Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные задачи и методы классической механики

Основные задачи и методы классической механики  [c.61]

В этой работе описаны основные принципы, задачи и методы классической механики. Основное внимание уделено математической стороне предмета. Хотя физическая основа рассматриваемых моделей, а также прикладные аспекты изучаемых явлении затронуты в значительно меньшей степени, авторы стреми-  [c.9]

В книге изложены основы механики твердого деформируемого тела, методы и алгоритмы решения соответствующих краевых и начально-краевых задач на ЭВМ и некоторые вопросы математического исследования этих задач и алгоритмов. Основное внимание уделено задачам и методам классической теории упругости.  [c.3]


Задача теории молекул состоит в том, чтобы найти соотношения ме ду физическими величинами, характеризующими молекулы, раскрыть сущность основных закономерностей, наблюдающихся в спектрах. Данную задачу современная теория выполняет в полной мере, и в настоящее время мы имеем весьма детальные представления о характере колебаний и вращений молекул. В этой теории применяются и методы квантовой механики (для решения таких задач, как определение возможных энергий вращения молекул, учет взаимодействия вращения и колебания в молекуле), и методы классической механики (для-расчета основных частот нормальных колебаний молекул). Очень большую роль играют свойства симметрии молекул принимая во внимание эти свойства, можно выявить характерные особенности спектра молекул различных типов и сильно упростить задачу расчета спектров, используя теорию групп.  [c.6]

Для того чтобы ИЗ уравнения (8.53) можно было определить положительную постоянную а, определяющую расположение трех точек на вращающейся прямой, это уравнение, очевидно, не должно содержать t ни явно, ни неявно (т. е. через посредство р). Поэтому в самом общем случае, когда все шесть функций Fij совершенно произвольны, наша задача не допускает прямолинейных решений, аналогичных эйлеровым решениям классической задачи трех тел-точек (см. нашу книгу Небесная механика. Основные задачи и методы , изд. 3-е, 1975).  [c.366]

Основной дефект теории Бора—Зоммерфельда состоял в том, что она определяла все множество классических орбит и на последней стадии вычислений отбрасывала большинство из них. Но и в решении конкретных задач методы классической квантовой теории привели к расхождению с опытом, как это показал Крамере ) в 1923 г. в работе, посвященной теории атома гелия. Он же показал, что модель Бора динамически неустойчива. Неудача с моделью гелия лишила теорию Бора мощного орудия исследования — методов классической механики, и вся теория обратилась в почти интуитивное угадывание истинных отнощений.  [c.860]

Было установлено, что классические детерминированные возмущения не являются основными, а методы классической механики, основанные на понятии детерминизма, не являются достаточными для понимания и объяснения физических эффектов, возникающих при работе приборов, находящихся на движущихся объектах, при вибрации двигателей летательных аппаратов, движении транспортного средства, действии ветровых и сейсмических нагрузок. Возникла необходимость создания новой физической модели при исследовании этих динамических процессов и, в частности, нового математического аппарата, позволяющего учесть внешние возмущения, которые не являются детерминированными. Таким математическим аппаратом стала теория случайных процессов, которая была достаточно хорошо разработана применительно к задачам радиотехники и автоматического регулирования, где эффект от случайных возмущений оказался соизмеримым с эффектом от детерминированных возмущений и игнорирование случайных возмущений приводило бы к неверным результатам. Поэтому теория случайных процессов была привлечена к решению конкретных задач, относящихся к радиотехнике и автоматическому регулированию, много раньше, чем в других областях техники, в частности, раньше, чем для исследования механических систем, где случайными возмущениями, как правило, пренебрегали.  [c.3]


Статистическая гидромеханика широко использует результаты и методы классической гидромеханики и теории вероятностей. Поэтому знание указанных двух дисциплин сильно облегчит знакомство с настоящей книгой. Тем не менее мы надеемся, что наша книга будет доступной и для лиц, имеющих лишь общую математическую и физическую подготовку. Имея з виду таких читателей, мы включили в первые два раздела основные сведения из классической гидромеханики (начиная с уравнений неразрывности и движения) и из теории вероятностей (начиная с самого понятия вероятности). Уже в этих главах, как и во всех дальнейших, мы старались уделять основное внимание принципиальным вопросам, не задерживаясь на технических деталях. С этим стремлением связано то, что мы нигде не излагаем методов решения встретившихся дифференциальных уравнений или других стандартных математических задач, а сразу приводим ответ (который иногда совсем нелегко найти). В то же время мы сравнительно подробно останавливаемся на некоторых недостаточно широко известных, но важных математических вопросах, традиционно опускаемых во всех книгах и статьях, предназначенных для механиков или физиков (типа, например, вопроса об эргодических теоремах или спектральных разложениях случайных полей) этим объясняется то, что целых два раздела книги посвящены математической теории случайных полей.  [c.25]

Исследуя наиболее общие законы механического движения, присущего в той или иной мере любому физическому процессу и явлению, классическая механика оказывается тесно связанной с другими разделами физики (электродинамикой, оптикой, статистической физикой, теорией относительности, квантовой механикой и т. д.). Многие следствия, вытекающие из основных законов механики (например, законы сохранения энергии, импульса и механического момента вариационные принципы), при соответствующем обобщении приобретают форму фундаментальных законов природы. При решении частных задач механика широко использует математические методы исследования многие из этих методов (например, методы Лагранжа и Гамильтона, вариационные методы и методы теории возмущений), впервые разработанные и апробированные в классической механике, ныне широко используются почти во всех разделах теоретической физики.  [c.5]

Проблемой исследования свойств макроскопических систем, находящихся в состоянии равновесия, на основании известных свойств образующих такие системы частиц занимается статистическая физика. Основная задача заключается в том, чтобы описать поведение системы, содержащей весьма большое число частиц (например, 1 кг или 1 кмоль реального газа), по свойствам и законам движения отдельных молекул, которые считаются заданными. Поведение макроскопических систем определяется закономерностями особого рода — статистическими закономерностями. Общие равновесные свойства системы (например, термодинамические параметры, характеризующие ее состояние) сравнительно мало зависят от конкретных свойств частиц и законов их взаимодействия. Это обстоятельство позволяет установить общие законы поведения систем и, в частности, законы теплового поведения макроскопических тел в состоянии равновесия например, методами статистической физики можно теоретическим путем получить уравнение состояния (разумеется, в ограниченном числе случаев). Следует отметить, что последовательное применение статистических методов нельзя осуществить на основе классической механики движения частиц. Даже для описания движения сравнительно тяжелых частиц (молекул) в объеме макроскопической системы, когда, казалось бы, справедливы положения ньютоновской механики, приходится использовать теорию движения микрочастиц— квантовую механику. Таким образом, получение уравнения состояния реальных газов теоретическим путем в принципе возможно, но для большинства практически важных случаев связано с непреодолимыми трудностями. Однако теория позволяет обосновать общий вид уравнения состояния.  [c.100]


Хорошо известно, что простейшими моделями в равновесной статистической механики ЯВЛЯЮТСЯ системы с малой плотностью или со слабым взаимодействием, так как изучение каждой из них можно начинать с очень простого нулевого приближения — системы свободных частиц. Аналогичная ситуация имеет место и в теории неравновесных процессов. Как отмечено в разделе 2.1.1, для разреженного газа и для систем со слабым взаимодействием можно ввести кинетическую шкалу времени или, как ее иногда называют, кинетическую стадию эволюции. На этой стадии все многочастичные функции распределения полностью определяются одночастичной функцией распределения. При этом основная задача состоит в том, чтобы получить кинетическое уравнение для одночастичной функции распределения. В настоящей главе мы применим метод неравновесного статистического оператора к выводу кинетических уравнений для классических систем и рассмотрим несколько типичных примеров.  [c.163]

В этой главе книги исследуется методами вариационного исчисления ряд задач динамики полета ракет и самолетов с ракетными двигателями, причем выделяемые классы оптимальных движений допускают простые аналитические решения. Влияние малых изменений основных параметров обследуется в линейной постановке аналогично линейной теории рассеивания эллиптических траекторий баллистических ракет (ч. I, гл. III, стр. 265). Учитывая, что для многих преподавателей классической механики излагаемые здесь научные результаты могут представить интерес для самостоятельных исследований, мы даем достаточно ссылок на основные журнальные статьи и монографии. Мы убеждены, что в процессе развития науки и техники вычислительные машины будут решать все более сложные системы дифференциальных уравнений и метод проб, метод сравнения семейств решений можно будет применять к любому числу свободных функций. Однако в вузовском преподавании в стадии формирования интеллекта будущих исследователей и создателей реальных конструкций аналитические решения нельзя заменить численными методами.  [c.142]

Основным элементом конструирования является расчет на прочность. В настоящее время существует литература по анизотропным и вязкоупругим свойствам стеклопластиков и пластмасс, методам их испытаний и применению в общем машиностроении. С другой стороны, известна литература по классическим курсам теории пластин и оболочек теории упругости, пластичности и ползучести строительной механики и сопротивления материалов. Цель предлагаемой читателю книги состоит в синтезе этих двух сторон задачи для разработки методов расчета на прочность и устойчивость крупногабаритных конструкций нефтеперерабатывающей и химической промышленности из стеклопластиков и пластмасс с учетом специфических свойств материалов и условий их работы. В книге на основе результатов оригинальных исследований, а также передового отечественного и зарубежного опыта показано, какое оборудование  [c.3]

Для решения выдвигаемых перед нею задач механика жидкости и газа, так же как и теоретическая механика, применяет точные и приближенные математические приемы интегрирования основных дифференциальных уравнений движения, уравнений переноса тепла, вещества и других уравнений, выражающих законы физических процессов в жидкости и газе (например, уравнения электромагнитного поля). Для получения суммарных характеристик явлений используются общие теоремы механики и термодинамики теоремы количества и моментов количеств движения, закон сохранения энергии и др. Значительная сложность явлений вынуждает механику жидкости и газа широко пользоваться услугами эксперимента, обобщение результатов которого приводит к эмпирическим закономерностям, а иногда и к полуэмпирическим теориям. Такие отклонения от дедуктивных методов классической рациональной механики вполне естественны для столь быстро развивающейся науки, как современная механика жидкости и-газа.  [c.14]

По характеру решаемых задач механику делят на кинематику, динамику и статику. В кинематике изучаются чисто геометрические свойства механических движений без учета причин, которыми обусловлено то или иное движение. Кинематика, по существу, является геометрическим языком классической механики. Динамика представляет собой раздел механики, в котором механическое движение тел изучается в отношении его причин и следствий. Статика, изучающая условия равновесия механических систем, является частным случаем динамики, В настоящей книге основное внимание уделено рассмотрению динамических задач классической механики и изложению методов их решения.  [c.7]

Кинематика является одним из разделов классической механики, в котором движение макроскопических тел рассматривается независимо от причин, вызывающих это движение. Основной задачей кинематики является разработка методов пространственно-временного описания движения тел, расчета их траекторий, скоростей и ускорений, т. е. методов исследования чисто геометрических свойств движения тел. При кинематическом изучении механического движения из всех материальных свойств реальных тел учитываются только их геометрическая форма и непроницаемость, в силу которой в одном и том же месте пространства в один и тот же момент времени не могут находиться два или большее число тел. Это свойство присуще материальным телам любой формы и любых размеров, в том числе и малым элементам тела — материальным точкам.  [c.13]


В книге даны основы механики сплошной среды (МСС) физическая трактовка основных понятий и статистическое обоснование законов МСС аксиоматика МСС кинематика и теория внутренних напряжений в средах физические законы — сохранения массы, импульса, энергии и баланса энтропии методы получения замкнутых систем уравнений, основные типы граничных условий и постановки краевых задач МСС. Даны замкнутые системы уравнений для классических сред (газов, жидкостей, упругих тел) и для сред со сложными свойствами (вязко-упругих, нелинейно вязких, упруго- и вязко-пластических, плазмы и др.) при действии электромагнитного поля. Дана теория размерностей и подобия с ревизионным анализом уравнений МСС, критериями подобия и моделирования, с примерами автомодельных решений.  [c.3]

Этот курс является базовым в системе образования специалистов указанного профиля. Он должен служить основой для ряда дисциплин теоретического и прикладного характера, таких, как гидродинамическая теория решеток , теория лопастных гидромашин>, Устройства гидропневмоавтоматики и др. Назначением и местом курса в учебном плане определяется его основная задача сочетать изложение классических теорем и методов гидромеханики с изложением современных инженерных методов гидродинамических расчетов. Из обширного материала современной прикладной гидромеханики в книгу включены главным образом вопросы, связанные с гидравлическими расчетами в области машиностроения. Автор стремился излагать эти вопросы на основе общих теорем н уравнений механики жидкости, усвоение и ясное понимание которых необходимы для сознательного и творческого использования расчетных методов.  [c.4]

Применение методов классической механики разрушения на уровне структурных элементов слоя позволяет рассматривать композит как неоднородную среду и, но-видимому, является наиболее сильным подходом. Основная цель в этом случае заключается в определении критических коэффициентов концентрации напряжений Ки- Однако практическое применение классической механики разрушения к композитам ограничено чрезвычайной сложностью анализа напряженного состояния неоднородной среды. В большинстве случаев это практически невыполнимая задача, поэтому до настоящего времени численные результаты получены только для простейших, однонаправленных, схем армирования.  [c.53]

Предлагаемая вниманию читателя очень коротенькая книжка английского ученого Лича тоже посвящена теоретической механике. Но в ней нет ни подробного разбора частных задач, ни исследования каких-либо отдельных механических систем, примечательных по характеру их движения. В книге Лича содержится в достаточно лаконичном виде изложение самых основных вопросов и теорий аналитической механики, вызванных к жизни известными уравнениями Лагранжа и Гамильтона. И главная цель автора состояла в том, чтобы надлежащим изложением методов аналитической механики в их классическом виде привести читателя книги к пониманию аналитической механики непрерывных сред и особенно к знакомству с осног-ными вопросами механики специальной теории относительности и началами теории поля. Этим последним вопросам отведена примерно треть книги.  [c.5]

При изучении механики сплошных сред задача состоит в исследовании движения сплошной среды под действием заданных сил. Таким образом, в уравнениях (3.3.5) компоненты массовой силы Р рассматриваются как величины заданные. Остальные величины, а именно плотность р, компоненты напряжения р у , Руу] р /, р у, Рухч Рхх и компоненты ускорения а , ау, (либо компоненты векторов скорости или смещения, через которые а выражается), являются величинами, подлежащими определению. Уравнения (3.3.5) представляют систему трех уравнений относительно 10 неизвестных. Следовательно, уравнения (3.3.5 ) являются, как очевидно, уравнениями необходимыми, но недостаточными. Недостающие уравнения для описания движения сплошных сред принципиально не могут быть найдены методами классической механики. Их можно получить, только рассматривая основные физические характеристики тех или иных сплошных сред и строя на основании их гипотезы  [c.41]

Цель учебника — изложить фундаментальные принципы и методы теоретической механики, научить читателя активно применять современный математический аппарат для решения конкретных задач динамики, подготовить к анализу широкого круга проблем, изучаемых в курсе теоретической физики. Основное внимание уделено исследованию классических и современных задач механики в рамках лагранжева и гамильтонова подходов, методам гамильтонизации систем нелинейных уравнений и новым методам интегрирования канонических систем.  [c.1]

Представлена краткая история и обаор модифицированной механики раз рушения Гриффитса — Ирвина. Подчеркнуто значение коэффициента интенсивности напряжений и скорости высвобождения энергии деформирования в механике разрушения изотропных и анизотропных материалов. Кратко изложена эмпирическая трактовка процесса усталостного роста трещины в изотропной среде. Затем перечислены противоречия между основными предпосылками классической теории разрушения и особенностями протекания процесса разрушения в многофазных слоистых материалах. Тем самым показана необходимость некоторого смягчения исходных предпосылок теории разрушения, которое позволило бы создать практически применимые подходы для решения задач разрушения композитов. Очень кратко, вследствие неприменимости непосредственно к решению инженерных задач, изложены основные результаты, полученные при помощи методов микромеханики, позволяющих исследовать процессы взаимодействия между трещиной, волокном и связующим в бесконечной среде. Далее огшсаны основные концепции современных макромеханических подходов для описания процесса разрушения композитов. Отмечено, что все подходы, расчеты по которым находятся в соответствии с экспериментальными данными, исключают из рассмотрения нелинейную зону или зону разрушения у кончика трещины. Более сложные теории (с учетом критического объема, плотности энергии деформирования) наилучшим образом согласуются с экспериментами на однонаправленно армированных композитах, когда трещины распространяются параллельно волокнам. Эти теории также хорошо описывают нагружение слоистых композитов под углом к направлению армирования, когда преобладающее влияние на процесс разрушения оказывает растрескивание полимерной матрицы. Расчеты по двум приближенным теориям (гипотетической трещины и критического расстояния) и комбинированному методу (модель тонкой пластической зоны) сравниваются с данными, полученными при испытании слоистых композитов с симметричной схемой армирования [ 6°]s. Приведены данные о хорошем соответствии степенной аппроксимации, применяемой для описания скорости роста трещины, результатам испытаний на усталость слоистых композитов с концентраторами напряжений.  [c.221]


В механике жидкостей и газов наблюдается сходный процесс. Необходимость учета сжимаемости среды при движениях с большими дозвуковыми, затем околозвуковыми и сверхзвуковыми скоростями, когда термодинамика процесса играет первостепенную роль, заставляет все больше усилий уделять газовой динампке — дисциплине, в начале века составляющей небольшую главу механики, а теперь соперничающей по объему материала и размаху исследований с классической аэродинамикой. Изучаются движения в газообразной среде и с так называемыми ги-перзвуковыми скоростями — скоростями космических кораблей и метеоров, когда надо принимать во внимание и диссоциацию молекул газа. В гидромеханике схема идеальной жидкости в двумерных стационарных задачах при современных возможностях математического аппарата представляется почти исчерпанной. Больше внимания привлекают пестациопарные задачи плоского движения идеальной жидкости и трехмерные задачи и особенно механика вязкой (несжимаемой) жидкости. Статистические методы остаются основными в теории турбулентности, где еще предстоит решить ряд кардинальных проблем. Очень большое место занимают теперь такие разделы, как движение жидкости и газа в пористых средах, теория взрывных процессов на основе гидродинамической схемы, теплопередача при движении жидкостей и газов.  [c.301]

В отличие от методов кинетических уравнений, приведенных выше, при более строгом анализе работы лазера необходимо учитывать, что под действием электромагнитного поля внутри его резонатора атомы активной среды начинают осциллировать подобно микродиполям. Эти диполи создают макроскопическую поляризацию Р, численно равную электрическому моменту единицы объема активной среды. Макроскопический дипольный момент действует как источник излучения, т. е. возбуждает собственное электромагнитное поле, приводящее к изменению электромагнитного поля в резонаторе. Таким образом, в результате взаимодействия электромагнитного поля и среды внутри резонатора устанавливается самосогласованное электромагнитное поле. Самосогласованную теорию лазеров можно строить двумя методами 1) полуклассическим — взаимодействие электромагнитного поля со средой описывается уравнениями классической электродинамики 2) квантово-механическим — взаимодействие описывается квантово-механическими уравнениями (в этих методах среда описывается уравнениями квантовой механики). Первый метод является менее строгим, например, с его помощью нельзя учесть шумы лазера, статистические свойства света и рассмотреть эффекты спонтанного излучения, определяющие условия в начале генерации лазеров. Однако в целом ряде задач этот метод является основным для качественного и количественного анализа работы лазера.  [c.22]

Итак, основы классической механики полностью даны Ньютоном во вступительной части его Начал кроме того, на основе общего понятия силы как причины изменения состояния покоя или движения, сформулированы две основные задачи механики, из которых одна требует применения дифференцирования, вторая — интегрирования (функций и уравнений)/". В связи с этим в Началах Ньютон ставит перед собою еще две задачи дать математический аппарат для механики, основанной на его законах, и оправдать принятую им пространственно-временную схему, без которой содержание его законов (первых двух) лишается определенности. Математический аппарат, применяемый в Началах , изложен в первом разделе книги под названием метода первых и последних отношений. Метод можно назвать геометрическим вариантом исчисления бесконечно малых, притом вариантом, лишенным алгоритлшческой стройности. Не будем обсуждать причины, в силу которых Ньютон предпочел его собственному алгоритму флюксий и флюент, разработанному им на 20 лет раньше. Для судьбы научного наследия Ньютона существенно то, что на три года раньше Лейбниц опубликовал свой значительно более удобный алгоритм.  [c.118]

Это провозглашение эры исключительного господства аналитического метода могло казаться тем более обоснованным, что в труде Лагранжа содержится и все, что к тому времени составляло механику сплошной среды. Подводя итоги, надо все же признать, что аналитическая механика Лагранжа — не вся механика его времени. Недостаточность для приложений динамики идеальной жидкости, ограничение идеальными связями, т. е. исключение сил трения, математические трудности — словом, все, отделявшее теоретические построения от технических применений, заставляло уже тогда искать новые физические схемы, приближенные методы, обращаться к эксперименту. Это относится прежде всего к механике сплошной среды (см. следующую главу). Но в механике Лагранжа не было и других важных компонентов. В ней отразились и слабые стороны механистического, недиалектического материализма XVIII в. Лагранж обходит вопросы, связанные с тем или другим толкованием таких общих понятий, как пространство и время. А заодно он совсем не касается вопроса о том, каковы те системы координат, которыми он пользуется он ничего не говорит об относительности движения. Он обрывает в этом пункте традиции классической механики. Исходя из уравнений и не вникая в анализ физических основ механики, Лагранж как бы провел некую линию уровня . Все, лежащее выше нее, можно было считать прочно установленным и рекомендовать к применению то, что находилось ниже нее, игнорировалось. Это была новая позиция — позиция разумного самоограничения, но это исключало из рассмотрения ряд основных вопросов механики (и естествознания в целом). Исключить их на том основании, что пока нет удовлетворительного ответа на них и что они слишком близки к метафизике , было полезно можно было сосредоточить усилия на более конкретных задачах, поддающихся решению но это принесло и вред, так как отвлекало от более глубокого исследования основных понятий механики и физики, создавая иллюзию благополучия, которого на самом деле не было.  [c.157]

В течение XVII в,, в эпоху формирования классической механики, статические задачи, побуждавшие в той или иной мере заниматься проблемой устойчивости, были оттеснены на задний план задачами динамики. В новых задачах динамики вопрос об устойчивости, принципиально более сложный и гораздо менее наглядный, чем в задачах статики, поначалу вовсе не ставился. В результате в течение примерно столетия в проблему устойчивости не было внесено ничего существенно нового. Обновление приходит вместе с развитием в XVIII в. аналитических методов механики. Новыми существенными успехами учение об устойчивости обязано Л. Эйлеру Стимулом было, как и прежде, исследование проблемы плавания. В 1749 г. в Петербурге была издана двухтомная Корабельная наука (на латинском языке) Леонарда Эй- лера Этот труд был закончен в основном еще в 1740 г. Его третья глава — Об устойчивости, с которой тела, погруженные в воду, упорствуют в положении равновесия ,— начинается с утверждения, что устойчивость, с которой погруженное в воду тело упорствует в положении равновесия, должна определяться величиной момента восстанавливающей силы, когда тело будет наклонено из положения равновесия на данный бесконечно малый угол. Здесь дается обоснованная предыдупщм изложением мера устойчивости, четко введена устойчивость равновесия по отношению к бесконечно малым возмущениям, а в дальнейшем изложении устойчивость равновесия исследуется с помощью анализа малых колебаний плавающего тела около положения равновесия. Дифференциальное уравнение второго порядка, описывающее эти колебания, составляется в соответствии с введенной мерой устойчивости, путем отбрасывания малых величин порядка выше первого и поэтому оказывается линейным уравнением с постоянными коэффициентами (без слагаемого с первой производной, так как трение не учитывается, и без правой части). Это позволяет сопоставить его с хорошо изученным к тому времени уравнением малых колебаний математического маятника при отсутствии сопротивления среды. Качественная сторона дела тоже учитывается введенной Эйлером мерой момент восстанавливающей силы зависит от оси, относительно которой он берется, и для одних осей он может быть положителен (устойчивость равновесия), для других отрицателен (неустойчивость), для  [c.118]

Для решения большинства своих задач гидроаэро- и газодинамика применяют строгие математические приемы интегрирования основных дифференциальных уравнений при установленной системе граничных и начальных условий или другие эквивалентные им математические методы (например, конформное отображение в задачах плоского движения идеальной жидкости). Для получения суммарных характеристик используются такие общие теоремы механики, как теорема количества и моментов количеств движения, энергии и др. Однако большая сложность и недостаточная изученность многих явлений вынуждают механику жидкости и газа не довольствоваться применением строгих методов теоретической механики и математической физики, столь характерных, например, для развития механики твердого тела, но и широко пользоваться услугами всевозможных эмпирических приемов и так называемых нолуэмпирических теорий, в построении которых большую роль играют отдельные опытные факты. Такие отклонения от чисто дедуктивных методов классической рациональной механики естественны для столь бурно развивающейся науки, как современная механика жидкости и газа.  [c.15]


Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]

Теперь ставится задача пояснить некоторые основные идеи метода статистической механики при постановке и решении задач динамики сложных систем, подчиняющихся законам классической механики, и вывести некоторые законы, принимаемые в МСС аксиоматически. Рассматривается свободная замкнутая механическая система состоящая из N частиц, взаимодействующих между собой и с внешними телами, имеющая степеней  [c.13]

Глава 4 содержит краткий обзор различных подходов к проблеме интегрируемости уравненнй движения и некоторые наиболее общие и эффективные методы их интегрирования. Указа-11Ы разнообразные примеры проинтегрированных задач, составляющих золотой фонд классической динамики. Материал этой гл 1ВЫ используется в главе 5, посвященной одному из наиболее результативных разделов механики — теории возмущений. Основная задача теории возмущений — исследование задач механики, мало отличающихся от задач, точно проинтегрированных. Элементы этой теории (в частности, широко известный и применяемый принцип усреднения ) возникли в небесной ме-> анике в связи с попытками учесть взаимные гравитационные возмущения планет Солнечной системы. К главам 4 и 5 примыкает глава б, в которой исследована принципиальная возможность интегрирования уравненнй движения (в точно определенном смысле). Оказывается, интегрируемые системы являются редким исключением и это обстоятельство повышает роль приближенных методов интегрирования, изложенных в лаве 5. Классическим вопросам небесной механики посвящена "1торая глава. В ней рассмотрена интегрируемая задача 2-х тел,  [c.9]

Ценность алгебраического подхода подтверждается также достигнутыми им успехами, позволившими существенно расширить общность некоторых замечаний, сделанных относительно моделей Ван Хова и БКШ. Например, в п. 5 мы видели, что при снятии обрезания с взаимодействия из пространства Фока свободного поля исчезает физический вакуум, и это обстоятельство позволяет строить новое представление взаимодействующих полей. Подобная ситуация свойственна не только модели Ван Хова, а встречается также в конструктивных теориях поля Глимма и Джаффе. В п. 6 мы видели, что в модели БКШ вырождение основного состояния связано со спонтанным нарушением калибровочной симметрии. Это обстоятельство наводит на мысль об использовании алгебраического подхода к решению общей проблемы спонтанного нарушения симметрии, и, действительно, в указанном направлении удалось достичь известных успехов. Алгебраический подход позволил также продвинуть решение родственной проблемы — добиться более глубокого понимания механизма фазовых переходов. Различные алгебраические методы успешно использовались при решении многих задач классической и квантовой статистической механики от эргодической теории до исследования конденсации Бозе — Эйнштейна и интерпретации данных по спонтанному намагничению в модели Изинга и способствовали выяснению того, как система приближается к равновесному состоянию. Из других областей физики следовало бы упомянуть исследование оптической когерентности (методом пространства Баргмана). Алгебраический подход позволяет понять, где именно и в каком направлении формализм Баргмана выходит за пределы обычного формализма пространства Фока.  [c.49]

Основной задачей квантовой статистической механики, как и классической, является проблема многих тел. По существу она сводится к разработке эффективных методов расчета равновесных и неравновесных характеристик системы, состоящей из чрезвычайно большого числа частиц. За последние годы наметился ряд новых перспективных подходов к этой проблеме, связанных с систематическим использованием аппарата теории квантованных полей. Среди них одним из наиболее эффективных является, по-видимому, метод временных температурных функций Грина, представляющий собой естественное развитие аппарата, разработанного первоначально в связи с задачами квантовой электродинамики и мезодинамики. Уже использование динамических функций Грина, определенных как средние по основному состоянию системы, оказалось весьма эффективным при решении некоторых задач статистической физики. Однако только обобщение на случай конечных температур, представляющее собой соединение идей квантовой теории поля и метода матрицы плотности, позволило выявить все возможности данного аппарата.  [c.7]

Курс охватывает почти все основные разделы классической и квантовой статистической механики и многие ее приложения, например групповые разложения для неидеальных газов, теорию полупроводников, жидкий гелий, кооперативные явления, флуктуации, теорию электролитов, уравнение Больцмана. Четко излагаются основные принципы статистической механики метод ансамбля Гиббса и связь между различными ансамблями, свойства статистических сумм. Приводится большое число задач на примеиепие общих принципов статистической механики, что делается, пожалуй, впервые в учебной литературе. Подбор задач и их решения отличаются оригинальностью и новизной и показывают, что автор сам много и активно работал в различных областях статистической физики.  [c.5]

Основное содержание книге (нормальвый шрвфт) представляет собой главное содержание курса, читавшегося автором не-сь-олько лет в Московском университете. Порядок изложения, выбранный в книге, представляется автору наиболее логичным. Сначала излагается ход мысли, приводящий к основному методу статистнческой термодинамики — каноническому распределению, с помощью которого сейчас решаются все конкретные задачи. Затем с его помощью излагаются все вопросы как классической, так и квантовой статистики. Предполагается, что читатель знаком с основными представлениями и результатами кинетической теории газов в злементарном виде. Разумеется, читатель должен, кроме того, быть знаком с основами механики и тв модинамики. Для понимания квантовой статистики необходимо знание основ квантовой механики. Вопросы, требующие более глубокого знакомства с математическим аппаратом квантовой механики, отнесены к мелкому шрифту.  [c.13]

Естественно, в столь большом труде, посвященном к тому же интенсивно развивающейся области знания, трудно рассмотреть все задачи с одинаковой степенью потноты. Поэтому вряд ли можно всерьез упрекать автора за отсутствие в книге тех или иных разделов, которые хотелось бы там видеть, можно лишь сожалеть об этом. Следует также принять во внимание, что книга была закончена, судя по дате на предисловии автора, в 1958 г. В это время только создавались современные методы решения кинетических задач, основанные непосредственно на уравнениях квантовой механики и потому свободные от ряда дефектов классического кинетического уравнения. Не удивительно поэтому, что данное в книге изложение вопроса о гальваномагнитных явлениях в сильных магнитных полях, когда квантовые эффекты особенно существенны, не может полностью Удовлетворить современного читателя. То же относится и к вопросу об условиях применимости кинетического уравнения, получившему более или менее удовлетворительное решение лишь после написания книги, и особенно к задаче о кулоновском взаимодействии между электронами. Ей посвящена в книге специальная гл. IV, базирующаяся в основном на известном методе лишних переменных . В настоящее время на смену ему пришел гораздо более убедительный и эффективный метод квантовых функции Грина при этом часть результатов, изложенных в гл. V, претерпела известные видоизменения. Это относится, в частности, к вопросу о предельном плазменном волновом числе кс, к точному виду экранированного потенциала, к выражению для эффективной массы носителя тока. Связанные с этим изменения в различных формулах слишком многочисленны, чтобы их можно было отразить в подстрочных примечаниях. Более современную трактовку вопроса можно найти, например, в книге [1]. Вместе с тем основные качественные выводы гл. IV остаются в силе и поныне справедливы также выведенные там формулы для основной плазменной частоты и для дебаевского радиуса.  [c.6]

Первые 6 лекций Якоби посвящает изложению основных принципов механики принципу сохранения движения центра тяжести системы, принципу живой силы, принципу площадей и принципу наименьшего действия. С 10-ой лекции Якоби развивает теорию множителя" систем обыкновенных дифференциальных уравнений, являющуюся обобщением теории эйлеров-ского интегрирующего множителя. Якоби показывает каким образом можно в целом ряде случаев построить с помощью последнего множителя" всю систему п независимых интегралов. Изложив подробно теорию этого множителя, Якоби затем применяет ее к решению ряда механических задач. С 19-ой лекции Якоби, исходя из вариационного принципа Гамильтона, излагает тот метод интегрирования уравнения с частными производными первого порядка, который известен под названием метода Якоби-Гамильтона". В следующих лекциях этот метод примендется к ряду задач, взятых главным образом из области небесной механики. В 26 лекции Якоби излагает теорию эллиптических координат и показывает их приложение к разысканию геодезических линий эллипсоида, к задаче построения карт, к выводу основной теоремы Абеля и проч. Наконец, последние лекции Якоби посвящены изложению его классических методов интегрирования нелинейных уравнений в частных производных первого порядка.  [c.4]


Смотреть страницы где упоминается термин Основные задачи и методы классической механики : [c.285]    [c.11]    [c.149]    [c.304]    [c.17]    [c.3]    [c.13]    [c.7]    [c.6]    [c.817]    [c.102]   
Смотреть главы в:

Классическая механика  -> Основные задачи и методы классической механики



ПОИСК



Газ классический

Задача и метод

Задача основная

Задачи механики

Механика задачи

Механика классическая

Основные задачи

Основные задачи и методы



© 2025 Mash-xxl.info Реклама на сайте