Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гидродинамический процесс

В системах с высокой степенью неизотермичности развитие тепловых и гидродинамических процессов зависит от диапазона изменения всех физических свойств в системе. Анализ физических условий однозначности для уравнений движения и энергии показывает, что в этом случае появляются дополнительные параметрические критерии вида  [c.16]

Совокупность параметров, определяющих какой-либо гидродинамический процесс, можно рассматривать как конкретное решение дифференциальных уравнений этого процесса. Ему соответствуют вполне определенные начальные и граничные условия. Они представляют собой зависимости или константы, определяющие физические параметры в начальный момент и на границах во время движения. Следовательно, не только уравнения процесса, но также безразмерные формы начальных и граничных  [c.121]


Суммируя изложенное, можно констатировать, что одинаковые безразмерные дифференциальные уравнения, описывающие группу гидродинамических процессов, вместе с безразмерными условиями однозначности (начальными и граничными условиями), а также одинаковые значения критериев подобия являются необходимыми условиями механического подобия. Доказать их достаточность удается не во всех случаях, так как это связано с вопросом о существовании и единственности решений уравнений Навье — Стокса. Рассмотрим этот вопрос подробнее.  [c.123]

Уравнения, связывающие параметры гидродинамических процессов, выражают те или иные физические законы и потому их, структура не должна зависеть от системы единиц измерения. Учитывая это обстоятельство и принимая во внимание возможность применять для описания гидродинамических (так же как и для других физических) процессов разнообразные, в том числе специально выбранные системы единиц, можно установить некоторые общие свойства указанных уравнений. Знание этих свойств позволяет во многих случаях прогнозировать структуру искомых связей между физическими размерными и безразмерными параметрами. Используя формулу размерности (предполагается, что она известна читателю из курса физики), можно указать также рациональные комбинации физических параметров, определение связей между которыми дает результаты, относящиеся сразу к целому классу явлений. Совокупность этих, а также некоторых других, с ними связанных, вопросов составляет теорию размерностей, которая особенно полезна на первых стадиях изучения явления, когда еще отсутствует достоверное математическое описание.  [c.126]

Начальные условия имеют значение и смысл только для неуста-новившихся течений. В качестве таких условий служат поля значений функций Q и )з во всей области течения, включая ее границы. Они могут явиться результатом предварительного решения стационарной задачи, одним из приближенных или численных методов, а также результатом экспериментального исследования. Значимость начальных условий различна для разных задач. Например, если нестационарный гидродинамический процесс в пределе при t оо должен перейти в установившийся, то точность задания начального условия мало влияет на конечный результат. Но для получения определенного решения должно быть обеспечено выполнение определенных критериев сходимости вычислительного процесса. Примером такого критерия может служить условие  [c.320]


Совокупность параметров, определяющих какой-либо гидродинамический процесс, можно рассматривать как конкретное решение дифференциальных уравнений этого процесса. Ему соответствуют вполне определенные начальные и граничные условия. Они представляют собой зависимости или константы, определяющие физические параметры в начальный момент и на гра-130  [c.130]

Суммируя изложенное, можно констатировать, что одинаковые безразмерные дифференциальные уравнения, описывающие группу гидродинамических процессов, вместе с безразмерными условиями однозначности (начальными и граничными условиями), а также одинаковые значения критериев подобия, являются необходимыми условиями механического подобия. Естественно, возникает вопрос о достаточности этих условий. В полном и общем решении этого вопроса имеются значительные трудности, поскольку это решение связано с вопросом о существовании и единственности решений общих уравнений Навье — Стокса. Рассмотрим этот вопрос несколько подробнее.  [c.132]

Совместная работа лопаток насоса, турбины и реактора в одном замкнутом потоке при достаточно близком их расположении представляет собой сложный гидродинамический процесс. Вращающиеся в замкнутой проточной полости лопастные колеса сообщают жидкости относительную скорость w вдоль лопаток и одновременно переносят жидкость в окружном направлении с переносной скоростью и.  [c.307]

Разработка комбинированных моделей индукционных нагревателей является наиболее высокой ступенью их математического моделирования. Такие модели могут быть двух- и более компонентными в зависимости от числа процессов, учитываемых при их построении. Практически общими для всех моделей являются электромагнитные и тепловые процессы. Другие процессы определяются назначением устройства и целью моделирования. Это могут быть процессы деформации нагретого металла при прессовании, прокатке, штамповке, процессы структурных превращений при термообработке и зонной плавке, гидродинамические процессы в жидком металле, процессы возникновения напряжений в металле и т. д.  [c.132]

В инженерных задачах число Ей является искомым и отражает безразмерную потерю давления (при течении в трубе, поперек пучка труб и т. и.). Число Эйлера —число гидродинамического подобия. Для подобных гидродинамических процессов числа Эйлера равны  [c.335]

Математическая интерпретация закона сохранения энергии применительно к гидродинамическим процессам дана Д. Бернулли в виде уравнения  [c.43]

Все реальные процессы являются процессами необратимыми и все они протекают с потерей энергии на необратимость, т. е. с понижением работоспособности и возрастанием энтропии системы. Необратимость реальных процессов связана с потерей энергии на компенсацию градиентов параметров, характерных для данного процесса. Так необратимость гидродинамических процессов (движение вязкой жидкости и газа по каналам, смешение и перемешивание этих рабочих тел и т. д.) связана с потерей энергии на компенсацию градиента давления необратимость массообменных процессов связана с потерей энергии на компенсацию градиента концентрации и т. д.  [c.54]

Главнейшие безразмерные критерии тепловых и гидродинамических процессов  [c.158]

Характеризует пространственный масштаб рассматриваемых гидродинамических процессов  [c.24]

Теплопроводность и радиация — два чисто физических механизма теплопередачи. Третий вид — конвекция. Если флюид (жидкость или газ) перемещается вдоль нагретой поверхности, теплота может быть передана флюиду за счет либо теплопроводности, либо теплового излучения, либо того и другого вместе и флюид перенесет ее в область с более низкой температурой. В результате образуется тепловой поток, который способствует усилению потока, вызванного одной лишь теплопроводностью или радиацией. Конвекция — гидродинамический процесс, который зависит от геометрии поверхностей, а также от характеристик флюида и от источника теплоты. Поэтому задачи, относящиеся к конвекции, труднее решать аналитически, чем задачи, относящиеся к теплопроводности или радиации. По сути дела, их почти никогда и не решают иным способом, кроме вывода эмпирического соотношения, полученного по результатам натурных исследований.  [c.213]


В зависимость (4) входят критерии подобия тепловых и гидродинамических процессов, формулы для расчета которых приведены в табл. 22.  [c.138]

Представляет собой безразмерное время в подобных гидродинамических процессах  [c.215]

Теоретическое исследование коэффициентов трения проводилось на основе дифференциальных уравнений Рейнольдса, используемых для исследования гидродинамических процессов в тонком масляном слое [2]. Зависимость вязкости смазки от давления характеризовалась экспоненциальной функцией р. = Полу-  [c.205]

Такой подход тем более необходим при исследовании сложных гидродинамических процессов в проточной части на режимах, далеких от расчетного при этом суммарные силовые и моментные характеристики дают базу для расчета переходных процессов, а данные зондирования позволяют выяснить причины значительного отклонения характеристик от характеристик зоны эксплуатационных режимов и разработать наиболее достоверные способы учета влияния неустановившегося движения жидкости.  [c.270]

Кризис теплообмена второго рода наблюдается только при переходе дисперсно-кольцевой структуры потока в дисперсную. Следовательно, он определяется чисто гидродинамическими процессами, а характерной величиной является граничное паросодержание Хгр, которое не зависит от плотности теплового потока и является лишь функцией давления Р и весовой скорости рш.  [c.126]

Между процессами тепло- и массообмена существует почти полная аналогия. Между теплообменом и гидродинамическими процессами при непосредственном контакте газа с жидкостью, по указанным причинам, аналогии практически не существует, что не позволяет получить расчетные зависимости, используя аналогию (как для уравнений переноса массы и энергии). Тем не меиее, основываясь на неполной аналогии и полагая равными толщины теплового и гидродинамического пограничных слоев, различные авторы (см., например, работу [39]) приходят к зависимостям вида  [c.67]

Таким образом, исследовано экспериментально влияние физико-механических свойств антифрикционных сплавов A M, Св. Бр. и АО-20 на устойчивость протекания гидродинамических процессов и работу трения в подшипниках скольжения разработан метод сравнения антифрикционных качеств трущихся пар в реальных условиях смазки дизельными маслами с помощью диаграмм зависимостей мощности потерь на тре-  [c.84]

ТЕПЛОВЫЕ И ГИДРОДИНАМИЧЕСКИЕ ПРОЦЕССЫ В КОЛЕБЛЮЩИХСЯ ПОТОКАХ  [c.1]

ОСОБЕННОСТИ ИССЛЕДОВАНИЯ ТЕПЛОВЫХ И ГИДРОДИНАМИЧЕСКИХ ПРОЦЕССОВ В КОЛЕБЛЮЩИХСЯ ПОТОКАХ  [c.7]

ТЕПЛОВЫЕ И ГИДРОДИНАМИЧЕСКИЕ ПРОЦЕССЫ  [c.175]

Свойства поверхностно-активных веществ (ПАВ), и в частности ОДА, определяют их хорошую адсорбционную способность на поверхностях жидких и твердых веществ она по правилу уравнивания полярностей увеличивается с уменьшением растворимости вещества, поверхностного натяжения и теплоты смачивания, которая равна разности полных поверхностных энергий адсорбента. Указанные свойства ПАВ дают возможность активно использовать их в пароводяных контурах с целью управления термодинамическими, физическими и гидродинамическими процессами на границах раздела фаз, а также коррозионными и эрозионно-коррозионными процессами.  [c.298]

Для гидродинамических процессов, определяющих конфигурацию инжекционной части прямоточно-центробежного элемента были взяты, во-первых, криз ерий подобия А"], определяющий отношение площади проходного сечения инжекционной трубки 5 ,р,,х к площади входного сечения самого элемента и, во-вторых,  [c.291]

Важная особенность уравнения количества движения состоит в том, что с его помощью расчет действующих сил производится только по состоянию потока, на контрольной поверхности без проникновения в сущность процессов, происходящих внутри этой контрольной поверхности. Поэтому уравнение количест(ва движения позволяет во многих случаях достаточно точно рассчитать гидродинамический процесс, не вникая в его детали.  [c.40]

Таким образом, кинетическое уравнение Больцмана может быть подвергнуто сокращению до уравнения, описывающего только медленный гидродинамический процесс в газе, которое в разных приближениях дается соответственно уравнениями Эйлера, Навье—Стокса, Барнетта и т. д.  [c.136]

Общая система обобщенных переменных, характеризующая рассматриваемую задачу, может быть получена из анализа всех уравнений, описывающих процесс, а также граничные и (для нестационарного процесса) временные условия. Если рассматриваемый гидродинамический процесс неадиабатный, то в общем случае в систему уравнений необходимо включить также уравнения распространения теплоты и соответствующие граничные условия, так как процессы теплопередачи в ряде случаев оказывают существенное влияние па гидродинамику. Однако в связи с тем, что теплопередача рассматривается во второй части этой книги, уравнения, описы-  [c.19]

При расчете тепловых и гидродинамических процессов в аппаратах, где используется принцип закрзщенного движения, необходимо иметь сведения об основных характеристиках внутреннего закрученного потока, таких как — шаг закрутки, длина и относительная кривизна винтовой линии, предельное число витков винтовой линии и т. д. Имеющиеся в литературе результаты [67] относятся к внутренним потокам с постоянным по длине шагом закрутки (шнеки, скручешшю ленты) и не могут быть использованы для расчета каналов, в которых вследствие действия сил вязкости интенсивность закрутки потока уменьшается.  [c.183]

Нестационарные явления. Для гидродинамических процессов в жидком металле, обжатом электромагнитным полем, характерна нестацио-нарность. Одной из причин ее является присущий жидкой среде колебательный характер реакции на случайные возмущения баланса сил другой — турбулентный характер течения в индукгщонных печах, усиливаемый перестроениями потока и взаимодействиями смежных вихрей.  [c.27]

При разработке наукоемких радиоэлектронных изделий на базовых несущих конструкциях (БНК), тепловой режим которых обеспечивается при помощи термоэлектрических модулей с воздушным или водяным охлаждением, требуется конструировать и сопровождать конструкцию при производстве и эксплуатации с применением моделирования. Для учета условий изготовления и эксплуатации в данной работе предложено использовать принципы ALS-технологий. В основе предлагаемой методики сопровождения и поддержки наукоемких разработок лежит система ЛСОНИКА , содержащая средства, которые позволяют организовать информационную поддержку проектирования, изготовления и эксплуатации изделия. Предлагаемая методика содержит средства управления (планирования, контроль выполнения, принятие решений) проектированием и производством изделия средства моделирования электрических, тепловых, механических, аэродинамических и гидродинамических процессов средства обеспечения надежности и качества изделия диагностические средства. Выполнение эвристических процедур на различных этапах процесса проектирования в системе АСОНИКА поддерживаются экспертной системой. Получаемая информация от системы АСОНИКА помещается в электронный макет и используется методиками ALS-технологий для информационной поддержки изделия на всем жизненном цикле.  [c.70]


Проблема становится еще более острой в случае потенциального использования энергии осадочных бассейнов, поскольку здесь еще отсутствует опыт эксплуатации, который мог бы служить исходной точкой. Теоретически потенциал достаточен для того, чтобы начать изучение этой части ресурсов. Это можно утверждать несмотря на то, что геохимические и гидродинамические процессы, которые в некоторых бассейнах образуют жидкости с чрезвычайно высокой температурой и давлением, еще не до конца поняты. К числу наиболее изученных относится бассейн дельты Миссисипи. Здесь расположено месторождение Неоджин, причем бла-  [c.41]


Смотреть страницы где упоминается термин Гидродинамический процесс : [c.137]    [c.137]    [c.214]    [c.183]    [c.602]    [c.111]    [c.292]    [c.196]    [c.50]    [c.2]    [c.485]   
Статистическая механика неравновесных процессов Т.2 (2002) -- [ c.158 ]



ПОИСК



Адгезия и гидродинамические процессы

Влияние внешних воздействий на гидродинамические процессы литья

Воронов Н. В., Ратников В. Н., Крылова И. А. Исследование влияния гидродинамических условий на процесс электроосаждения водоразбавляемых лакокрасочных материалов

Гидродинамические исследования парогазовых процессов, протекающих под давлением

Гидродинамические условия процесса

Гидродинамические условия процесса получения

Да гидродинамическое

Критерии подобия и основы моделирования гидродинамических и тепловых процессов

Литье центробежное — Недостатки 368 Окружные скорости форм 370 — Предварительный подогрев изложниц 378 — Преимущества 367 — Расчет: гидродинамический силового взаимодействия 368 скорости вращения формы 368, 369 — Сущность процесса 368 — Теория литья 368370 — Толщина теплоизоляции изложницы 373 — Частота вращения изложниц

Литье центробежное — Недостатки 368 Окружные скорости форм 370 — Предварительный подогрев изложниц 378 — Преимущества 367 — Расчет: гидродинамический силового взаимодействия 368 скорости вращения формы 368, 369 — Сущность процесса 368 — Теория литья 368370 — Толщина теплоизоляции изложницы 373 — Частота вращения изложниц поперечного магнитного поля

Моделирование каскадных процессов системами гидродинамического типа

НЕСТАЦИОНАРНЫЕ ГИДРОДИНАМИЧЕСКИЕ ПРОЦЕССЫ ПРИ ВОЗМУЩЕНИИ РАСХОДОМ НА КОНЦЕ ОБОГРЕВАЕМОЙ ТРУБЫ Изменение параметров потока теплоносителя при учете зависимости плотности от энтальпии для агрегатов с гомогенным теплоносителем

Нестационарные гидродинамические процессы в панелях с различной навивкой труб при тепловом возмущении

Общая теория гидродинамических процессов

Основы теории рабочего процесса гидродинамических передач

Особенности исследования тепловых и гидродинамических процессов в колеблющихся потоках

Особенности рабочего процесса в гидродинамических передачах

Подобие и моделирование гидродинамических процессов

Подобие тепловых и гидродинамических процессов

Приложения III. III Некоторые критерии подобия, используемые при моделировании механических, тепловых, гидродинамических и других процессов, происходящих при эксплуатации конструктивных элементов в экстремальных условиях

Тепловое и гидродинамическое моделирование процессов

Тепловые и гидродинамические процессы в ламинарных колеблющихся потоках

Тепловые и гидродинамические процессы в турбулентных колеблющихся потоках

Теплофизические и гидродинамические характеристики процесса термического опреснения

ФИЗИКО-ХИМИЧЕСКАЯ КИНЕТИКА В ГИДРОДИНАМИЧЕСКИХ ПРОЦЕССАХ Динамика неравновесного газа

Физико-химические и гидродинамические основы нелинейных процессов химии, нефтехимии и химической технологии

Характеристические функции и характеристический функциоМоменты гидродинамических полей. Стационарные случайные процессы и однородные поля

Шерстянников В. А., Калнин В. М. Гидродинамическое моделирование рабочего процесса ЖРД на режимах запуска. М. Машиностроение



© 2025 Mash-xxl.info Реклама на сайте