе. Такое упрощение достигается путем точного удовлетворения исходным дифференциальным уравнениям с помощью представлений решения в виде, характерном для теории потенциала. Указанные представления могут быть использованы в рамках МГЭ лишь в случае, когда известны в явном виде (точно или приближенно) фундаментальные решения (или функции Грина) для рассматриваемых дифференциальных уравнений 1 исследованы граничные свойства соответствующих потенциалов. Путем предельного перехода на границу в формулах представления решения получаются граничные интегральные уравнения (ГИУ), которые являются основным объектом аппроксимации Б МГЭ. Этим объясняется еще одно (более раннее) название МГЭ — метод граничных интегральных уравнений. Заметим, что возникающие в теории упругости и в других разделах механики деформируемого твердого тела ГИУ часто являются сингулярными интегральными уравнениями [114, 107, 84], методы аппроксимации которых далеко не тривиальны.  [c.3]


Поскольку функция да (6.50) удовлетворяет основному дифференциальному уравнению (6.18) и граничным условиям на контуре, то она является точным решением данной задачи. Наиболее напряженная точка пластины находится на конце малой полуоси (л = О, у = Ь). Изгибающие моменты в этой точке, согласно зависимостям (6.10), (6.11)  [c.237]

Для решения выдвигаемых перед нею задач механика жидкости и газа, так же как и теоретическая механика, применяет точные и приближенные математические приемы интегрирования основных дифференциальных уравнений движения, уравнений переноса тепла, вещества и других уравнений, выражающих законы физических процессов в жидкости и газе (например, уравнения электромагнитного поля). Для получения суммарных характеристик явлений используются общие теоремы механики и термодинамики теоремы количества и моментов количеств движения, закон сохранения энергии и др. Значительная сложность явлений вынуждает механику жидкости и газа широко пользоваться услугами эксперимента, обобщение результатов которого приводит к эмпирическим закономерностям, а иногда и к полуэмпирическим теориям. Такие отклонения от дедуктивных методов классической рациональной механики вполне естественны для столь быстро развивающейся науки, как современная механика жидкости и-газа.  [c.14]

Общее решение системы дифференциальных уравнений (4.24) — (4.26) может быть получено только при переходе к действительным переменным. В приложении I дано такое общее решение системы уравнений двух ( 5) и трех ( 6) связанных волн. Здесь мы рассмотрим только частное решение для случая точного согласования фазовых скоростей основной волны и волны гармоники.  [c.144]

Корпусные детали представляют собой в основном пустотелые конструкции из однородного материала. Поэтому решение поставленной задачи может быть выполнено средствами статической и динамической теории упругости изотропного тела. Решить точно известные системы дифференциальных уравнений теории упругости в частных производных для таких пространственных тел, какими являются корпусные детали, в настоящее время не представляется возможным. Точное решение задачи теории упругости пока получено при некоторых частных видах нагружения только для полупространства, бесконечного слоя, шара, цилиндра и др. [40].  [c.13]

Ввиду сложности (а чаще невозможности) получения точных решений основных уравнений НЛП для произвольной функции р(г) широкое распространение получили приближенные методы. Эти методы можно разбить на две группы. Первая объединяет стандартные методы теории дифференциальных уравнений соответствующего типа метод неопределенных коэффициентов, представления в виде степенных рядов, разложения по малому параметру, сведения дифференциальных уравнений к интегральным с последующим решением последних и др. [2, 158, 162, 180, 181]. Другая группа в своей основе содержит физические предпосылки, позволяющие заменить НЛП каскадным соединением отрезков однородных ЛП, число которых в предельном переходе увеличивается до бесконечности [9, 182, 183]. Характерным для обеих групп является возможность получения решения с любой наперед заданной точностью. Именно в этом смысле перечисленные методы могут быть названы точными в пределе.  [c.99]

Основная сложность при решении уравнений заключается в том, что задачи статики стержней относятся к двухточечным краевым задачам, когда решение должно удовлетворять определенным условиям в начале и в конце интервала интегрирования, в отличие от одноточечных краевых задач — задач Коши, когда все условия, которым должно удовлетворять решение, известны в начале интервала интегрирования. Поэтому хорошо разработанные методы решения систем дифференциальных линейных (и нелинейных) уравнений для одноточечных задач использовать для решения двухточечных задач в общем случае нельзя. В настоящее время имеется ряд методов численного решения линейных двухточечных задач (имея в виду стержни), которые получили распространение в расчетной практике метод начальных параметров, метод прогонки [2], метод конечных элементов [15]. Точное аналитическое решение линейных уравнений равновесия стержня, например (1.112) — (1.115), возможно только для случая, когда элементы матрицы Ах— постоянные числа [этот случай будет рассмотрен в 5.2, где изложены теория и методы расчета винтовых стержней (цилиндрических пружин)]. Для уравнений с переменными коэффициентами возможны только численные или приближенные методы решения.  [c.61]


Выясним, удовлетворяет ли это решение (а) основным уравнениям теории упругости, т. е. является ли оно точным. Очевидно, что уравнения Бельтрами—Мичелла (4.51) и дифференциальные уравнения равновесия (4.3) выполняются при отсутствии массовых сил. Граничные условия (4.6) при данном решении (а) принимают вид  [c.87]

Основная идея применения разностных методов состоит в замене непрерывных переменных дискретными. Функции и аргументы заменяются набором чисел, заданных в точках множества, называемого сеткой. Исходные дифференциальные или интегральные уравнения заменяются системой алгебраических уравнений высокого порядка. Хотя в принципиальном плане задача упрощается, но из-за высокого порядка алгебраической системы возникают большие вычислительные трудности, как правило, непреодолимые без использования ЭВМ. При решении дифференциальных уравнений производные в уравнениях и граничных условиях заменяются отношением конечных разностей функций и аргументов. Исходной задаче ставится в соответствие разностная задача или разностная схема. В дальнейшем разность аргументов в соседних узлах сетки будем называть шагом сетки. Будем говорить, что разностное уравнение аппроксимирует исходное дифференциальное, если при неограниченном измельчении сетки разностное уравнение стремится к точному.  [c.224]

Основная область эффективного применения ARM — исследование и анализ объектов, процессов, кинематики и динамики систем, поведение которых в пространстве и времени описано дифференциальными уравнениями, а точное аналитическое их решение громоздко или вообще не осуществимо. Решение линейных и нелинейных дифференциальных уравнений по своей важности оставляет далеко позади все другие возможности использования АВМ в курсе ТММ. Даже такие задачи, как извлечение корней многочленов при решении системы алгебраических уравнений, решаются проще, если их свести к эквивалентным дифференциальным уравнениям. К задачам, эффективно решаемым на АВМ, относятся, как правило, механизмы с упругими (гибкими) связями, пневматические, гидравлические и электрические механизмы.  [c.8]

Для того чтобы точнее представить сущность и значение теории подобия, сравним ту основную информацию, которую обычно получаем при решении уравнений математической физики, с информацией, получаемой при чисто экспериментальных исследованиях. В первом случае мы имеем дело с самыми общими связями между величинами, характеризующими явление. Дифференциальные уравнения математической физики имеют настолько общий характер, что их нельзя непосредственно использовать для изучения конкретного явления. Решение этих уравнений с удовлетворением всех условий однозначности дает возможность получения конкрет-  [c.118]

Математическое описание элементов динамической системы промышленного робота (ПР) — один из основных этапов решения задачи анализа его динамики. Такое описание может быть получено двумя путями. Первый — составление описываюш ей объект системы дифференциальных уравнений. Это возможно, когда известны и с достаточно точными для практических целей упрощающими допущениями могут быть описаны физические процессы, происходящие в объекте. Полученное подобным, аналитическим путем математическое описание объекта исследования учитывает наиболее общие его конструктивные особенности и поэтому может быть распространено на целый класс аналогичных объектов. Вместе с тем в таком описании практически невозможно учесть локальные особенности конкретного объекта, что приводит к отличию реальных динамических характеристик от теоретических.  [c.61]

Основная идея дифференциально-разностного приближения заключается в представлении потока излучения для рассматриваемого направления в виде разности двух встречных потоков. При таком подходе путем соответствующего интегрирования уравнение переноса излучения заменяется системой из двух дифференциальных уравнений, содержащих в качестве неизвестных поверхностные плотности встречных потоков излучения. Аналогичное интегрирование производится и для получения граничных условий к этим дифференциальным уравнениям. Полученные описанным способом дифференциальные уравнения, граничные условия и уравнение энергии составляют замкнутую систему уравнений дифференциально-разностного приближения, которая и решается в зависимости от постановки задачи тем или иным способом. Коэффициенты переноса, фигурирующие в этой системе уравнений, как уже упоминалось, заранее точно не известны и определяются на основании предварительных приближенных оценок, а в случае необходимости могут быть уточнены итерационным методом. Этим, собственно, и обусловливается приближенность рассматриваемого метода. Вместе с этим сравнительная простота получаемых уравнений, отсутствие принципиальных затруднений при их решении, физическая наглядность сделали дифференциально-разностное  [c.114]

Основным методом точного определения критического значения нагрузки является непосредственное интегрирование дифференциального уравнения криволинейной формы равновесия. При использовании этого метода вычисление критической силы сводится к решению путем подбора достаточЕЮ сложных трансцендентных уравнений. Поэтому при практическом осуществлении расчетов на устойчивость большое значение приобретают таблицы первых корней этих уравнений, т. е. заранее вычисленные значения критических сил.  [c.324]

Для определения коэффициента k более целесообразно использовать формулы для колец, учитывающие указанную выше неравномерность, так как в этом случае величина поправочного коэффициента не будет, очевидно, зависеть ни от характера нагрузок, ни от расположения опоры. Это тем более справедливо, что, как показывает анализ расчетов,экспериментов, та часть диафрагмы, в которой имеют место максимальные изгибающие напряжения (ф 0), работает в условиях, незначительно отличающихся от условий работы неразрезанного круглого кольца. Это значит, что при ф 0 основная часть решения дифференциального уравнения является лишь незначительным дополнением к нему. На рис. 143 показано изменение отношения полной величины максимального изгибающего момента к той его части, которую дает частное решение. Кривая построена для полукольца с опорой по наружному радиусу. Как видно, расхождение между точным решением и решением без учета наличия разъема (т. е. для круглого кольца) составляет не более 15%. Таким образом, для практических целей вообще можно было бы рассчитывать напряжения в диафрагмах, как в круглых кольцах, и затем с некоторым запасом увеличивать их на 15%.  [c.329]


Рассмотрим алгоритм решения этих задач по МГЭ. Следует отметить, что проблема определения частот собственных колебаний упругих систем продолжает оставаться актуальной задачей. Связано это с недостатками существующих методов. Так, методы сил и перемещений позволяют определять точный спектр частот собственных колебаний (в рамках допущений, принятых при выводе дифференциальных уравнений колебаний), но частотные уравнения этих методов содержат точки разрывов 2-го рода [307]. Возможно также появление фиктивных и пропуск действительных частот вследствие замены заданной расчетной схемы на основную схему [26]. В МКЭ частоты определяются из векового уравнения [184], где спектр частот во-первых ограничен, во-вторых неточен из-за замены системы с бесконечным числом степеней свободы на систему с конечным числом степеней свободы. Аналогичные недостатки имеются и у других методов.  [c.124]

Это уравнение определяет основную процедуру вариационного метода Канторовича-Власова, являющегося развитием более общего метода Фурье разделения переменных применительно к уравнениям теории упругости. Для сведения дифференциального уравнения в частных производных к обыкновенному дифференциальному уравнению необходимо использовать разложение (7.2) и выполнить операции в (7.5), т.е. умножить обе части исходного дифференциального уравнения на выбранную функцию ХДх) и проинтегрировать в пределах характерного размера пластины (для прямоугольной пластины это ее ширина). Точное решение получается, когда ряд (7.2) не усекается, а из (7.5) следует бесконечная система линейных дифференциальных уравнений и расчетная схема имеет бесконечное число степеней свободы в двух направлениях. При этом весьма удобно использовать ортогональную систему функций X x). В этом случае будут равны нулю многие побочные коэффициенты системы линейных дифференциальных уравнений (7.5) и она существенно упростится, а при шарнирном опирании вообще распадается на отдельные уравнения. В расчетной практике весьма редко используют два и более членов ряда (7.2), ограничиваясь только первым приближением. Связано это с высокой точностью получаемых результатов, вследствие, как представляется, незначительного расхождения между приближенной схемой и реальным объектом. Формально это выражается в надлежащем выборе функции Х х). Чем точнее она описывает какой-либо параметр в направлении оси ОХ, тем меньше погрешность результата.  [c.392]

Основной метод решения уравнений, описывающих процессы в лазерах, — метод разностных схем [89, 901, называемый также методом конечных разностей или методом сеток. В соответствии с методом конечных разностей вместо точного решения исходной задачи ищется ее приближенное решение в отдельных точках (узлах сеточной области), называемое сеточными функциями. Система дифференциальных уравнений при этом заменяется системой алгебраических уравнений для сеточных функций.  [c.38]

В заключение мы бы порекомендовали перед переходом к гл. 4 тщательно изучить содержание гл. 2 и 3 для достижения полной ясности в основных технических операциях, так как они выполняются аналогичным образом при решении задач теории упругости. Тогда некоторое дополнительное усложнение, связанное с появлением тензорных ядер более высокого порядка (обусловленных четвертым порядком дифференциальных уравнений теории упругости), уже не составит действительных трудностей при окончательном формировании матричного уравнения, и оно в принципе будет осуществляться точно так же, как и в рассмотренных выше случаях.  [c.98]

Класс точных решений уравнений газовой динамики удалось получить, применяя методы теории размерностей и подобия. Основная заслуга в этом принадлежит Л. И. Седову. В 1944 г. он дал общий прием для нахождения решений линейных и нелинейных дифференциальных уравнений в частных производных. Для одномерных неустановившихся течений (которые описы- 331 ваются нелинейными уравнениями) он рассмотрел случаи, когда искомые функции содержат постоянные, среди которых одна или две постоянные с независимыми размерностями. Седов доказал, что если среди размерных параметров, определяющих движение совершенного газа, кроме координаты г и времени t имеются лишь два постоянных физических параметра с независимыми размерностями, то уравнения в частных производных могут быть сведены к обыкновенным дифференциальным уравнениям. Движения газа, определяемые этими условиями, были названы автомодельными. Такими решениями были течения Прандтля — Майера, сверхзвуковые течения около кругового конуса с присоединенным скачком. В 1945 г. Седов нашел точные решения уравнений одномерного неустановившегося движения в случае плоских, цилиндрических и сферических волн (движение поршня в цилиндрической трубе, задача детонации, движение газа от центра и к центру) .  [c.331]

Основная система дифференциальных уравнений динамики сжимаемого газа появилась примерно в середине прошлого века, после того как к системе уравнений Эйлера и уравнения неразрывности было присоединено уравнение баланса энергий, выведенное из первого начала термодинамики, а также уравнение состояния газа. Несмотря на строгую математическую постановку задачи и наличие к тому времени развитых методов решения дифференциальных уравнений, решение уравнений газодинамики представило, даже при простейших предположениях об отсутствии вихрей, об адиабатичности потока и др., непреодолимые трудности. И в настоящее время имеется лишь небольшое число случаев точного решения задач газодинамики, зато значительную разработку получили приближенные методы, принадлежащие, главным образом, советским ученым.  [c.28]

В главе IV были рассмотрены простейшие решения точных дифференциальных уравнений установившегося движения вязкой несжимаемой жидкости. На основании сказанного выше эти решения определяют класс пока только возможных простейших установившихся движений вязкой несжимаемой жидкости, которые получили название ламинарных течений. Вопрос же о реальной осуществимости этих возможных простейших движений должен решаться отдельно либо с помощью непосредственной экспериментальной проверки основных особенностей ламинарных течений, либо с помощью теоретических исследований условий устойчивости этих течений. Экспериментальная проверка основных особенностей ламинарного течения, например, в круглой цилиндрической трубе показала, что для осуществимости ламинарного движения необходимо выполнение двух условий. Первое из этих условий заключается в том, что число Рейнольдса не должно превышать своего критического значения, т. е.  [c.385]

Неприятрюсти часто возникают из-за сложности геометрии ансамбля частиц произвольной формы. И хотя основные дифференциальные уравнения движения вполне поддаются интерпретации, тем не менее получить точные и даже приближенные решения необычайно трудно, если не считать самых простых случаев. Граничные задачи для систем со многими частицами решают главным образом двумя методами, а именно методом отражений и методом единичной ячейки.  [c.17]


Теорию крыла конечного размаха позволило создать использование основополагающей теоремы Н. Е. Жуковского о связи подъемной силы с циркуляцией и модели течения с присоединенным вихрем, так что эта теория является логическим продолжением и развитием идей, составляющих фундамент теории крыла бесконечного размаха, В 1910 г. С. А. Чаплыгин в докладе на тему Результаты теоретических исследований о, движении аэропланов сформулировал общие представления о вихревой системе крыла конечного размаха. В 1913 и 1914 гг. им были получены первые формулы для подъемной силы и индуктивного сопротивления. Они были доложены на третьем воздухоплавательном съезде в Петербурге. В дальнейшем основное распространение получила теория несущей линии, предложенная в Германии Л. Прандтлем для крыльев большого относительного удлинения. В рамках этой схемь было получено интегро-дифференциальное уравнение, связывающее изменение циркуляции и индуктивный скос потока. Задача свелась к отысканию различных приближенных методов его решения. В работе Б. Н. Юрьева (1926) был применен геометрический прием, в котором использовалось предположение о том, что распределение циркуляции близко к эллиптическому и что отклонения от этого распределения повторяют форму крыла в плане. Аналитические методы, применявшиеся на начальном этапе развития теории для получения приближенных решений, состояли в требовании удовлетворения основному уравнению в ограниченном числе точек по размаху. Так, в методе тригонометрических разложений В. В. Голубев (1931) заменил бесконечный тригонометрический ряд тригонометрическим многочленом, сведя бесконечную систему уравнений к конечной системе, в которой число неизвестных соответствует числу членов разложения циркуляции и числу точек на крыле. С целью более точного учета формы крыла в плане при ограниченном числе решаемых алгебраических уравнений Я. М. Серебрийский (1937) предложил для решения интегро-дифференциального уравнения использовать способ наименьших квадратов.  [c.92]

Заметим, однако, что, хотя эти методы в своей основной форме довольно ограничены по типу граничных условий задачи, при известной модификации их можно применять и к более общим задачам. Рассмотрим сначала случай прямоугольной области с граничным условием Дирихле = f x,y), где всюду f ф 0. Введем вспомогательную функцию я] , которая определяется как точное решение уравнения с граничными условиями я] = О на всей границе. Затем введем вторую вспомогательную функцию i] , которая определяется как точное решение конечно-разностного уравнения Лапласа = О с граничным условием я] = f x,y). Точное решение получается при помощи метода разделения переменных, разработанного для дифференциальных уравнений в частных производных (см., например, Вейнбергер [1965]) и применяемого к конечноразностному уравнению. (Необходимые разложения по собственным функциям уже известны из разложения, которое требуется при решении уравнения Пуассона.) Тогда в силу линейности задачи окончательное решение получается суперпозицией. Поскольку у2я з> = и У я] " = О, имеем у2(я15 + я] ) = и, поскольку на границах ф == О и я " = f (х, (/), имеем я15 + я15 = = f(x,y). Поэтому функция я15 = я]з я удовлетворяет уравнению у2я з = и граничному условию я] = f(x,y).  [c.205]

В основе спектрального метода лежит стандартный математический аппарат, позволяющий приближенно решать дифференциальные уравнения в частных производных. Решение ищется в виде разложения по ряду базисных функций от пространственных переменных с конечным числом членов ряда п. Эффективный способ применения спектральных методов к решению нелинейных дифференциальных уравнений, описывающих гидродинамические процессы, предложен Орсегом 30]. Преимуществом спектрального метода является возможность точного удовлетворения граничных условий при правильном подборе базисных функций, впрочем, только для областей с простой геометрией. Кроме того, этот метод в определенных условиях позволяет получить более точное решение по сравнению с методом, основанным на интегрировании по контрольному объему. Однако применение спектрального метода к решению системы уравнений Навье—Стокса встречает значительные трудности. Число базисных функций п вычисляется как отношение наибольшего характерного геометрического масштаба поля течения к наименьшему. Например, в случае течения в ограниченной области пространства наибольший масштаб имеет порядок размеров этой области, а наименьший определяется толщиной вязкого слоя вблизи стенки. Для сложных пространственных задач и течения с большими числами Рейнольдса указанное отношение может быть достаточно велико. Очевидно, ошибка численного решения уменьшается с ростом числа базисных функций п. Приемлемая точность решения часто не может быть достигнута из-за непомерно возрастающего с ростом п объема вычислений. Кроме того, при применении спектрального метода ошибка решения носит глобальный характер (т.е. появление погрешности решения в какой-либо точке приводит к распространению ошибки на всю область независимых переменных). С увеличением степени нелинейности уравнений эффективность спектральных методов снижается. Поэтому спектральные методы используются в основном для исследования однородной или изотропной турбулентности или для расчета течения в областях простой формы.  [c.197]

Таким образом, представление, использующее технику функционального интегрирования, физически эквивалентно обычному, использующему дифференциальные уравнения в частных производных. Математически подход, связанный с винеровскими интегралами, более сложен при проведении точных расчетов, однако его основными достоинствами являются компактность записи и физическая наглядность, прежде всего при использовании приближенных методов решения задач ( ).  [c.96]

Основные определения и положения теории массообме-на изложены в 1.1. Как и в теории конвективного теплообмена (см. п. 1.4.1), метод решения конкретной задачи выбирают, сообразуясь с особенностями ее постановки, и требуемой точностью результат . Интегрирование системы дифференциальных уравнений конвективного тепломассообмена может потребоваться при высоких (звуковых и сверхзвуковых) скоростях течения, больших перепадах температуры и концентрации, значительных изменениях физических параметров смеси. Более оперативными, но менее универсальными и точными являются различные модификации интегрального метода (см. п. 1.4.1).  [c.53]

Выше мы показали возможность вывода основных уравнени й теории пластин исходя из вариационного принципа Лагранжа. Однако главное значение вариационных принципов в расчете пластин состоит в том, что с их помощью можно получить приближенные решения сложных задач, не прибегая к составлению и решению дифференциальных уравнений в частных производных. Некоторые примеры расчетов с использованием прямых методов вариационного исчисления рассмотрены в 8. Точное аналитическое решение общих уравнений изгиба пластины может быть выполнено лишь в частных случаях — для прямоугольных и круглых пластин постоянной толщины, а также для пластин,  [c.67]

ЛИЯ ИСКОМОГО решения в виде суммы конечного числа членов бесконечных рядов [1.14—1.18]. Этот метод отличается от метода нормальных форм тем, что он применяется для как бы дискретных моделей, для которых уравнения движения также лриближенны, или, точнее, физическая модель конструкции приближенно представляется в виде конечной системы масс и жесткостей, описываемых чаще линейными алгебраическими уравнениями по пространственным координатам, а не дифференциальными уравнениями. Метод нахождения решения в виде бесконечных рядов в основном аналогичен прямому методу. Решение однородного уравнения движения соответствует F x,t) = = 0. Так же, как и в прямом методе, решение представляется в форме w x,t) = A x Kx/LШ) и отыскиваются значения Я, при которых А Фа (т. е. существуют нетривиальные реше-лия). Это может иметь место только при выполнении соотношения  [c.24]

Метод интегральных соотношений, предложенный академиком А. А. Дородницыным [Л. 28], является обобщением метода прямых. Основная идея метода состоит в разбиении области решения кривыми линиями, форма которых определяется границами области. Точное решение обычно достигается при небольшом числе полос. При этом исходные уравнения предварительно интегрируются по одному из направлений и сводятся тем самым к обыкновенным дифференциальным уравнениям относительно интегралов от неизвестных функций. Подынтегральные функции аппроксимируются с помощью различных интерполяционных формул по значениям функций в узлах интерполяции. Это ойеспечивает также явное представление краевых условий в системе обыкновенных дифференциальных уравнений.  [c.351]


Здесь представим только общие соображения по расчету нелинейных систем, поскольку эта тема выходит за рамки данной работы. Нелинейные задачи деформирования стержней, пластин и оболочек весьма разнообразны и каждая задача требует индивидуального подхода. Однако, если нелинейные модули образуют целостную систему, то для узловых точек (линий) всегда будут справедливы уравнения равновесия между статическими параметрами и уравнения совместности перемещений между кинематическими параметрами. Это значит, что топологическая матрица С в алгоритме МГЭ для нелинейных систем будет формироваться из анализа матриц X ж Y точно так же, как для упругих систем. Основные же трудности решения нелинейных задач заключаются в определении внутреннего содержания матриц А В, т.к. построить фундаментальные функции нелинейных дифференциальных уравнений за небольшим исключением не удается. В этой связи получили развитие различные подходы к решению нелинейных краевых задач [83]. К первому направлению относятся проекционные и вариационные методы типа методов Бубнова и Ритца, методы конечных разностей и конечных элементов. Этими методами нелинейные краевые задачи сводятся к системам нелинейных  [c.512]

Как было показано ранее, задачу теории упругости для малых перемещений можно сформулировать вариационными методами, предположив существование трех функций Л, Ф, Y. Точные дифференциальные уравнения и граничные условия тогда получаются из условий стационарности общей потенциальной энергии или родственных функционалов. Однако одно из основных преимуществ вариационного исчисления — это его применимость для получения приближенных решений. Так называемый метод Релея — Ритца — один из лучших способов получения приближенных решений путем использования вариационното метода [2, 3, 12—17]. Проиллюстрируем метод Релея—Ритца двумя примерами.  [c.61]

Рассмотрим в качестве примера панель, схема которой изображена на рис. 1.7, в предположении, что жесткость на растяжение-сжатие EjFj каждого /-го ребра изменяется по длине панели произвольным образом. Как отмечалось в разд. 1.3, расчет такой панели сводится к решению системы линейных дифференциальных уравнений с переменными коэффициентами. Точно решить такую систему в общем виде нельзя. Поэтому ниже дадим численный метод решения, основанный на замене системы дифференциальных уравнений системой уравнений в конечных разностях. Решение этой последней системы можно без труда получить, ориентируясь на численный расчет с использованием вычислительной машины. Основная функция машины заключается при этом в перемножении известных матриц, что мож1но сделать с помошью стандартной программы.  [c.57]

Так, один из наиболее эффективных подходов к конструированию численных алгорит мов использует идеи адаптации применяемых методов к особенностям решаемых задач. Этот подход часто связан с явным выделением различного вида особенностей, иногда явным выделением основных типов разрывов решений, отдельных областей, характери зуемых теми или иными свойствами решений. Например, для уравнений газовой динами ки, которые описывают процессы распространения различного рода разрывов (ударных волн, контактных разрывов, волн разрежения), такие адаптационные методы описаны в работе [26]. Ясно, что аналитическое знание основных качественных и некоторых ко личественных закономерностей может существенно повлиять на точность применяемых методов. Иногда адаптацию под особенности решения осуществляют без явного выделения разрывов и зон особого поведения, используя так называемые адаптирующиеся сетки [30]. При этом исходная система стационарных или эволюционных уравнений пополняется дополнительными уравнениями, описывающими поведение сетки, на которой должны достаточно точно аппроксимироваться решения исходной дифференциальной за дачи. Задача о выборе таких уравнений для сетки, о выборе экономичных и устойчивых алгоритмов совместного расчета решений и сетки является непростой и также требует предварительного аналитического анализа.  [c.23]

Точное решение задачи о колебаниях балки в том случае, когда массой передвигающегося груза можно пренебречь, дал А. Н. Крылов Решение его, основанное на интегрировании дифференциального уравнения для поперечных колебаний призматического стержня, совпадает с приведенным выше решением (см. (15) 12), построенным на пользовании нормальными координатами. Дополнительный прогиб, обусловленный колебаниями балки, определеляется, как мы видели, величиной a=al/bn. Значения а и соответствующие им периоды Т основных колебаний для мостов различных пролетов приведены в следующей таблице  [c.174]

Основной результат метода Чепмена — Энскога заключается в возвращении к макроскопическому описанию Навье — Стокса — Фурье путем соответствующего разложения определенных решений уравнения Больцмана. Таким образом, можно ожидать, что теория Чепмена — Энскога гораздо точнее теории Гильберта. С другой стороны, рассматривая высшие приближения метода Чепмена — Энскога, мы получаем дифференциальные уравнения все более высокого порядка (так называемые барнеттовские и супербарнеттовские уравнения), относительно которых ничего неизвестно, нет даже должных граничных условий. Эти уравнения более высокого порядка никогда не имели заметного успеха в описании отклонений от механики газа как континуума. Более того, предварительный анализ проблемы граничных слоев, по-видимому, дает одинаковое число граничных условий для приближений любого порядка (см. следующий параграф), в то время как порядок производных увеличивается.  [c.130]

В прошлом веке и начале нашего трактаты по гидродинамике в основном состояли из длинных выкладок с использованием элементарных и специальных функций. По образному выражению одного из современных американских гидродинамиков С. Голдстайна, за этими выкладками никак нельзя было увидеть саму воду, нельзя представить, что она мокрая. Да и сейчас пишется немало работ, содержащих сложные и пространные результаты точной теории решений дифференциальных уравнений гидродинамики, весьма далекие от действительности. На наш взгляд, практическая ценность этих работ существенно снижается простым замечанием, что сами-то уравнения гидродинамики лишь весьма приближенно отражают многие важные физические явления. Поэтому некоторые результаты так называемой точной теории по бессмысленности напоминают выкладки с огромным числом знаков над величинами, только очень грубо приближающими точные.  [c.7]

Основным методом изучения закономерностей турбулентного движения ещё и до сих пор служит экспериментальный метод различные теории турбулентности играют пока лишь вспомогательную роль. В предшествующих главах было показано, что отдельные случаи ламинарных течений могут быть изучены с помощью решения соответственных краевых задач либо на основе точных уравнений движения вязкой жидкости, либо на основе приближённых уравнений, полученных из точных с помощью отбрасывания групп отдельных слагаемых. При этом решения задач включали в себе коэффициент вязкости жидкости и параметры самой задачи и не содержали в себе какие-либо произвольные постоянные, за определением которых необходимо было обращаться к отдельным опытам, воспроизводящим рассматриваемую задачу. Существующие же теории турбулентности ещё не позволяют отдельные случаи турбулентных движений изучать с помощью решения краевых задач на основе каких-либо дифференциальных уравнений.  [c.437]


Смотреть страницы где упоминается термин Точные решения основного дифференциального уравнения : [c.509]    [c.11]   
Смотреть главы в:

Расчет на прочность вращающихся дисков (БР)  -> Точные решения основного дифференциального уравнения



ПОИСК



Основные дифференциальные уравнения

Решение дифференциального уравнения

Решение основного дифференциального уравнения

Решение основное

Решение уравнений точное

Точные решения

Уравнение основное

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте