Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плазменная частота

Периодический потенциал 214 Пироэлектрики 297 Плазменная частота 158 Пластическая деформация 128 Плотная упаковка шаров 28 Плотность нормальных мод 171  [c.383]

Как только плазменная частота — возрастет до величины оптической частоты, плазма начнет отражать излучение и свет перестанет в нее проникать. Это соответствует так называемой критической плотности электронов Мс. Для рубинового лазера Л с=2,4-10 см . При расширении плазмы плотность ее быстро падает ниже критической.  [c.103]


Величина и положение зоны усиления существенно зависят от параметров, определяющих свойства ЛБВ,— параметра усиления е (обозначаемого также С) и параметра пространственного заряда (обозначаемого также 4 С), где — плазменная частота с учётом поперечных размеров пучка и влияния замедляю-  [c.569]

Рио. 2. Дисперсионная кривая поверхностных плазмон-поляри-ТОНОВ (1) на плоской границе раздела между простым металлом и вакуумом о) — плазменная частота электронов 2 — световая линия ш = ск  [c.650]

Плазменная частота 540 Плотность электрического заряда 10  [c.612]

В среде, состоящей из связанных осцилляторов Лорентца, могут распространяться поперечные и продольные волны. Частоту соп продольных плазменных колебаний для модели Друде найдем согласно (388) путем приравнивания нулю выражения (399). Часто в области плазменного резонанса величиной Вз. можно пренебречь. Тогда вместо условия е (сОп)=0 допустимо принять б] (сйп)=0, что дает на основании (400) сОп р. Иными словами, плазменный резонанс в этом приближении происходит при плазменной частоте свободного электронного газа, как это и наблюдается у щелочных металлов.  [c.289]

Теперь вместо одной имеются две плазменные частоты Ищ и п2, одна из которых выше, а другая ниже (Ор, причем эти частоты тем дальше разнесены друг от друга, чем больше сила осциллятора Ф1 [8961.  [c.289]

Таким образом, характерной особенностью малых металлических частиц является то, что их резонансные частоты сО меньше плазменной частоты сОр и зависят от диэлектрической проницаемости окружающей среды.  [c.291]

Здесь inNe /ni, где N — число атомов-осцилляторов в единице объёма Д. Квантовомеханич. рассмотрение даёт сходный результат с тем отличием, что частотам oju, ojj, Шр придаёт иное физ. содержание (Ос,— одна из частот поглощения или излучения атома, Wi отвечает обратному времени жизни атома в соответствующем возбуждённом состоянии, — величина, связанная с вероятностью переходов атома из одного состояния в другое (плазменная частота).  [c.697]

S—)—параметр, характеризующий темп группировки частиц со — частота точного синхронизма, сОв — = (4яе п/т7) — плазменная частота к — невачмущён-ная плотность электронов в пучке зонаторных ЛСЭ-усилителях  [c.565]

Оптические свойства. Для эл.-магн. воли оптпч. диапазона М., как правило, непрозрачны. Характерный блеск — следствие практически полного отражения света поверхностью М., обусловленного тем, что диэлектрическая проницаемость электронного газа 8 при оптич. частотах отрицательна. Диэлектрич. проницаемость М. е = Ей — о) ,/со , где ей — диэлектрич. проницаемость ионного остова, — плазменная (ленгмюровская) частота электронов. Плазменные частоты могут быть экспериментально определены по характеристич. потерям энергии быстрых электронов (с энергией при прохождении через металлич. плёнку. Они теряют энергию на возбуждение плазмонов — квантов колебаний электронной жидкости с частотой ljl (табл. 8),  [c.119]


П. р. могут быть важны в астрофиз. условиях — в вырожденных ядрах белых карликов и оболочках нейтронных ЗВЁЗД, где плотность вещества р может достигать 10 —10 г/см при У < 0д. В этих условиях ш близка к плазменной частоте колебаний ядер решётки, ю к (4л2 с я/М) =, где Zi — заряд ядра. Поэтому (/ /г) цропорц. т. е- с ростом плотности вещества ве-  [c.583]

Помимо хаотич. теплового движения частицы П. могут участвовать в упорядоченных коллективны.х процессах, из к-рых наиб, характерны продольные колебания пространствейного заряда — ленгмюровские волны. Их угл. частота сОр = лпе /т наз. плазменной частотой (сит— заряд и масса электрона). Многочисленность и разнообраэие коллективных процессов, отличающие плазму от нейтрального газа, обусловлены дальностью кулоновского взаимодействия, благодаря чему П. можно рассматривать как упругую среду, в к-рой легко возбуждаются и распространяются разл. шумы, колебания и волны. Наличие собств. колебаний и волн — Характерное свойство П.  [c.595]

Поперечные эл.-магн. волны могут обладать двумя поляризациями и могут распространяться в П. без мага, поля, только если их частота о превышает плазменную частоту Юр. В противоположном же случае ю < Юр показатель преломления плазмы становится еоо м мым II поперечные волны отражаются её поверх-598 ностью (см. Волны в плазме). (Именно поэтому радиовол-  [c.598]

ПЛАЗМЕННАЯ ЧАСТОТА — частота ленгмюровских колебаний, называемых также плазменными колебаниями и продольными (к II Е) колебаниями пространственного заряда Юр = У4лпе /т , п — плотность, е и — заряд и масса электрона, к — волновой вектор, Е — электрич. поле, вызываемое разделением зарядов. В холодной плазме (Tg = Ti) ленгмюровские колебания не обладают дисперсией, т. в. П. ч. Шр не зависит от длины волны. Подробнее см, в ст. Волны в плазме. ПЛАЗМЕННАЯ ЭЛЕКТРОНИКА — раздел физики плазмы, изучающий коллективные взаимодействия плотных потоков (пучков) заряж. частиц с плазмой и газом, приводящие к возбуждению в системе линейных и нелинейных эл.-магн. вола и колебаний, и использование эффектов такого взаимодействия. Прикладные задачи, к-рые ставит и решает П. э., определяют её осн, разделы плазменная СВЧ-электроника, изучающая возбуждение в плазме интенсивного когерентного эл.-магн. излучения, начиная от радио-и вплоть до оптич. диапазона длин вола плазменные ускорители, осн. на явлении коллективного ускорения тяжёлых заряж. частиц электронными пучками и волнами в плазме плазменно-пучковый разряд, основанный на коллективном механизме взаимодействия плотных п.уч-кон заряж. частиц с газом турбулентный нагрев плазмы плотными пучками заряж. частиц и коллективные процессы при транспортировке и фокусировке пучков в проблеме УТС (см. Ионный термоядерный синтез) неравновесная плазмохимия, изучающая процессы образования возбуждённых молекул, атомов и ионов при коллективном взаимодействии пучков заряж. частиц с газом и плазмой.  [c.606]

Отличия и достоинства П. э. Подобно вакуумной и квантовой электронике П. э. основана на явлении индуцированного (вынужденного) излучения и поглощения эл.-магн. волн заряж. частицами в плазме. Но если вакуумная электроника рассматривает излучение потоков заряж. частиц, движущихся в электродинамич. структурах — металлич, либо диэлектрич. волноводах и резонаторах, то П. э. исследует излучение потоков заряж. частиц, движущихся в плазме, в плазменных волноводах и резонаторах (см. Волновод плазменный). Частота эл.-магн. излучения в вакуумной электронике определяется конечными геом. размерами волноводов и резонаторов, а в квантовой электронике — дискретностью энергетич. уровней излучателей (возбуждённых атомов и молекул) поэтому генераторы когерентного эл.-магн. излучения в вакуумной и в квантовой электронике узкополосны, менять их частоту плавно практически невозможно. В плазменных приборах частота зависит не только от геом. размеров волноводов и резонаторов, но и от п.чотности плазмы, поэтому излучатели в П. э. многомодовые меняя плотность плазмы, можно менять частоты в широком интервале.В этом заключается одно из существ, отличий и преимуществ П. э. Так, напр., частота продольных ленгмюровских колебаний холодной изотропной плаз.мы (в систе.ме ед. СС8Е) Шр = (3-10 Нр) / С", где Пр — плотность плазмы. При изменении реально используе.мой плотности плазмы в пределах (10 °—Ю ) см" можно возбуждать волны длиной X (10" —10 ) см, что перекрывает всю полосу СВЧ от субмиллиметрового и до дециметрового диапазона. При наложении на плазму внеш. магн. поля диапазон частот собств. мод эл.-магн. колебаний плазмы расширяется.  [c.607]


Зарядовая нейтрализация пучка происходит при инжекции в достаточно плотную плаз.му за счёт вытеснения из его объёма медленных плазменных электронов с характерным временем (4яа) , где а — проводимость плазмы. Если к моменту достижения нейтрализации ток С. п. продолжает нарастать, то эдс индукции создаёт ток оставшихся плазменных электронов, направленный против тока пучка и вызывающий токовую нейтрализацию. При небольшой плотности плазмы, когда плазменная частота озр < с/а, обратный ток распределён по всему объёму, так что токовая нейтрализация неполна и имеет интегральный характер. При Ыр > da происходит локальная нейтрализация, за исключением поверхности С. п., где образуется двойной токовый слой толщиной - juip и сосредоточено ыагн. поле. В таких условиях частицы С. и. практически свободны, а сам он электродинамически венаблюдаем. Эффективность переноса пучком мощности и энергии через плазму на расстояния 1м близка к 100%, но на больших расстояниях уменьшается за счёт раал. неустойчивостей С. п., в первую очередь поперечной неустойчивости, выражающейся в изгибании пучка как целого и разбиения его на отд, нити.  [c.503]

Глубина скин-слоя существенно зависит от проводимости о, частоты эл.-магн. поля о, от состояния поверхности. На малых частотах б велика, убывает с ростом частоты и для металлов на частотах оптич. диапазона оказывается сравнимой с длиной волны к 10 см. Столь малым проникновением эл.-магн. полни почти олным его отражением объясняется метадлич. блеск хороших проводников. На ещё больших частотах, превышающих плазменную частоту, в проводниках оказывается возможным распространение эл.-магн. волн. Их затухание определяется как внутризонныии, так и межзонными электронными переходами (см. Зонная теория).  [c.541]

Беестолкиовительные У. в. В чрезвычайно разреженной плазме (лабораторной, космической), где частицы практически не сталкиваются между собой, также возможны У. в. При этом ширина У. в. оказывается гораздо меньше длин пробега частиц. Механизм диссипации, приводящей к превращению части кинетич. энергии направленного движения невозмушённого газа (в системе координат, движущейся вместе с У. в.) в энергию теплового движения, связан с коллективными взаимодействиями в плазме и возбуждением плазменных колебаний. В присутствии магн, поля в бесстолкновшпелъных ударных волнах существенны также эффекты закручивания ионов и индуцирования электрич. полей при вытеснении магн. поля движущейся плазмой. Масштабом ширины бесстолкновительных У, в. служит величина с/Шр, где с—скорость света, С0р = = (4ке — плазменная частота,  [c.210]

Здесь (йр = 4nNe /m — плазменная частота N, е, т — концентрация, заряд и эффективная масса свободных электронов. В теории Ми [386] максимум поглощения света достигается при  [c.110]

В разд. 6.9 мы показали, что на границе между однородной диэлектрической и периодической слоистой диэлектрической средами могут существовать поверхностные электромагнитные волны. Эти моды являются в действительности затухающими блоховскими волнами периодической среды. При данной частоте ш в такой структуре может распространяться большое число как ТЕ-, так и ТМ-мод. Покажем теперь, что поверхностные электромагнитные волны могут также существовать на границе между двумя средами, если диэлектрические проницаемости сред имеют противоположные знаки (например, воздух и серебро). При данной частоте существует лищь одна ТМ-мода. Амплитуда волны экспоненциально уменьшается в обеих средах в направлении, перпендикулярном поверхности. Эти моды называются также поверхностными плазмо-нами вследствие вклада электронной плазмы в отрицательную диэлектрическую проницаемость металлов, когда оптическая частота меньше плазменной частоты (т. е. ш < w ). Ниже мы получим характеристики распространения поверхностных электромагнитных волн.  [c.528]

Качественная картина возникающих эффектов проста. Чем круче фронт импульса, тем большая доля энергии переносится спектральными компонентами, распространяющимися со скоростью практически равной скорости света с в вакууме. Действительно, на частотах для которых е 1—сОр/со , где — собственная частота упруго связанных электронов, сОр — плазменная частота, скорость v= = jV8- с при со->-оо. Поэтому к наблюдателю, находящемуся в точке гфд диспергирующей среды, оптический сигнал придет не в момент времени t =z u и — групповая скорость), а в момент 1з=г1с — появляется так называемый зоммерфельдовский предвестник (рис. 1.2). Эта качественная картина становится совершенно наглядной, если обратиться к решению точного волнового уравнения (1.1.1).  [c.25]

Отмечается, что сильные дипольные переходы в кластерах Agn( 6) грубо соответствуют плазменной частоте микрокристаллов серебра. Согласно рис. 115 низкоэнергетическая полоса поглощения света расширяется до полного исчезновения у кластеров Agjo—Agjs при нм (ане в ИК-области, как предсказывают вычисления  [c.265]

Они нашли, что в диспергированной среде возникают как продольные, так и поперечные колебания зарядов. Частота продольных колебаний ((Одр в случае металлов) определяется уравнением li( o) = 0. Она ниже плазменной частоты металла и частоты со , продольных оптических фононов массивного ионного кристалла, но приближается к ним по мере увеличения Поперечные колебания также носят резонансный характер. Их частота задается максимумом кривой Е2(ю). Для диспергированных металлов это есть частота ffipon- В случае взвеси частиц ионных кристаллов подходящие названия продольного и поперечного резонанса отсутствуют.  [c.301]


Смотреть страницы где упоминается термин Плазменная частота : [c.97]    [c.155]    [c.158]    [c.765]    [c.317]    [c.372]    [c.428]    [c.641]    [c.699]    [c.108]    [c.257]    [c.412]    [c.450]    [c.581]    [c.110]    [c.423]    [c.510]    [c.539]    [c.651]    [c.184]    [c.541]    [c.373]    [c.533]    [c.540]    [c.58]    [c.289]    [c.301]   
Физика твердого тела (1985) -- [ c.158 ]

Оптические волны в кристаллах (1987) -- [ c.540 ]

Дифракция и волноводное распространение оптического излучения (1989) -- [ c.29 ]

Физическая теория газовой динамики (1968) -- [ c.334 ]

Теория твёрдого тела (0) -- [ c.92 , c.100 ]

Физика твердого тела Т.2 (0) -- [ c.33 ]

Физическая кинетика (1979) -- [ c.162 ]

Статистическая механика Курс лекций (1975) -- [ c.286 , c.289 ]

Физика твердого тела Т.1 (0) -- [ c.33 ]



ПОИСК



Идеальный ферми-газ Время релаксации и длина свободного пробега Циклотронная частота Плазменная частота Химический потенциал

Ионная плазменная частота в металлах

Плазменная (ленгмюровская) частот

Плазменная частота и оптические свойства металлов

Плазменная частота ионная

Плазменная частота численные формулы

Плазменное эхо

Плазменные колебания частота

Плазменных колебаний затухание частота



© 2025 Mash-xxl.info Реклама на сайте