Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Мера момента

Здесь меры момента и силы выбраны таким образом, чтобы в условии пластичности не фигурировали явно какие-либо константы. Левая часть этого условия неоднородна относительно М и Т, поэтому нам следует найти эквивалентное однородное выражение.  [c.646]

Таким образом мерой момента, воспринимаемого соответствующим элементарным стержнем, служит расход жидкости v dr в трубке тока.  [c.120]

Аналогично решается задача проектирования элементов конструкций заданной надежности по устойчивости. В этом случае мерой надежности является вероятность того, что ни разу за срок службы Т действующая обобщенная нагрузка q не превысит критической с кр- Под обобщенной нагрузкой можно принимать силу, распределенную нагрузку, изгибающий момент, крутящий момент и т.д.  [c.58]


Момент изменяющийся по гармоническому закону с частотой со, равной угловой скорости ротора, вызывает вынужденные незатухающие колебания люльки. По мере убывания угловой скорости со ротора уменьшается и частота изменения возмущающего момента Когда эта частота станет близкой к собственной частоте колебаний системы k, возникает состояние резонанса в это время амплитуда колебаний люльки станет наибольшей. Из теории колебаний известно, что при резонансе амплитуда А вынужденных колебаний может считаться пропорциональной амплитуде возмущающего фактора  [c.297]

Предположим, что в заданный момент времени мы связываем с каждой точкой пространства или по крайней мере с каждой точкой некоторой непрерывной его части определенную скалярную величину. Эта функция точки называется скалярным полем. Обычно делается предположение о непрерывности поля, которое в нестрогом смысле означает, что эта функция гладко меняется от точки к точке. Примером скалярного поля может служить распределе-  [c.29]

Аналогично, физическая интуиция подсказывает, что, если не рассматривать влияние прошлых деформаций, должны иметь особую значимость деформации, происходящие непосредственно в момент наблюдения. Поскольку деформации определяются по отношению к некоторой конфигурации, принимаемой за отсчетную, поясним нашу точку зрения, рассмотрев следующий пример, где за отсчетную выбрана конфигурация, не совпадающая с конфигурацией, принимаемой рассматриваемым жидким элементом в момент наблюдения. Рассмотрим два движения с одинаковыми значениями тензора деформаций (например, тензора Коши) во все моменты времени, за исключением момента наблюдения, где эти значения различны. (Вновь, как и в примере с температурой, по крайней мере одна из двух деформационных предысторий разрывна в момент наблюдения.) Физическая интуиция подсказывает, что при равенстве других переменных текущие значения свободной энергии в этих двух случаях будут различными.  [c.158]

С момента индустриализации страны потребовались неотложные меры по введению единообразия построения чертежей. Это привело к созданию в 1928 г. сборника Чертежи в машиностроении , состоящего из 24 стандартов, и, позднее, сборника Система чертежного хозяйства , содержащего 10 стандартов. Этими двумя сборниками по существу и исчерпывались стандарты на конструкторскую документацию.  [c.13]

Отрицательным моментом в построениях, показанных на рис. 238, б и в, является необходимость пользоваться кривой это снижает точность определения поло-> ения точек УИ и Л/. Но и в случае использования гиперболоида вращения приходится строить по крайней мере одну ветвь гиперболы, т. е. опять кривую. Это также снижает качество такого приема решения разобранной задачи  [c.196]


По мере развития процесса кристаллизации в нем участвует все большее и большее число кристаллов. Поэтому процесс вначале ускоряется, пока в какой-то момент взаимное столкновение растущих кристаллов не начинает заметно препятствовать их росту рост кристаллов замедляется, тем более что и жидкости, в которой образуются новые кристаллы, становится все меньше.  [c.47]

В начальный момент сварки скорость плавления электродного металла небольшая, но по мере разогрева электрода джоулевым теплом проходящего по нему тока скорость его плавления увеличится в два раза, т. е. на 100% и более при значительных плотностях тока. При этом увеличиваются и ix , потери же на угар и разбрызгивание практически не изменяются. Нормальное качество наплавки или шва будет обеспечено, если скорость плавления электрода в начале будет отличаться от скорости в конце не более чем на 30%. Джоулево тепло определяется уравнением  [c.25]

При разрезании круглого прутка или балок таврового, двутаврового, швеллерного профиля площадь сечения постоянно изменяется по мере прохождения пилы, вследствие чего при равномерной подаче пилы происходят резкие изменения силы резания. Эти изменения отрицательно отражаются на работе станка, вызывая сильные напряжения в отдельных его частях. Чтобы избежать этого, необходимо производить подачу соответственно величине площади разрезаемого сечения в данный момент так, чтобы станок всегда работал при одинаковой силе резания,- т. е. с переменной величиной подачи (рис. 46, а).  [c.165]

Работа по экологическому обучению и пропаганде должна производиться систематически и целенаправленно, иначе не будет воспринята как жизненно необходимая. Дополнительной эффективной организационной формой борьбы за ограничение выбросов вредных веществ автомобильными двигателями является проведение весенне-летних декадников, представляющих собой ограниченный по времени комплекс административных, пропагандистских мер и контроля, используемых совместно. Цель декадника — максимально интенсифицировать в определенный момент пропаганду мер оздоровления воздушного бассейна, привлечь внимание общественности и продемонстрировать ответственность за сохранность окружающей среды работников автомобильного транспорта.  [c.102]

Процесс взрывной запрессовки трубки в коллектор характеризуется следующими особенностями. По мере распространения прямой волны детонации в моменты времени О т то = //ид область пластической деформации распространяется как по образующей трубки 2, так и в глубь металла коллектора по оси г. При этом поля пластических деформаций на участке О z <  [c.349]

Исходными данными для моделирования являются структурная схема процессора и ограничения ТЗ на ряд параметров (быстродействие, точность и т.д.). Структурная схема дает представление о входящих в его состав блоках и связях между ними. Имитационная модель позволяет представить работу процессора путем абстрагирования способа реализации логических зависимостей (определяемых микропрограммами реализации операций) в виде последовательности выполнения логических операторов. Схе-ма алгоритма моделирования должна быть эквивалентной структурной схеме процессора. По схеме алгоритма производится компоновка отдельных программных модулей, описывающих функционирование реальных блоков процессора, в единую программу. Поскольку обработка элементов программы происходит последовательно, порядок их расположения соответствует распространению исходной информации по всем блокам по мере ее прохождения от входа к выходу. За исходную информацию принимается содержимое всех регистров процессора в начальный момент времени.  [c.355]

В соединении деталей с натягом сила запрессовки растет пропорционально ходу в связи с ростом площади контакта сопрягаемых деталей (рис. 3.5). Сила выпрессовки в момент трогания существенно больше, чем при движении, так как коэффициент трения покоя больше коэффициента трения движения. По мере  [c.42]

По мере увеличения силы прижатия рабочих поверхностей постепенно нарастает крутящий момент, передаваемый силами трения, что позволяет соединять валы иод нагрузкой и даже с большой разностью частот вращения. В процессе включения эти муфты пробуксовывают и разгон ведомого вала производится плавно, без удара. Муфта может одновременно выполнять и функции предохранительного звена, если она отрегулирована на передачу соответствующего предельного момента. Муфты могут быть нормально разомкнутыми или нормально замкнутыми. Двойные нормально разомкнутые муфты служат для переключения скоростей или реверсирования. Масляные муфты работают в условиях, где трудно защитить поверхности трения от попадания смазки, там же где возможна изоляция от смазки, применяются сухие муфты. При жидкой смазке коэффициент трения [ снижается примерно в три раза, но при этом повышается износостойкость контактных поверхностей трения, что позволяет повысить давление q. Значения f приведены в табл. 15.4, значения qo — в табл. 15.5.  [c.389]


В течение XVII в,, в эпоху формирования классической механики, статические задачи, побуждавшие в той или иной мере заниматься проблемой устойчивости, были оттеснены на задний план задачами динамики. В новых задачах динамики вопрос об устойчивости, принципиально более сложный и гораздо менее наглядный, чем в задачах статики, поначалу вовсе не ставился. В результате в течение примерно столетия в проблему устойчивости не было внесено ничего существенно нового. Обновление приходит вместе с развитием в XVIII в. аналитических методов механики. Новыми существенными успехами учение об устойчивости обязано Л. Эйлеру Стимулом было, как и прежде, исследование проблемы плавания. В 1749 г. в Петербурге была издана двухтомная Корабельная наука (на латинском языке) Леонарда Эй- лера Этот труд был закончен в основном еще в 1740 г. Его третья глава — Об устойчивости, с которой тела, погруженные в воду, упорствуют в положении равновесия ,— начинается с утверждения, что устойчивость, с которой погруженное в воду тело упорствует в положении равновесия, должна определяться величиной момента восстанавливающей силы, когда тело будет наклонено из положения равновесия на данный бесконечно малый угол. Здесь дается обоснованная предыдупщм изложением мера устойчивости, четко введена устойчивость равновесия по отношению к бесконечно малым возмущениям, а в дальнейшем изложении устойчивость равновесия исследуется с помощью анализа малых колебаний плавающего тела около положения равновесия. Дифференциальное уравнение второго порядка, описывающее эти колебания, составляется в соответствии с введенной мерой устойчивости, путем отбрасывания малых величин порядка выше первого и поэтому оказывается линейным уравнением с постоянными коэффициентами (без слагаемого с первой производной, так как трение не учитывается, и без правой части). Это позволяет сопоставить его с хорошо изученным к тому времени уравнением малых колебаний математического маятника при отсутствии сопротивления среды. Качественная сторона дела тоже учитывается введенной Эйлером мерой момент восстанавливающей силы зависит от оси, относительно которой он берется, и для одних осей он может быть положителен (устойчивость равновесия), для других отрицателен (неустойчивость), для  [c.118]

Ограничение движения электронов определенными орбиталями предсказывается квантовой теорией, согласно которой для определения состояния электрона в атоме необходимо знать четыре квантовых числа. Главное квантовое число п связано с энергией электрона в данном состоянии, причем отрицательная величина энергии электрона, находящегося в той иди иной основной оболочке, обратно пропорциональна /г . Второе квантовое число является мерой момента количества движения электрона и может иметь значения от нуля до (п — 1). Значения г = О, 1, 2 и 3 связаны с подоболочками, обозначаемыми буквами , р, d и f соответственно. В связи с этим Я -оболочка может содержать только орбитали s-типа, L-оболочка орбитали s- и /)-тина, М-оболоч-ка — орбитали s-, р- и (i-типа и т, д., т. е. при каждом увеличении главного квантового числа добавляется дополнительная под-оболочка (табл. 2). Третье квантовое число mi является мерой проекции момента количества движения на определенное направление (обычно это направление очень слабого внешнего магнитного поля). Это квантовое число может принимать любые значения от до —Z, включая нуль, ограничивая, таким образом, число орбиталей в р-, d и /-подоболочках, как уже отмечалось выше. Четвертое квантовое число т связано с направлением спина электрона, определение которого также требует наличия магнитного поля. Спиновое квантовое число может принимать значения и, следовательно, каждая орбиталь, определяемая квантовыми числами п, I, mi, может содержать два электрона с противоположными спинами, соответствующими квантовым числам ms — +Va И тпа = —Vg.  [c.16]

Мер — момент сопротивления враш1ению опоры под действием внешних нагрузок М, (2 и Л  [c.438]

Знак момента определится величинами и знаком моментов (P l)- (Fii) и Ml. Если при определении сил инерции было принято равномерное движение начального звена, то момент Л/у = /Ил Fy) будет уравновешивающим. При неравно-мериом движении начального звена надо вычесть или прибавить момент сил инерции. Величина уравновешивающей силы F определится из условия  [c.262]

Важным, даже основмым моментом описанного выше мехалнзма х рупко-го разрушения металлов, является достижение в устье трещины напряжения, равного теоретической прочности. Это условие будет выполнено, если по мере развития трещины последняя будет острой. Если трещина будет раскрываться и радиус в ее вершине увеличивается, т. е. не только I, но и г будет расти, то для ее движения будет требоваться все большее и большее напряжение (если дробь /// будет уменьшаться). В этом случае трещина так и не достигнет критического размера, хотя может распространиться на асе сечение. Такое разрушение является вязким.  [c.72]

Так как на кривой кристализации 1—2 из жидкости непре-рыв но выделяется свинец, то жидкость по мере кристаллизации свинца обогащается сурьмой. Если к моменту начала кристаллизации свинца (в точке 1) жидкость исследуемого сплава со-  [c.116]

Резание металлов — сложный процесс взаимодействия режущего инструмента и заготовки, сопровождающийся рядом физических явлений, например, деформированием срезаемого слоя металла. Упрощенно процесс резания можно представить следующей схемой. В начальный момент процесса резания, когда движущийся резец под действием силы Р (рис, 6.7) вдавливается в металл, в срезаемом слое возникают упругие деформации. При движении резца упругие деформации, накапливаясь по абсолютной величине, переходят в пластические. В прирезцовом срезаемом слое материала заготовки возникает сложное упругонапряженное состояние. В плоскости, перпендикулярной к траектории движения резца, возникают нормальные напряжения Оу, а в плоскости, совпадающей с траекторией движения резца, — касательные напряжения т .. В точке приложения действующей силы значение Тд. наибольшее. По мере удаления от точки А уменьшается. Нормальные напряжения ст , вначале действуют как растягивающие, а затем быстро уменьшаются и, переходя через нуль, превращаются в напряжения сжатия. Срезаемый слой металла находится под действием давления резца, касательных и нормальных напряжений.  [c.261]


Зацепление здесь распространяется в направлении от точек 1 к точкам 2 (см. рис. 8.24). Расположение контактных линий в поле косозубого зацепления изображено на рис. 8.26, а, б (ср. с рис. 8.5 — прямозубое зацепление). При вращении колес линии контакта перемещаются в поле зацепления в направлении, показанном стрелкой. В рассматриваемый момент времени в зацеплении находится три пары зубьев 1,2 аЗ. При этом пара 2 зацепляется по всей длине зубьев, а пары 1 и 3 лишь частично. В следующий момент времени пара 3 выходит из зацепления и находится в положении 3. Однако в зацеплении eaie остались две пары 2 и Г. В отличие от прямозубого косозубое зацепление не имеет зоны однопарного зацепления. В прямозубом зацеплении нагрузка с двух зубьев на один или с одного на два передается мгновенно. Это явление сопровождается ударами и шумом. В косозубых передачах зубья нагружаются постепенно по мере захода их в поле зацепления, а в зацеплении всегда находипИя минимум две пары. Плавность косозубого зацепления значительно понижает шум и дополнительные динамические нагрузки.  [c.125]

Муфты фрикционные. При включении фрикционных муфт крутящий момент возрастает постепенно по мере увеличения силы нажатия на поверхности трения. Это позволяет соединять валы иод нагрузкой и с большой разностью начальных угловых скоростей. В процессе включения муфта пробуксовывает, а разгон ведомого вала происходит плавно, без удара. Отрегулированная на передачу предельного крутящего момента, безопасного для прочности машины, фрикщюнная муф-та выполняет одновременно функции Рис. 17 30  [c.321]

Величины прямых и обменных сумм фазовых сдвигов показаны на рис. 3.3 и 3.4, где по оси абсцисс отложены единицы, пропорциональные приведенному моменту кт- При температурах выше области жидкого гелия обменный вклад очень быстро становится пренебрежимо малым, поскольку 0-(кт)- п18 по мере роста кт- Однако если требуется знать вторые вириальные коэффициенты в области температур до 2 К, то обменным вкладом пренебрегать нельзя. Для термометрии вид кривых сумм фазовых сдвигов С (кт) и С-(кт), а следовательно, и В(Т), имеет важное значение при интерполяции величины В(Т) между теми температурами, для которых найдены экспериментальные данные В(Т). Ниже при обсуждении вопросов, связанных с акустической термометрией, будет показано, что второй акустический вириальный коэффициент зависит не только от В(Т), но также от с1 В(Т)1йТ и (ВВ(Т)1с1Г.  [c.82]

Для лучшего уяснения порядка осуществления данного цикла пред-ставим себе тепловую машину, цилиндр которой может быть по мере надобности как абсолютно теплопроводным, так и абсолютно нетеплопроводным. Пусть в первом положении поршня начальные параметры рабочего тела будут ри Vi, а температура Тi равна температуре теплоотдатчика. Если в этот момент цилиндр будет абсолютно теплопроводным и если его привести в соприкосновение с теп-лоотдатчиком бесконечно большой энергоемкости, сообщ,ив рабочему телу теплоту qy по изотерме 1-2, то газ расширится до точки 2 и совершит работу. Параметры хочки 2 — рр V2, T l- От точки 2 цилиндр должен быть абсолютно нетеплопро водным. Рабочее тело с температурой Ti, расширяясь по адиабате 2-3 до температуры теплоприемника Гг, совершит работу. Параметры точки 3— Рз, Vs, Т2- От точки 3 делаем цилиндр абсолютно теплопроводный. Сжимая рабочее тело по изотерме 3-4, одновременно отводим теплоту 2 в теплоприемник. В конце изотермического сжатия параметры рабочего тела будут 4, v , Т . Отточки 4 в абсолютно нетеплопроводном цилиндре адиабатным процессом сжатия 4-1 рабочее тело возвращается в первоначальное состояние.  [c.112]

При рассмотрении удара двух тел, вращающихся вокруг одной оси или параллельных осей, следует применять георему об изменении кинетического момента к каждому гелу или георему Карно. При применении георемы об изменении кинетического момента к двум телам вместе при вращении гел вокруг параллельных осей войдут мометы неизвестных ударных импульсов в. местах закрепления по крайней мере одной из осей вращения. Эти моменты сами являются неизвестными. Применение общих теорем при ударе к одному телу, вращающемуся вокруг неподвижной оси, рассмотрено в следующем параграфе. Здесь отметим только некоторые особенности применения теоремы Карно к системе двух врагцающихся тел.  [c.538]

Первое направление (сейчас в значительной мере устаревшее) закзво-чается в предварительном выборе запаса надежности, установлении-1Ш Сдет-ных напряжений на основании этого запаса и определении сеченцй и моментов инерции деталей по формулам сопротивлений мате алов В теории упругости с учетом главных нагрузок на расчетном режиме (обычно режим максимальной мощности или частоты вращения).  [c.161]

Усшше распрессовки будет значительным, особенно в начальный момент, когда преодолевается трение покоя. На дальнейших этапах усилие распрессовки снижается, так как трение покоя уступает место трению движения, а длина прессового пояса уменьшается по мере схода детали с вала.  [c.492]


Смотреть страницы где упоминается термин Мера момента : [c.360]    [c.260]    [c.271]    [c.92]    [c.59]    [c.260]    [c.97]    [c.101]    [c.352]    [c.235]    [c.329]    [c.29]    [c.56]    [c.245]    [c.379]    [c.199]    [c.61]    [c.129]    [c.164]    [c.35]    [c.295]   
Динамические системы - 2 (1985) -- [ c.0 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте