Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Постановка задач теории упругости в напряжениях

Шесть уравнений (6.31) называются уравнениями совместности Бельтрами—Мичелла. Решение задач этого типа (постановка задачи теории упругости в напряжениях) состоит в определении напряжений aij, которые удовлетворяют уравнениям равновесия  [c.118]

Постановка задач теории упругости в напряжениях 343  [c.564]

Постановка задачи теории упругости в напряжениях  [c.340]


Лля того чтобы дать постановку задачи теории упругости в напряжениях, нужно выразить условия совместности деформаций (1.22) гл. 1  [c.78]

Как следует из 8 гл. 1, можно дать и другую постановку задачи теории упругости в напряжениях. Для изотропной среды нужно решить шесть уравнений относительно шести независимых компонент тензора напряжений  [c.79]

Постановка задач теории упругости в напряжениях (уравнения Бельтрами-Мичелла). .......................58  [c.3]

Постановка задач теории упругости в напряжениях (уравнения Бельтрами-Мичелла)  [c.58]

Постановка задачи теории упругости в напряжениях и приближенный метод ее решения  [c.76]

Наиболее удобно использовать постановку задачи теории упругости в перемещениях, если на границе тела заданы непосредственно перемещения. Если же граничные условия записаны в напряжениях, то эти условия с помощью закона Гука (16.3, а) и соотношений Коши (16.2) следует преобразовать к такому виду, что они будут включать в себя перемещения. При заданных на границах нагрузках с учетом указанных преобразований граничные условия имеют вид  [c.339]

Сформулируем теперь задачу теории упругости в напряжениях для неоднородного тела (композита) в классической постановке  [c.111]

В учебнике излагаются теория напряжений в деформаций, основные соотношения, принципы и теоремы теории упругости, постановка и методы решения задач теории упругости, плоская задача теории упругости в декартовых и полярных координатах, теория изгиба и устойчивости тонких пластин (прямоугольных и круглых в плане), приближенные методы решения задач теории упругости (вариационные методы, метод сеток, метод конечных элементов), основы теории тонких упругих (безмоментных и пологих) оболочек, основы теории пластичности. Большое внимание уделено приложениям, ра-вобрано большое количество задач. В конце каждой главы приведены вопросы для самопроверки в задачи для тренировки, к части из которых даны решения.  [c.2]

Несмотря на то, что общий план решения задач теории упругости в перемещениях или напряжениях достаточно ясен, реализация этого плана представляет весьма большие трудности, и в общем виде решить эти уравнения пока не представляется возможным. Лишь для простейших случаев удается получить решение задачи теории упругости, однако эти решения задач в самой общей постановке представляют очень большую ценность. Точные решения задач теории упругости являются своеобразным эталоном, с которым можно сравнивать приближенные решения, полученные в результате введения определенных дополнительных деформационных гипотез.  [c.56]


Если объемные силы и температура как функции координат известны и на границе заданы перемещения, то из уравнений (5.1) с известными начальными данными можно найти перемещения внутренних точек тела и таким образом решить задачу теории упругости в перемещениях. Напряжения после этого вычисляются с помощью закона Гука. Уравнения совместности деформаций при такой постановке задачи удовлетворяются автоматически, так как формулы, выражающие деформации через перемещения, представляют собой, как известно, общее решение уравнений совместности.  [c.343]

Согласно постановке краевой задачи необходимо найти в трехмерной области У, ограниченной замкнутой поверхностью S, тензорное поле Q (г), где г — радиус-вектор, определяющий положение произвольной точки внутри области V в глобальной криволинейной системе координат <7, где = 1, 2, 3 (рис. 2.26). При решении задачи теплопроводности Q = t тензор ранга О, температура, скаляр при решении задачи теории упругости в перемещениях Q- и - тензор ранга 1, вектор перемещений при решении этой же задачи в напряжениях Q = = о - тензор ранга 2, тензор напряжений.  [c.48]

В рассматриваемой постановке при = s G S представление (3.9) выражает собой преобразование вектора напряжений на L в вектор перемещений на S. При известных векторах ы (i) иы°(5) и ядре интегрального оператора система уравнений (3,5) является системой интегральных уравнений Фредгольма первого рода относительно неизвестного вектора напряжений Р/с(х) на L. Решение этой системы представляет собой обратную задачу теории упругости, в которой искомый вектор напряжений недоступен для прямого исследования, а изучается его косвенное проявление в виде вектора перемещений на доступном для измерений участке поверхности.  [c.65]

Выводя вариационные принципы в этой главе, допустим, что зависимости напряжения — деформации не изменяются в процессе нагружения. Это допущение ограничивает применимость деформационной теории процессами, в которых нагрузка возрастает монотонно. Следовательно, оно приводит к тому, что деформационная теория пластичности становится неотличимой от нелинейной теории упругости, обсуждаемой в гл. 3, за исключением материалов, которые подчиняются условию текучести. Более того, будем предполагать, что деформации малы, и приведем постановку задачи теории пластичности в следующем виде )  [c.316]

Располагая вариационными уравнениями Лагранжа и Кастильяно, можем теперь дать вариационную постановку задачи теории упругости если задача решается в п е р е м е -щ е н и я X, то требуется найти такие перемещения и, которые непрерывны внутри тела, удовлетворяют геометрическим граничным условиям и минимизируют полную потенциальную энергию системы V если задача решается в напряже-н и я X, то требуется найти такие напряжения а, которые удовлетворяют уравнениям равновесия и статическим граничным условиям и минимизируют полную дополнительную энергию системы У,  [c.43]

Методы граничных элементов, рассмотренные в предыдущих двух главах, предназначены для решения общих краевых задач теории упругости в плоской постановке. Как известно, такие задачи характеризуются плоской областью R, ограниченной контуром С. Область R может быть либо конечной (область внутри контура С), либо бесконечной (область вне контура С), как показано на рис. 6.1. В любом случае, с каждой точкой Q контура С мы связываем касательные и нормальные смещения и м и касательные и нормальные напряжения (или усилия) (Т и (Т . Эти величины задаются, как обычно, относительно локальной системы координат S, п точки Q  [c.111]

В математическом решении, из которого затем получены асимптотические формулы для напряжений, граничные условия относились не к деформированной поверхности разреза, а к исходной на оси х. Кроме того, у конца треш,ины в результате деформации возникают значительные изменения углов наклона свободных поверхностей, т. е. деформации соизмеримы с единицей. Для точной постановки задачи теории упругости требуется учет больших деформаций и соблюдение граничных условий на текуш,ей поверхности разреза, т. е. на той, которая получается при деформации тела внешними нагрузками. При этом задача становится нелинейной и довольно сложной. Образую-ш,ийся в конце разреза малый, но конечный радиус кривизны возрастает с ростом величины внешних нагрузок и обеспечивает ограниченные (хотя и большие) напряжения (см. здесь гл. 4). Наконец, имитация треш,ины тонким математическим разрезом или тонким эллиптическим вырезом также вносит различие в напряженное со-  [c.103]


Однако, при использовании локального энергетического критерия (в котором объем, выделяемый вокруг конца трещины, сколь угодно мал) следует решать асимптотическую задачу в более точной, нелинейной постановке, удовлетворяя граничным условиям на деформированной поверхности конца разреза [166]. При этом сингулярность решения задачи теории упругости пропадает, напряжения и градиенты у закругленного в результате деформации края трещины ограничены. Например, из работы [315] имеем  [c.203]

Возможна также постановка обратной задачи теории упругости. В этом случае задаются напряжения, деформации или перемещения для всех внутренних точек тела как функции координат. Требуется определить условия на границах тела, которым соответствует заданное напряженно-деформированное состояние.  [c.35]

Исследование динамических задач теории упругости в нелинейной постановке относится к одной из сложных и мало разработанных областей механики твердого деформируемого тела. В то же время существует целый класс задач, в которых на некоторое конечное напряженное статическое состояние накладываются малые динамические возмущения. Это позволяет в строгой постановке строить решение статической задачи, а динамику явлений, основываясь на малости динамических возмущений, исследовать на базе линеаризованных относительно некоторой малой окрестности напряженного состояния соотношений. При этом в полном объеме сохраняется присущая нелинейным задачам специфика постановки краевых задач в зависимости от используемой системы координат и используемых в процессе решения тензорных и векторных величин, описывающих напряженное состояние среды.  [c.34]

Суть этой задачи состоит в том, что требуется найти поле напряжений и деформаций в призматическом стержне произвольного поперечного сечения под действием любых сил, распределенных по поверхностям обоих его торцов (каковые считаются перпендикулярными оси стержня). Боковая поверхность стержня принимается свободной от нагрузки объемными силами пренебрегают. Данная задача теории упругости (в указанной выше общей ее постановке) весьма трудна и до сих пор еще не решена. К ее решению можно, однако, подойти с позиций принципа Сен-Венана.  [c.238]

Будем считать, что диск тонкий и вследствие этого напряжения по его толщине не изменяются, а в направлениях, параллельных оси, вообще отсутствуют (а = 0). В такой постановке задача об определении напряжений в диске относится к так называемой плоской задаче теории упругости, а именно — к задаче о плоском напряженном состоянии.  [c.460]

Прямой метод решения задач теории упругости, заключающийся в интегрировании основных уравнений при заданных граничных условиях, не всегда возможен. Обратный метод, примененный в гл. 7 для плоских задач, часто не соответствует практической постановке задачи. Сен-Венаном был предложен так называемый полуобратный метод решения задач теории упругости, который заключается в том, что часть перемещений и напряжений задается, а остальные неизвестные определяются из уравнений теории упругости при заданных граничных условиях. Полуобратный метод не является общим. Однако он оказался одним из самых эффективных методов решения задач теории упругости.  [c.172]

После установления Навье в 1821 г. основных уравнений и создания Коши теории напряжений и деформаций важнейшее значение для развития теории упругости имели исследования Сен-Венана. В его классических работах по теории кручения и изгиба на основе общих уравнений теории упругости дано решение задач кручения и изгиба призматических брусьев. В этих исследованиях Сен-Венан создал полуобратный метод решения задач теории упругости, сформулировал знаменитый принцип Сен-Венана , дающий возможность получить решение задач теории упругости. С тех пор было затрачено много усилий на развитие теории упругости и ее приложений, доказан ряд общих теорем, предложены общие методы интегрирования дифференциальных уравнений равновесия и движения, решено много частных задач, представляющих принципиальный интерес. Развитие новых областей техники требует более глубокого и широкого изучения теории упругости. Большие скорости вызывают необходимость постановки и решения сложных вибрационных проблем. Легкие металлические конструкции привлекают серьезное внимание к вопросу упругой устойчивости. Концентрация напряжений вызывает опасные последствия, поэтому пренебрегать ею рискованно.  [c.5]

В предыдущей главе были получены основные дифференциальные уравнения, описывающие поведение упругих сред при деформировании, а также найдены выражения для краевых значений вектора напряжений посредством компонент тензора напряжений или смещений. Для рещения конкретных физических задач необходимо теперь перейти к корректной математической постановке краевых и начальных задач теории упругости.  [c.242]

Постановка граничных условий для уравнений Ламе особенно проста, когда речь идет о первой основной задаче теории упругости, т. е. когда на поверхности задано и, = Ui. Если на границе заданы усилия, то следует по закону Гука выразить напряжения через деформации, т. е. первые производные от перемещений, и внести в граничные условия (8.4.6). Таким образом, на границе оказываются заданными некоторые линейные комбинации из первых производных функций ш, которые мы выписывать не будем.  [c.249]

Обращение компонент напряжений в бесконечность у конца щели не следует рассматривать как коренное противоречие результатов линейной теории упругости в этой задаче опытам. Наоборот, в рамках линейной теории упругости и сильно упрощенной схематизированной постановки задачи это обстоятельство является хорошим отражением действительности. Использование модели линейно упругого тела в этой задаче, так же как и широко используемые идеализации во многих других случаях (абсолютно твердое тело, поверхности сильных разрывов, явление удара и т. д.), связано с некоторыми эффектами, которые в той или иной степени противоречат опыту. Важно, однако, чтобы такие противоречия не имели существенного значения для распределения искомых величин в основной части тела и для получения нужных выводов при решении поставленных задач ).  [c.514]


Победря [38] предложил новую постановку задачи теории упругости в напряжениях, которая лучихе приспособлена для использования численных методов. В ней для отыскания пхести независимых компонентов тензора напряжепий регцается шесть обобгценных уравнений совместности. При этом граничных условий для них оказывается тоже шесть к трем условиям для напряжений (3.5) добавляются три уравнения равновесия (3.1), снесенные на границу области 9.  [c.60]

Наряду с двумя pa MOi репными постановками задач теории упругости (в перемещениях и в напряжениях) известны и другие подходы, когда в качестве искомых функций используются одновременно и перемещения и напряжения (смешанная постановка задачи) или другие, искусственно вводимые функции. Один из таких подходов будет рассмотрен в следующей главе.  [c.341]

Мы пришли, таким образом, к своеобразной постановке задачи теории упругости, когда напряжения и деформации существуют в теле не как результат приложения к нему внешней нагрузки, а за счет, так сказать, самонагрзгжения тела, осуществляемого путем его предварительного деформирования и взаимного соединения затем отдельных участков его поверхности.  [c.184]

Необходимо подчеркнуть, что теорема единственности доказана нами для геометрически линейной постановки задачи теории упругости. Если условие (8.4.8) не выполнено, единственности может не существовать. Это может означать одно из двух о либо принятая модель сплошной среды некорректна, либо материал неустойчив. При- Рис. 8.4.1 мером такого неустойчивого материала служит материал с падающей диаграммой растяжения, подобной изображенной на рис. 8.4.1. Видно непосредственно, что одному п тому же значению напряжения на этой диаграмме соответствуют два разных значения деформации. Вопрос о действительном существовании таких неустойчивых упругих материалов остается открытым диаграммы вида изображенной на рис. 8.4.1 наблюдаются при описании пластического поведения и представляют зависшюсть условного напряжения, т. е. растягивающей силы от деформации. Пример неустойчивости такого рода был рассмотрен в 4.13. Для геометрически нелинейных систем теорема единственности несправедлива нарушение единственности соответствует потере устойчивости упругого тела. Рассмотрению подобного рода задач в элементарной постановке была посвящена вся четвертая глава.  [c.247]

Как уже отмечалось, решение задач теории упругости в прямой постановке (в перемещениях либо напряжениях) представляет очень большие сложности и общих методов решеипя задач в такой постановке пока не существует, Обратная постановка задач часто не соответствует потребностям практики, так как жизнь обычно ставит задачи в прямой постановке. Прп этом известны граничные условия, и требуется определить поло напряжений, деформаций п перемещений, соответствующих заданным граничным условиям.  [c.58]

Подобное исследование приводит к необходимости решения краевой задачи теории упругости в сложной области, которое может быть осуществлено в точной постановке лишь для некоторых идеализированных случаев. Одной из традиционных идеализаций является предположение о неограниченности области, в которой расположены дефекты. Методы определения напряжённого состояния упругих тел вблизи внутренних концентраторов напряжений в виде систем трещин, разрезов и тонких включений изложены в монографиях Н.И. Мусхелишвили [107], Г.Я. Попова [115], Т.Н. Савина [125]. Случаи, когда дефекты расположены вблизи границы упругого тела, не могут рассматриваться в рамках упомянутой выше идеализации. В.В.Можаров-ским и В.Е. Старжинским [104] предложен метод решения плоской контактной задачи для полосы, дискретно спаянной с основанием (имеющей конечное число разрезов на границе их раздела). Система круговых отверстий, расположенных вблизи границы полуплоскости, рассмотрена в [125]. Однако алгоритмы решения задач, развитые в [104, 125] и некоторых других работах, достаточно сложны для конкретных реализаций (особенно в случае исследования смешанных задач теории упругости) и, кроме того,  [c.205]

В первой части книги (главы 17), предназначенной в основном для студентов, рассмотрены следующие разделы курса теория напряженно-деформированного состояния, физические соот-ногления и постановки задач теории упругости, вариационные принципы, контактная задача теории упругости, плоская задача, теория пластин, теории пластичности, линейная вязкоупругость. При этом используется аппарат тензорного исчисления в прямоугольной декартовой системе коордипат. Теоретический материал сопровождается типовыми примерами регпения учебных задач. Удобные для контроля и самоконтроля знаний студентов тестовые задания приведены в приложении.  [c.7]

Сделаем несколько замечаний, касающихся физической интерпретации функций, принадлежащих рассмотренным выше функциональным пространствам. При классической постановке задач теории упругости все величины, характеризующие напряженно-деформированное состояние, должны выражаться достаточно гладкими функциями [299, 373, 505, 571]. Функциональные пространства гладких функций имеют достаточно] простой физический смысл. Физические величины, описываемые такими функциями, непрерывны и обладают непрерывными производными до некоторого порядка. К сожалению, в большинстве встречающихся на практике случаев это требование не выполняется и корректного решения таких задач в классической постановке не существует. Для математического Исследования и разработки эффективных методов решения таких задач рассматриваются яеклассические (слабые) формулировки. В этом случае все известные и неизвестные величины предполагаются принадлежащими пространствам Соболева с индексом из множества действительных чисел. Эти функциональные пространства, в частности, содержат и гладкие функции. Такой подход к задачам динамической теории упругости впервые применялся в [354], .  [c.87]

Рассмотрим плоскую задачу теории упругости для кусочнооднородной среды. Пусть имеется многосвязная область D, ограниченная гладкими контурами L, (/ = 0, 1, 2,. ... т), из которых все контуры Lj (/ 0) расположены вне друг друга, а контур 0 охватывает все остальные. Область D заполнена упругой средой с постоянными Яо и цо, а области )/ (ограниченные контурами Lj) средами с постоянными X/ и ц/ (индекс буквы соответствует индексу области). Далее, для удобства будем использовать постоянные х/, различные для плоской деформации и плоского напряженного состояния (см. 4 гл. III). На границах раздела сред следует, как обычно, задавать. те или иные условия сопряжения. Например, такой известной технологической операции, как посадка с натягом, соответствует задание скачка вектора смещений 6/(0- В случае же плоско-напряженной деформации имеет смысл постановка таких условий, при которых внешние напряжения пропорциональны (в случае, когда толщины пластинки и включений различны )).  [c.413]

Рассмотрены двумерные статические задачи теории трещин. В частности, изложена теория Гриффитса, проанализировано напряженное состояние в окрестности вершины трещины в линейной и нелинейной постановках, рассмотрены формы математической интерпретации реальных трещин и особенности, вносимые различными формами представления в описание процесса хрупкого разрушения, проведен учет структуры среды, как с помощью моментиой теории упругости, так и посредством рассмотрения дискретных моделей.  [c.504]


В первых пяти главах учебника рассматриваются общие вопросы теории упругости (теория напряжений и деформаций, основные соотношения и теоремы, постановка и лгетоды решения задач теории упругости, плоская задача в декартовых координатах, плоская задача в полярных координатах). В шестой и седьмой главах излагаются основные уравнения теории тонких пластин (гибких и жестких) и некоторые задачи изгиба и устойчивости пластин. Восьмая глава учебника посвящена рассмотрению приближенных методов решения задач прикладной теории упругости (вариационных, конечных разностей, конечных элементов). В девятой главе рассматриваются основы расчета тонких упругих оболочек, причем основное внимание уделено вопросам расчета безмоментных и пологих оболочек. В десятой главе изучаются основы теории пластичности. Здесь рассмотрена и теория расчета конструкций по предельнол1у состоянию.  [c.6]

Возможности использования теории упругости в расчетах деталей машин заметно расширились в последние годы в связи с развитием численных методов решения задач, позволяющих достаточно просто описать геометрическую форму детали (обычно очень сложяую). С помощью этих методов уже ныне многие практически важные контактные задачи могут быть решены в достаточно точной постановке, а проблемы расчета напряжений и деформаций в деталях машин в условиях упругости при известных внешних нагрузках уже практически не существует.  [c.115]

Теоретической основой постановки экспериментальных исследований для многочисленных механизмов, работающих в масляной среде, является контактно-гидродинамическая теория смазки. Контактно-гидродинамический режим смазки является типичным для условий работы зубчатых и фрикционных передач, подшипников, катков и других механизмов. Основная задача теории заключается в определении контактных напряжений, геометрии смазочного слоя и температур при совместном рассмотрении уравнений, описывающих течение смазки, упругую деформацию тел и тепловые процессы, протекающие в смазке и твердых телах. Течение смазки в зазоре описывается уравнениями, характеризующими количество движения, сплошность, сохранение энергии и состояние. Деформация тел определяется основными уравнениями теории упругости. Температурные зависимости находятся из энергетического уравнения с использованием соответствующих краевых условий. Плоская контактно-гидродинамическая задача теории смазки решалась с учетом следующих допущений деформация ци-лидров рассматривалась как деформация полуплоскостей упругие деформации от поверхностного сдвига считались малыми для анализа течения смазки использовалось уравнение Рейнольдса при вязкости смазки, явля-  [c.165]

Задание закона состояния приводит к замкнутой системе дифференциальных уравнений, по которой определяется реализуе- мое в теле напряженное состояние и вектор перемещения точек среды. Из сказанного следует, что в линейной постановке задача определения формы и размеров упругого тела в конечном состоянии отодвигается на второй план—их находят после того, как задача решена в предполон<ении неизменности начальной формы тела. Этот прием позволяет избежать серьезной трудности нелинейной теории упругости, когда напряженное состояние приходится разыскивать в 1/-объеме — в теле с неизвестной наперед границей О. Его законность подтверждается тем, что при решении задач нелинейной теории упругости методом последовательных приближений, например в форме ряда по степеням параметра ма.пости, характеризующего малость градиента вектора перемещения, исходное приближение, получаемое при пренебрежении слагаемыми, содержащими этот параметр, представляет решение задачи для линейно-упругого тела, когда определяющие уравнения отнесены к начальному объему и начальной форме его границы.  [c.102]


Смотреть страницы где упоминается термин Постановка задач теории упругости в напряжениях : [c.192]   
Механика сплошной среды. Т.2 (1970) -- [ c.343 ]



ПОИСК



656 —• Постановка задачи

Задача в напряжениях

Задача теории упругости в напряжения

Задача упругости

Задачи теории упругости

К постановке зг ачи

Напряжения упругие

Постановка задачи теории упругости

Постановка задачи теории упругости в напряжениях Победри

Постановка задачи теории упругости в напряжениях деформаций

Постановка задачи теории упругости в напряжениях динамической

Постановка задачи теории упругости в напряжениях и приближенный метод ее решения

Постановка задачи теории упругости в напряжениях координат

Постановка задачи теории упругости в напряжениях перемещениях

Постановка задачи теории упругости в напряжениях сферической системе

Теория напряжений

Теория упругости

Упругость Теория — см Теория упругости

Упругость напряжение



© 2025 Mash-xxl.info Реклама на сайте