Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Постановка задачи теории упругости в напряжениях деформаций

Лля того чтобы дать постановку задачи теории упругости в напряжениях, нужно выразить условия совместности деформаций (1.22) гл. 1  [c.78]

В учебнике излагаются теория напряжений в деформаций, основные соотношения, принципы и теоремы теории упругости, постановка и методы решения задач теории упругости, плоская задача теории упругости в декартовых и полярных координатах, теория изгиба и устойчивости тонких пластин (прямоугольных и круглых в плане), приближенные методы решения задач теории упругости (вариационные методы, метод сеток, метод конечных элементов), основы теории тонких упругих (безмоментных и пологих) оболочек, основы теории пластичности. Большое внимание уделено приложениям, ра-вобрано большое количество задач. В конце каждой главы приведены вопросы для самопроверки в задачи для тренировки, к части из которых даны решения.  [c.2]


Если объемные силы и температура как функции координат известны и на границе заданы перемещения, то из уравнений (5.1) с известными начальными данными можно найти перемещения внутренних точек тела и таким образом решить задачу теории упругости в перемещениях. Напряжения после этого вычисляются с помощью закона Гука. Уравнения совместности деформаций при такой постановке задачи удовлетворяются автоматически, так как формулы, выражающие деформации через перемещения, представляют собой, как известно, общее решение уравнений совместности.  [c.343]

Выводя вариационные принципы в этой главе, допустим, что зависимости напряжения — деформации не изменяются в процессе нагружения. Это допущение ограничивает применимость деформационной теории процессами, в которых нагрузка возрастает монотонно. Следовательно, оно приводит к тому, что деформационная теория пластичности становится неотличимой от нелинейной теории упругости, обсуждаемой в гл. 3, за исключением материалов, которые подчиняются условию текучести. Более того, будем предполагать, что деформации малы, и приведем постановку задачи теории пластичности в следующем виде )  [c.316]

В математическом решении, из которого затем получены асимптотические формулы для напряжений, граничные условия относились не к деформированной поверхности разреза, а к исходной на оси х. Кроме того, у конца треш,ины в результате деформации возникают значительные изменения углов наклона свободных поверхностей, т. е. деформации соизмеримы с единицей. Для точной постановки задачи теории упругости требуется учет больших деформаций и соблюдение граничных условий на текуш,ей поверхности разреза, т. е. на той, которая получается при деформации тела внешними нагрузками. При этом задача становится нелинейной и довольно сложной. Образую-ш,ийся в конце разреза малый, но конечный радиус кривизны возрастает с ростом величины внешних нагрузок и обеспечивает ограниченные (хотя и большие) напряжения (см. здесь гл. 4). Наконец, имитация треш,ины тонким математическим разрезом или тонким эллиптическим вырезом также вносит различие в напряженное со-  [c.103]

Однако, при использовании локального энергетического критерия (в котором объем, выделяемый вокруг конца трещины, сколь угодно мал) следует решать асимптотическую задачу в более точной, нелинейной постановке, удовлетворяя граничным условиям на деформированной поверхности конца разреза [166]. При этом сингулярность решения задачи теории упругости пропадает, напряжения и градиенты у закругленного в результате деформации края трещины ограничены. Например, из работы [315] имеем  [c.203]


Возможна также постановка обратной задачи теории упругости. В этом случае задаются напряжения, деформации или перемещения для всех внутренних точек тела как функции координат. Требуется определить условия на границах тела, которым соответствует заданное напряженно-деформированное состояние.  [c.35]

Суть этой задачи состоит в том, что требуется найти поле напряжений и деформаций в призматическом стержне произвольного поперечного сечения под действием любых сил, распределенных по поверхностям обоих его торцов (каковые считаются перпендикулярными оси стержня). Боковая поверхность стержня принимается свободной от нагрузки объемными силами пренебрегают. Данная задача теории упругости (в указанной выше общей ее постановке) весьма трудна и до сих пор еще не решена. К ее решению можно, однако, подойти с позиций принципа Сен-Венана.  [c.238]

После установления Навье в 1821 г. основных уравнений и создания Коши теории напряжений и деформаций важнейшее значение для развития теории упругости имели исследования Сен-Венана. В его классических работах по теории кручения и изгиба на основе общих уравнений теории упругости дано решение задач кручения и изгиба призматических брусьев. В этих исследованиях Сен-Венан создал полуобратный метод решения задач теории упругости, сформулировал знаменитый принцип Сен-Венана , дающий возможность получить решение задач теории упругости. С тех пор было затрачено много усилий на развитие теории упругости и ее приложений, доказан ряд общих теорем, предложены общие методы интегрирования дифференциальных уравнений равновесия и движения, решено много частных задач, представляющих принципиальный интерес. Развитие новых областей техники требует более глубокого и широкого изучения теории упругости. Большие скорости вызывают необходимость постановки и решения сложных вибрационных проблем. Легкие металлические конструкции привлекают серьезное внимание к вопросу упругой устойчивости. Концентрация напряжений вызывает опасные последствия, поэтому пренебрегать ею рискованно.  [c.5]

Постановка граничных условий для уравнений Ламе особенно проста, когда речь идет о первой основной задаче теории упругости, т. е. когда на поверхности задано и, = Ui. Если на границе заданы усилия, то следует по закону Гука выразить напряжения через деформации, т. е. первые производные от перемещений, и внести в граничные условия (8.4.6). Таким образом, на границе оказываются заданными некоторые линейные комбинации из первых производных функций ш, которые мы выписывать не будем.  [c.249]

Постановку краевых задач теории многократного наложения больших деформаций рассмотрим на примере задач о последовательном или одновременном образовании концентраторов напряжений (отверстий) в предварительно напряженном бесконечно протяженном нелинейно-упругом или вязкоупругом теле. При этом в случае одновременного образования форма отверстий может быть задана как в момент их образования, так и в конечном состоянии (для вязкоупругого материала — в некоторый заданный момент времени). В случае последовательного образования отверстий предполагается, что форма каждого отверстия задана в момент образования этого отверстия.  [c.37]

Главной задачей этой школы было установление непосредственной связи между напряжениями и обусловленными ими деформациями. Такая постановки задачи оказалась необходимой в связи с весьма существенными затруднениями учета деформационного упрочнения и упругих слагающих деформации методами динамических теорий пластичности.  [c.19]

В заключение следует указать, что поскольку для следующих закону Гука анизотропных тел самого произвольного типа удельная энергия деформации является однородной квадратичной формой от компонентов деформации, для них остается справедливым ряд положений, доказанных ранее для линейно упругих изотропных тел. В частности, остается справедливой формула (12.6) и вытекающая из нее теорема Клапейрона (13.4), а также обобщение этой теоремы (13.3). Остается справедливой и теорема взаимности работ (что было показано в 15) и сохраняются в силе рассуждения при доказательстве теоремы единственности. Рассмотрение задач теории упругости анизотропных тел (в классической постановке) производится аналогично случаю изотропных тел, только при выражении напряжений через деформации приходится пользоваться не формулами (6.2) или (6.6), а более сложными линейными зависимостями (19.2), причем в последних (оставаясь в рамках допущений классической теории упругости) надо положить В дальнейшем заниматься  [c.227]


Обратной постановкой задачи в теории упругости (обратной задачей) называют такую, когда по некоторым известным функциям (функциям напряжений, деформаций или смещений), справедливым для всей области тела, находят ту нагрузку на поверхности тела и вообще условия на поверхности, которым соответствуют заданные или известные функции.  [c.27]

В работе изучается напряженное состояние брусьев в геометрически нелинейной постановке, но с линейной зависимостью между деформациями и напряжениями, т. е. рассматриваемая задача физически линейная, а геометрически нелинейная. Решение задачи сводится к граничным задачам плоской теории упругости (одной бигармонической функции) в области поперечного сечения бруса. Рассматривается частный пример, когда область поперечного сечения является кругом. В работе приведены. явные выражения компонентов напряжений и деформации для круглого сечения.  [c.433]

В классической линейной теории упругости принята следующая постановка задачи уравнения равновесия формулируются для недеформированного состояния, компоненты деформаций связаны с перемещениями линейными зависимостями, а материал подчиняется закону Гука, т. е. напряжения и деформации связаны между собой линейными зависимостями. В этом случае задача определения напряженно-деформированного состояния сводится к линейным дифференциальным уравнениям, всегда имеющим единственное решение. Нетрудно показать, что напряженно-деформированное состояние, соответствующее этому единственному решению, является устойчивым.  [c.77]

Предположим, что материал несжимаем, упругими и пластическими деформациями по сравнению с деформациями ползучести можно пренебречь. В основу решения положим теорию упрочнения в формулировке (2.100). Результаты решения задачи в такой постановке приведены в [73]. Вначале предположим справедливым закон трения Кулона. Примем допущение об однородности напряженного и деформированного состояний по высоте заготовки, а также гипотезу плоских сечений.  [c.88]

Главное, что будет излагаться в этой книге, по существу, состоит из трех основных частей 1) основные понятия о перемещениях, внутренних напряжениях, деформациях и работе внутренних сил, а также о процессе нагружения малого элемента твердого тела 2) основные механические свойства твердых тел, такие, как упругость и идеальная пластичность, текучесть, ползучесть и релаксация, вязкость и динамическое сопротивление, усталость и разрушение 3) основные кинематические и геометрические гипотезы, упрощающие математическую постановку задач о напряжениях, деформациях, перемещениях и разрушениях твердых тел при различных внешних воздействиях, а также основные уравнения и методы решения задач о деформации и прочности тел. Методы сопротивления материалов отличаются от более строгих методов теории упругости и пластичности в основном введением ряда упрощающих предположений кинематического и геометрического характера и, тем не менее, в большинстве случаев оказываются достаточно точными.  [c.12]

Допущения связанные с малостью деформаций. Предположение малости деформации (например, при использовании линейной теории упругости) означает, что возможна суперпозиция деформаций, т. е. что параметры напряженно-деформированного состояния тела от суммарного внешнего воздействия на тело определяются как сумма параметров напряженно-деформированного состояния тела от каждого воздействия на него. А это позволяет сделать суш,ественные упрош,ения в постановке задачи. Используя такой подход, мы можем не учитывать при постановке задачи  [c.258]

В ЭТОЙ главе кратко изложены основные соотношения теории многократного наложения больших упругих и вязкоупругих деформаций и общая постановка краевых задач этой теории. В теории многократного наложения больших деформаций напряженно-деформированное состояние может быть описано не только в координатах начального и конечного (текущего) состояний, но и в координатах одного из нескольких промежуточных состояний. Это особенно важно при рассмотрении задач с последовательно изменяющимися границами и граничными усилиями.  [c.23]

Решение задачи об определении контактных напряжений и деформаций не может быть дано методами сопротивления материалов результаты, полученные методами теории упругости, для некоторых частных случаев контакта приведены в следующем параграфе. Здесь остановимся на самой постановке задачи и допущениях, положенных в основу ее решения.  [c.435]

Принятые в дисциплине сопротивление материалов пластическому деформированию методы постановки задач существенно отличаются от таковых в теории упругости и теории малых упругопластических деформаций. Так, при анализе малых упругих или упруго-пластических деформаций основная задача, как известно, состоит в том, чтобы определить напряженно-деформированное состояние данного физического тела, форма, размеры и механические характеристики которого заранее известны, под действием заданной системы внешних сил. В этих задачах незначительные изменения формы и размеров рассматриваемого тела являются искомыми величинами, а внешние силы, под действием которых происходят эти изменения, являются заданными, заранее известными величинами.  [c.189]

Подчеркнем, что, как утверждалось выше, при произвольных напряжениях а( ) и т( ) выражениям (5.9) и (5.10) не соответствуют действительные перемещения точек оболочки, поскольку уравнение неразрывности деформаций (5.8) будет нарушено. Однако если эти выражения в силу условий (5.11) отождествить с действительными перемещениями граничных точек упругого шара, то тем самым будет наложено ограничение на контактные напряжения a(fl ), т(А ) и в определенном смысле будет удовлетворено уравнение неразрывности (совместимости) деформаций оболочки. В конечном итоге можно считать, что последнее уравнение вследствие указанной трактовки условий контакта (5.11) окажется нарушенным в меньшей степени. Придерживаясь этой точки зрения, примем такую постановку задачи, когда выражения (5.9) и (5.10), определяемые по безмоментной теории тонкой сферической оболочки, в силу условий (5.11) в зоне контакта отождествляются с действительными перемещениями граничной поверхности упругого весомого шара.  [c.324]


Расчеты нелинейно-упругого напряженного состояния оболочки выполнены согласно второму варианту теории (2) на сетке Кг х К ) — (161 х 21) при дз — = 10 МПа с относительной точностью решения нелинейных задач 10 по максимальным деформациям. Результаты расчетов в нелинейной (ИЗ) и линейной (ЛЗ) постановках задач представлены в виде распределения окружных напряжений (Т (в МПа) (табл. 4) в трех точках по толщине (5з = аз/к = 0 0,5) на контуре (г = Го) отверстия цилиндрической оболочки в сечениях г = 0° и = 90°.  [c.535]

Постановка вопроса. Из опыта известно, что твердые тела под влиянием внешних сил претерпевают некоторые изменения формы, исчезающие при постепенном прекращении действия сил внезапное же прекращение действия сил вызывает колебательные движения. Задачей математической теории упругости является точный количественный учет возникших таким путем изменений геометрической формы и механического состояния тела. Пред нами стоит, таким образом, вопрос об определении деформаций и напряженного состояния твердого тела, если известны как действующие на него внешние силы так и те условия закрепления, которым оно подчинено. Метод, которым мы руководствуемся, приступая к ре шению этих задач, есть обычный метод математической физики. В первую очередь определяются механические величины, характеризующие физическую картину напряженного состояния материала затем, геометрические величины, определяющие деформацию тела. Зависимость между механическими и геометрическими величинами определяется из опыта их математическая формулировка приводит нас к так называемым основным уравнениям теории упругости, иными словами, к уравнениям с часТными производными, интегрирование которых отвечает в каждом отдельном случае на поставленные выше вопросы. Кроме составления этих основных уравнений, главным содержанием математической теории упругости является еще теория их интегрирования.  [c.5]

Механическая и математическая постановка задачи о кручении тела вращения. При рассмотрении задачи об осесимметричной деформации тела вращения в цилиндрической системе координат г, ф, г основные уравнения линейной теории упругости распадаются на две независимые системы. Первая система служит для определения перемещений и и т и напряжений о,, Ог, и Гп в случае, когда тело вращения, деформируясь, не скручивается. Вторая система служит для определения перемещения V и касательных напряжений Тг и Гщ в случае чистого кручения тел вращения.  [c.246]

Мы пришли, таким образом, к своеобразной постановке задачи теории упругости, когда напряжения и деформации существуют в теле не как результат приложения к нему внешней нагрузки, а за счет, так сказать, самонагрзгжения тела, осуществляемого путем его предварительного деформирования и взаимного соединения затем отдельных участков его поверхности.  [c.184]

Необходимо подчеркнуть, что теорема единственности доказана нами для геометрически линейной постановки задачи теории упругости. Если условие (8.4.8) не выполнено, единственности может не существовать. Это может означать одно из двух о либо принятая модель сплошной среды некорректна, либо материал неустойчив. При- Рис. 8.4.1 мером такого неустойчивого материала служит материал с падающей диаграммой растяжения, подобной изображенной на рис. 8.4.1. Видно непосредственно, что одному п тому же значению напряжения на этой диаграмме соответствуют два разных значения деформации. Вопрос о действительном существовании таких неустойчивых упругих материалов остается открытым диаграммы вида изображенной на рис. 8.4.1 наблюдаются при описании пластического поведения и представляют зависшюсть условного напряжения, т. е. растягивающей силы от деформации. Пример неустойчивости такого рода был рассмотрен в 4.13. Для геометрически нелинейных систем теорема единственности несправедлива нарушение единственности соответствует потере устойчивости упругого тела. Рассмотрению подобного рода задач в элементарной постановке была посвящена вся четвертая глава.  [c.247]

Как уже отмечалось, решение задач теории упругости в прямой постановке (в перемещениях либо напряжениях) представляет очень большие сложности и общих методов решеипя задач в такой постановке пока не существует, Обратная постановка задач часто не соответствует потребностям практики, так как жизнь обычно ставит задачи в прямой постановке. Прп этом известны граничные условия, и требуется определить поло напряжений, деформаций п перемещений, соответствующих заданным граничным условиям.  [c.58]

Общая постановка задач о трещинах продольного сдвига, где распределению смещений соответствует случай так называемой антиплоской деформации (напряженное состояние в бесконечном цилиндрическом теле, возникающее под действием постоянных нагрузок, направленных вдоль образующих цилиндра), рассмотрена в работе Г. И. Баренблатта и Г. П. Черепанова (1961). В отличие от трещин нормального разрыва и трепщн поперечного сдвига, в этом случае возможно получить эффективные точные решения многих задач, так как единственное отличное от нуля смещение w удовлетворяет в этом случае уравнению Лапласа. Здесь возможно непосредственное применение широко развитых методов и результатов гидродинамики благодаря очевидной аналогии задач теории упругости для антиплоской деформации и задач плоской гидродинамики. В указанной работе были получены точные решения задач для бесконечного тела, содержащего круговое отверстие с одной или двумя трещинами, нагруженного на бесконечности постоянным касательным напряжением (аналог задач О. Л. Бови для трещин нормального разрыва),и смешанной задачи для изолированной прямолинейной трещины, на части которой задано постоянное смещение (аналог задачи о расклинивании клином конечной длины, рассмотренной И. А. Маркузоном. в 1961 г.). Здесь же исследованы задачи взаимодействия бесконечной системы одинаковых трещин, расположенных вдоль действительной оси, и случай, когда равные трещины расположены в виде вертикальной однорядной решетки. При рассмотрении задачи о развитии криволинейных трещин продольного сдвига, а также трепщн, форма которых мало отличается от прямолинейной или круговой, авторы использовали гипотезу о том, что развитие криволинейной трещины продольного сдвига происходит по направлению максималь-  [c.386]

Рассмотрим плоскую задачу теории упругости для кусочнооднородной среды. Пусть имеется многосвязная область D, ограниченная гладкими контурами L, (/ = 0, 1, 2,. ... т), из которых все контуры Lj (/ 0) расположены вне друг друга, а контур 0 охватывает все остальные. Область D заполнена упругой средой с постоянными Яо и цо, а области )/ (ограниченные контурами Lj) средами с постоянными X/ и ц/ (индекс буквы соответствует индексу области). Далее, для удобства будем использовать постоянные х/, различные для плоской деформации и плоского напряженного состояния (см. 4 гл. III). На границах раздела сред следует, как обычно, задавать. те или иные условия сопряжения. Например, такой известной технологической операции, как посадка с натягом, соответствует задание скачка вектора смещений 6/(0- В случае же плоско-напряженной деформации имеет смысл постановка таких условий, при которых внешние напряжения пропорциональны (в случае, когда толщины пластинки и включений различны )).  [c.413]


В первых пяти главах учебника рассматриваются общие вопросы теории упругости (теория напряжений и деформаций, основные соотношения и теоремы, постановка и лгетоды решения задач теории упругости, плоская задача в декартовых координатах, плоская задача в полярных координатах). В шестой и седьмой главах излагаются основные уравнения теории тонких пластин (гибких и жестких) и некоторые задачи изгиба и устойчивости пластин. Восьмая глава учебника посвящена рассмотрению приближенных методов решения задач прикладной теории упругости (вариационных, конечных разностей, конечных элементов). В девятой главе рассматриваются основы расчета тонких упругих оболочек, причем основное внимание уделено вопросам расчета безмоментных и пологих оболочек. В десятой главе изучаются основы теории пластичности. Здесь рассмотрена и теория расчета конструкций по предельнол1у состоянию.  [c.6]

Возможности использования теории упругости в расчетах деталей машин заметно расширились в последние годы в связи с развитием численных методов решения задач, позволяющих достаточно просто описать геометрическую форму детали (обычно очень сложяую). С помощью этих методов уже ныне многие практически важные контактные задачи могут быть решены в достаточно точной постановке, а проблемы расчета напряжений и деформаций в деталях машин в условиях упругости при известных внешних нагрузках уже практически не существует.  [c.115]

Теоретической основой постановки экспериментальных исследований для многочисленных механизмов, работающих в масляной среде, является контактно-гидродинамическая теория смазки. Контактно-гидродинамический режим смазки является типичным для условий работы зубчатых и фрикционных передач, подшипников, катков и других механизмов. Основная задача теории заключается в определении контактных напряжений, геометрии смазочного слоя и температур при совместном рассмотрении уравнений, описывающих течение смазки, упругую деформацию тел и тепловые процессы, протекающие в смазке и твердых телах. Течение смазки в зазоре описывается уравнениями, характеризующими количество движения, сплошность, сохранение энергии и состояние. Деформация тел определяется основными уравнениями теории упругости. Температурные зависимости находятся из энергетического уравнения с использованием соответствующих краевых условий. Плоская контактно-гидродинамическая задача теории смазки решалась с учетом следующих допущений деформация ци-лидров рассматривалась как деформация полуплоскостей упругие деформации от поверхностного сдвига считались малыми для анализа течения смазки использовалось уравнение Рейнольдса при вязкости смазки, явля-  [c.165]

Рассматриваемая в данной главе стохастическая краевая задача теории упругости является основой статистической механики композитов со случайной структурой. Начало систематическому изучению этой задачи положено работой И.М. Лифшица и Л.Н. Розенцвейга [160] применительно к поликристаллам, в дальнейшем многочисленные результаты были обобщены в монографиях [62, 130, 162, 172, 247, 296, 320 и др.]. При единой практически для всех работ в этом направлении постановке задачи, связанной с представлением упругих модулей микронеоднородной среды как случайных статистически однородных функций координат и выбором граничных условий в виде, обеспечивающим однородность макроскопических деформаций, а также общности подхода к решению с использованием метода функции 1 ина уравнений теории упругости в перемещениях для неограниченной изотропной или анизотропной среды существуют различия в получаемых результатах для эффективных свойств композитов и, в большей мере, для оценки полей напряжений и деформаций в компонентах композитов. Это обусловлено статистической нелинейностью исследуемой задачи и построением приближенных решений, которые неодинаково адекватны физической модели композита, в частности, его структуре.  [c.39]

Для обеспечения равенств в правую часть первого неравенства (13) следует добавить мощности, расходуемые на необратимые процессы. Физическое объяснение появлению потоков энергии разных знаков в углы клина опирается на рассмотрение клина с заглаженными углами (напряжения непрерывны в точках отрыва), для которого нормальные к поверхности клина напряжения будут совершать работу разных знаков над средой около передней и задней точкек отрыва, а клин будет испытывать лобовое сопротивление. Величина Q пропорциональна квадрату деформации, т.е. относится к разряду величин, пренебрегаемых при постановке линейной задачи теории упругости и определяется апостериори. По этой причине остается справедливым утверждение о равенстве нулю главного вектора внешних сил, приложенных к границе. Напряжения на продолжении трещины имеют асимптотику (ж —а + О, у = 0)  [c.660]

При наличии в теле трещины для суждения о характере ее распространения и тем самым для суждения о прочности также необходимо знание напряженного состояния. Задача онределения нанряжешюго состояния около конца трещины отличается от обычных задач онределения концентрации напряжений тем, что геометрически линеаризованная постановка краевых условий и физически линейная теория упругости приводят к бесконечным напряжениям и бесконечным градиентам напряжений в конце тонкого разреза. При этом понятие коэффициента концентрации напряжений теряет смысл. Разумеется, мол<ио было бы пытаться сохранить числовое безразмерное выражение коэффициента концентрации напряжений посредством учета сложных детальных особенностей деформации материала у конца разреза. Однако для решения задач о трещине совсем не обязательно интересоваться, детальными процессами, идущими в весьма малой окрестности конца разреза [155, 168]. Достаточно знать характер и интенсивность напряженного состояния в области, окружающей конец разреза вместе с малым объемом, где сосредоточен механизм разрушения (рис. 12.1). Это означает отказ от использования коэффициента концентрации напряжений в пользу a HMntoTH4e Koro  [c.79]

Ггей+Г охарактеризуем напряженное состояние среды функцией Оъ. = 1(х1, Р ), где Оэ.— эквивалентные напряжения в точках I детали, возникшие в результате действия сил Ру, / — функция, достижение которой в точке Хгей+Г значения [о] означает, что в данной точке материал находится в предельном состоянии. Под [а] в зависимости от постановки задачи проектирования выступают значения предела текучести, предела прочности и т. д. Деформации материала являются упругими, если в соответствующих областях выполняется неравенство сГэ -<[о]. Нарушение этого неравенства трактуется в различных теориях как появление зон текучести, областей неупругих деформаций, разрыва сплошности материала и др.  [c.108]

Изотропными упругими средами будем называть среды, в которых тензоры деформации и напряжений соосны (п. 1.12). Кубик, выделенный из такой среды, одинаково деформируется под действием приложенных сил при любой ориентации ребер. Из теоремы Кейли — Гамильтона следует, что два соосных тензора связываются Друг с другом квадратичной зависимостью вида (I. 12.4). Одним из затруднений нелинейной теории упругости является указание той из мер деформации, которой должен быть сопоставлен тензор напряжения. В линейной постановке задачи оно отпадает, а квадратичная зависимость заменяется линейной вида  [c.103]

Остановимся кратко на содержании главы. В разд. 2,2 на основе принципа виртуальных перемещений Лагранжа выведены основные соотношения подкрепленной ребрами криволинейной панели. В разд. 22.3 выделено элементарное решение Сопротивления материалов. Преобразование исходных уравнений для плоской панели к системе разрешающих уравнений содержится в разд. 2.4. Далее в разд. 2.5 изучено напряженно-деформированное состояние симметрично подкрепленной панели. Рассмотрена панель как конечной, так и бесконечной длины. Решение представлено в виде быстросходящихся рядов, даны результаты численных расчетов и программы расчета. В разд. 2.6 изучается эффект подкрепления панели на торце дополнительным ребром, работающим только иа изгиб. В разд. 2.7, как и в разд. 2.5, рассмотрена симметрично подкрепленная панель, но при кососимметрнчиом загруженин ребер парой сил. Решение отличается от полученного в разд. 2.5, так как требуется учитывать изгиб панели в ее плоскости. Решение доведено до числа. В разд. 2.8 рассмотрены панели с двумя ребрами разной жесткости для случа.я, когда поперечное перемещение панелн равно нулю или отлично от нуля. В разд. 2.9 на примере бесконечной пластины с полубесконечным ребром дается оценка погрешности решения путем введения гипотезы отсутствия поперечной деформации пластины. Эта оценка выполнена, путем срав неиня решения на основе упомянутой гипотезы с точным решением, полученным иа основе уравнений плоской теории упругости. Результаты этого раздела опубликованы Э. И. Грнголюком и В. М. Толкачевым [5]. В этой работе дана также общая постановка задач включения на основе гипотезы отсутствия поперечной деформации, рассмотрены задачи для пластины и ребра конечных размеров, для полубесконечной пластины с полубесконечным ребром, а также задача для защемленной по боковым сторонам полубесконечной полосы, нагруженной на торце постоянной распределенной нормальной нагрузкой.  [c.68]


Рассмотрим данную задачу для плоского случая в рамках теории многократного наложения больших деформаций [120]. Укрупненная постановка задачи приведена в п. 4.4.5. Повторим ее здесь еш,е раз. Пусть в нелинейно-упругом теле, находяш,емся в начальном состоянии, под воздействием внешних усилий возникли большие плоские статические деформации и напряжения. Тело перешло в первое промежуточное состояние. Далее в этом теле мысленно намечается замкнутая поверхность, и часть тела, ограниченная этой поверхностью, удаляется, а ее действие на оставшуюся часть заменяется по принципу освобождаемости от связей силами, распределенными по этой поверхности. Далее эти силы, перешедшие в разряд внешних, квазистатически (например, изотермически) уменьшаются до нуля. Это вызывает возникновение больших (по крайней мере, в окрестности граничной поверхности) деформаций и напряжений, которые накладываются на большие уже имеюш,иеся в теле (начальные) деформации и напряжения. Тело перешло в конечное состояние. Естественно, изменилась и форма образованной граничной поверхности (форма контура повре-  [c.323]

Хотя рассмотренные выше задачи о прочности эластомеров, изменении их свойств в процессе нагружения полностью описываются с помощью аппарата теории многократного наложения больших деформаций, решать конкретные задачи данного типа крайне сложно. Одним из подходов может быть следующий. Считать, что микровключения (области, в которых изменились свойства материала) возникают мгновенно, но их возникновение не вызывает динамических эффектов 116, 120]. Считать, что раскрытие (возникновение) микропор также происходит мгновенно в смысле [120, 127]. Тогда постановка задачи может быть следующая. Пусть в нелинейно-упругом теле, находящемся в начальном состоянии, под воздействием внешних нагрузок возникли большие деформации и напряжения. Тело перешло в первое промежуточное состояние. Далее в этом теле мысленно намечается, по принятому исследователем предположению, несколько замкнутых поверхностей (будущие границы включений). Внутри частей тела, ограниченных этими поверхностями, скачкообразно меняются механические свойства материала. В результате внутри образовавшихся включений и в некоторой их окрестности возникают большие деформации, которые накладываются на большие начальные деформации, уже имеющиеся в теле. Тело переходит во второе промежуточное состояние. Изменяется и форма граничной поверхности включения. Причем форму включений можно либо наметить в первом промежуточном состоянии, либо считать заданной во втором промежуточном состоянии (это две разные задачи). Затем данная процедура может повториться при образовании новой группы включений.  [c.330]

В общем случае изучение механических процессов в начально-деформированных телах необходимо проводить в рамках нелинейной теории упругости. Однако, множество процессов, происходящих в начально-деформированных телах, можно рассматривать в рамках линеаризованной теории наложения малых деформаций (возмущений) на конечные деформации (начальное состояние) в предположении, что возмущения малы. Традиционно [30, 41, 42] различают три состояния тела естественное (ненапряженное) состояние (ЕС), начально-деформированное состояние (НДС) и актуальное (возмущенное по отношению к НДС) состояние. При этом особое значение приобретает выбор системы координат, которая может быть связана либо с естественной конфигурацией (система координат Лагранжа или материальная система координат), либо с актуальной конфигурацией (система координат Эйлера) [30, 41, 42]. Линеаризованные уравнения движения существенным образом зависят как от выбора системы координат, так и от выбора определяющих соотношений, поскольку имеет место возможность определения напряженного состояния различными тензорами (Коши, Пиола, Кирхгофа и т.д.) и множественность их представления через меры деформации (Коши-Грина, Фингера, Альманзи) или градиент места. Более детально с особенностями постановки задач для преднапряженных тел можно ознакомиться в монографиях А. И. Лурье [41], А. Лява [42] и А. Н. Гузя [30].  [c.290]

Коши ( au hy) Огюстен Луи (1789 - 1857) — известный французский математик, один и.э основоположников теории аналитических функций. Окончил Политехническую школу (1807 г.), Школу дорог и мостов (1810 г.) в Париже. В 1810 1813 гг. работал инженером на постройке порта в Шербуре. С 1816 г. профессор Политехнической школы, Сорбонны, Колеж де Франс (1848 - 1857 гг.). Написал более 700 фундаментальных работ по теории функций, математическому анализу, математической физике. Создал теорию функцнй комп-лексного переменного. Заложил основы теории сходимости рядов. Ему принадлежит постановка одной из ос новных задач теории дифференциальных уравнений, метод интегрирования уравнений с частными произвол ными первого порядка. В теории упругости ввел понятие напряжения, расширил понятие деформации и ввел соотношения между компонентами тензора напряжений и тензора деформаций для изотропного тела. Исследовал задачи о деформации стержней, в частности задачу о кручении. В оптике развил математические основания теории Френеля и дисперсии.  [c.242]


Смотреть страницы где упоминается термин Постановка задачи теории упругости в напряжениях деформаций : [c.31]    [c.73]    [c.79]    [c.332]   
Теория упругости и пластичности (2002) -- [ c.165 ]



ПОИСК



597 — Деформации и напряжения

656 —• Постановка задачи

Деформация упругая

Задача в напряжениях

Задача теории упругости в напряжения

Задача упругости

Задачи теории упругости

К постановке зг ачи

НАПРЯЖЕНИЯ И ДЕФОРМАЦИИ Теория напряжений

Напряжения упругие

Постановка задач теории упругости в напряжениях

Постановка задачи теории упругости

Постановка задачи теории упругости деформаций

Теория деформаций

Теория напряжений

Теория напряжений и деформаций

Теория упругости

Упругость Теория напряжений и деформаций

Упругость Теория — см Теория упругости

Упругость напряжение



© 2025 Mash-xxl.info Реклама на сайте