Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приложение к динамике идеальной жидкости

Обобщая понятие давления, введенное в динамику идеальной жидкости согласно системе равенств = Ргг = Psz — —Pi примем в качестве простейшего допущения, что и в ньютоновской несжимаемой вязкой жидкости взятое с обратным знаком среднее арифметическое трех нормальных напряжений, приложенных к взаимно перпендикулярным площадкам в данной точке среды, представляет давление в этой точке  [c.355]


До недавнего времени динамика идеальной жидкости рассматривалась как академический раздел науки, не имеющий практического приложения, ввиду больших расхождений между результатами расчетов и наблюдений. Однако окончательное признание того, что теория циркуляции в идеальной жидкости, предложенная Ланчестером, объясняет подъемную силу крыла, а также гипотеза Прандтля о возможности пренебречь вязкостью вне погра ничного слоя дали новый толчок в развитии этой области науки, которая всегда была необходима кораблестроителям-проектировщикам и которая вышла на передовые позиции в связи с появлением современных самолетов.  [c.9]

Приложения к динамике идеальной жидкости. Уравнение Эйлера, описывающее течение идеальной жидкости в потенциальном силовом поле, имеет следующий вид  [c.41]

Книга посвящена математическому изложению аналогий, существующих между гидродинамикой, геометрической оптикой и механикой. Оказывается, изучение семейств траекторий гамильтоновых систем по существу сводится к задачам многомерной гидродинамики идеальной жидкости. В частности, известный метод Гамильтона — Якоби отвечает случаю потенциальных течений. Рассказано о некоторых приложениях такого подхода, в частности, о вихревом методе точного интегрирования дифференциальных уравнений динамики.  [c.2]

Пятое издание содержит изложение основных разделов механики жидкости и газа кинематики, статики и динамики. Общие дифференциальные уравнения динамики выведены как для однородной, так и для неоднородной, гомогенной и гетерогенной сред. Рассмотрены методы интегрирования уравнений динамики в задачах несжимаемых и сжимаемых, идеальных и вязких жидкостей п газов при ламинарных и турбулентных режимах движения. Приведено значительное число примеров приложений этих решений, иллюстрирующих большие возможности современных методов механики жидкости и газа в технической практике.  [c.2]

Это провозглашение эры исключительного господства аналитического метода могло казаться тем более обоснованным, что в труде Лагранжа содержится и все, что к тому времени составляло механику сплошной среды. Подводя итоги, надо все же признать, что аналитическая механика Лагранжа — не вся механика его времени. Недостаточность для приложений динамики идеальной жидкости, ограничение идеальными связями, т. е. исключение сил трения, математические трудности — словом, все, отделявшее теоретические построения от технических применений, заставляло уже тогда искать новые физические схемы, приближенные методы, обращаться к эксперименту. Это относится прежде всего к механике сплошной среды (см. следующую главу). Но в механике Лагранжа не было и других важных компонентов. В ней отразились и слабые стороны механистического, недиалектического материализма XVIII в. Лагранж обходит вопросы, связанные с тем или другим толкованием таких общих понятий, как пространство и время. А заодно он совсем не касается вопроса о том, каковы те системы координат, которыми он пользуется он ничего не говорит об относительности движения. Он обрывает в этом пункте традиции классической механики. Исходя из уравнений и не вникая в анализ физических основ механики, Лагранж как бы провел некую линию уровня . Все, лежащее выше нее, можно было считать прочно установленным и рекомендовать к применению то, что находилось ниже нее, игнорировалось. Это была новая позиция — позиция разумного самоограничения, но это исключало из рассмотрения ряд основных вопросов механики (и естествознания в целом). Исключить их на том основании, что пока нет удовлетворительного ответа на них и что они слишком близки к метафизике , было полезно можно было сосредоточить усилия на более конкретных задачах, поддающихся решению но это принесло и вред, так как отвлекало от более глубокого исследования основных понятий механики и физики, создавая иллюзию благополучия, которого на самом деле не было.  [c.157]


КНИГИ посвящены некоторым из этих связей. В качестве приложений аппарата классической механики здесь рассматриваются основы римановой геометрии, динамика идеальной жидкости, кол-могоровская теория возмущений условно-периодических движений, коротковолновые асимптотики для уравнений математической физики и классификация каустик в геометрической оптике.  [c.10]

Во второй половине XIX в. появилось учение о вихреном двин<с-нии жидкости, создателем которого справедливо считают Гельмгольца, указавшего в 1858 г. основные свойства вихрей в идеальной жидкости. Само понятие вихря и его интерпретация, как угловой скорости вращения жидкого элемента в целом, были даны раньше Коши в 1815 г. и Стоксом в 1847 г. возможность движения без потенциала скоростей была указана Эйлером еще в 1775 г. Теория вихрей имеет обширную литературу, в которой тесно переплетаются вопросы гидродинамики с аналогиями в области электричества и магнетизма. Магнитные линии вокруг электрического проводника эквивалентны линиям тока вокруг вихревой нити (теорема Био — Савара служит основой как для расчета движения жидкости вокруг вихревых линий, так и для расчета магнитного поля вокруг электрического тока). Теория вихрей сыграла большую роль в развитии динамики атмосферы, теории крыла самолета, теории пропеллера и корабельного винта и др. Об этих приложениях, получивших особенное развитие в работах русских ученых (Н. Е. Жуковского — по вихревой теории винта и А. А. Фридмана — по вихрям в атмосфере), будет упомяпуто в следующем параграфе.  [c.26]

Анализ бесконечно малых величин в приложении к задачам механики впервые применил знаменитый математик и механик XVIII в., член Россййской Академии наук Леонард Эйлер (1707—1783). Он написал 43 тома сочинений н более 780 статей. Большое число его выдающихся трудов относится к задачам механики. Эйлером был создан фундаментальный труд по аналитической динамике точки и твердого тела. С большой ясностью и полнотой Эйлер разработал задачи о движении твердого тела около неподвижной точки. Полученные Эйлером в этих задачах формулы, известные под названием эйлеровых, вошли во все современные курсы теоретической механики. Эйлера следует считать и основателем гидродинамики, так как он впервые вывел основные уравнения движения идеальной жидкости.  [c.7]


Смотреть страницы где упоминается термин Приложение к динамике идеальной жидкости : [c.62]    [c.504]    [c.4]   
Смотреть главы в:

Динамические системы-3  -> Приложение к динамике идеальной жидкости



ПОИСК



Динамика жидкости

Динамика идеальной жидкости

Жидкость идеальная



© 2025 Mash-xxl.info Реклама на сайте