Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Твердые Механические свойства

Чистый титан пластичен, мягок технический — хрупкий и твердый. Механические свойства титана резко изменяются в зависимости от содержания примесей (N2, Н2, О2, С). В промышленности применяют титан двух марок ВТ1-1 и ВТ 1-2 (табл. 7).  [c.168]

Термопластичные пластмассы при нагревании переходят из твердого состояния в жидкое (плавятся), причем после охлаждения они снова затвердевают. Пластмассы этой группы можно перерабатывать несколько раз без потери их физико-механических свойств.  [c.189]


Исследование механических свойств сталей показало, что их пластические и вязкие свойства, а отсюда и возможность упрочнения зависят от чистоты стали, содержания примесей внедрения (азот, кислород, водород) и неметаллических включений. Примеси внедрения, т. е. элементы, образующие с железом твердые растворы внедрения, создавая местные искажения, затрудняют движение дислокаций. Пластическая деформация при этом затруднена, и в местах скопления неподвижных дислокаций облегчается зарождение микротрещин.  [c.396]

Механические свойства. Основные из них — прочность, пластичность, твердость и ударная вязкость. Внешняя нагрузка вызывает в твердом теле напряжение и деформацию. Напряжение — это нагрузка (сила), отнесенная к площади поперечного сечения, МПа  [c.8]

Холодная деформация характеризуется изменением формы зерен, которые вытягиваются в направлении наиболее интенсивного течения металла (рис. 3.2, а). При холодной деформации формоизменение сопровождается изменением механических и физико-химических свойств металла. Это явление называют упрочнением (наклепом). Изменение механических свойств состоит в том, что при холодной пластической деформации по мере ее увеличения возрастают характеристики прочности, в то время как характеристики пластичности снижаются. Металл становится более твердым, но менее пластичным. Упрочнение возникает вследствие поворота плоскостей скольжения, увеличения искажений кристаллической решетки в процессе холодного деформирования (накопления дислокаций у границ зерен).  [c.56]

Условно поверхностный слой обработанной заготовки можно разделить на три зоны (рис. 6.12, б) / — зона разрушенной структуры с измельченными зернами, резкими искажениями кристаллической решетки и большим количеством микротрещин ее следует обязательно удалять при каждой последующей обработке поверхности заготовки // — зона наклепанного металла III —основной металл, В зависимости от физико-механических свойств металла обрабатываемой заготовки и режима резания глубина наклепанного слоя составляет несколько миллиметров при черновой обработке и сотые и тысячные доли миллиметра при чистовой обработке. Пластичные металлы подвергаются большему упрочнению, чем твердые.  [c.268]

Способ получения титана и степень его чистоты оказывают существенное влияние на механические свойства металла особенно сильно влияет наличие в титане и его сплавах примесей кислорода, азота и водорода. Эти примеси способны давать с титаном твердые растворы внедрения, повышающие твердость, предел прочности и сильно снижающие пластические свойства металла. Наиболее пластичным и наименее прочным является титан, получаемый йодидным способом.  [c.278]


Углы зенкера — передний угол у — угол, измеряемый в главной секущей плоскости Б—Б. В зависимости от механических свойств материала обрабатываемой заготовки и материала режущей части зенкера у = О Задний угол а = 8. .. 10°. Угол наклона винтовой канавки со = 10. .. 30°. Для заготовок из твердых обрабатываемых материалов угол w должен быть меньше, а для заготовок из вязких материалов — больше. Г лав-ный угол в плане для быстрорежущих зенкеров ф = 45. .. 60°, для твердосплавных ф = 60. .. 75°. Угол наклона главного лезвия Я, = 5. .. 15°. Для движения стружки в направлении подачи угол должен быть отрицательным. Переходное лезвие имеет длину, в среднем равную I мм, угол фо = 0,5ф.  [c.142]

Мп с N1 образует значительную область твердых растворов (рис. 13.15, б), повышая жаростойкость и улучшая механические свойства сплавов.  [c.217]

Химический состав и механические свойства металлокерамических твердых сплавов приведены в табл. 14.15.  [c.256]

Химический состав и механические свойства металлокерамических твердых  [c.256]

Химический состав и механические свойства литых твердых сплавов (ГОСТ 11545—65)  [c.260]

Литые твердые сплавы в зависимости от химического состава делятся на три группы. Химический состав и механические свойства литых твердых сплавов приведены в табл, 14.16.  [c.261]

Процессы трения рассматривают на моделях, позволяющих оценить молекулярное взаимодействие материалов контактирующих тел с учетом влияния внешней среды (оксиды, пленка, смазка). Первоначально разработанные теории механического сцепления, молекулярного притяжения, сваривания, среза и пропахивания получили значительное развитие в молекулярно-механической теории трения, нашедшей наиболее широкое распространение. Согласно этой теории процесс трения происходит не только на границе раздела твердых тел, но и в некотором объеме поверхностных слоев, физико-механические свойства которых отличаются от свойств материалов в объеме тел. Это связано с деформированием поверхностных слоев, с изменением температуры, с образованием слоев адсорбированных паров влаги или газов, с образованием пленок оксидов, атомов или молекул окружающей среды и т. п.  [c.228]

Основной гипотезой, на которой базируется сопротивление материалов, является гипотеза непрерывности (сплошности) материала твердого тела, согласно которой тело рассматривается как сплошная среда. Предполагаем также, что твердое тело изотропно и однородно, т. е. механические свойства во всех направлениях одинаковы и не меняются при переходе от одной точки тела к другой.  [c.173]

Дальнейший прогноз свойств связан с использованием итерационного метода, отражающего связь между параметрами предыдущего события и последующего. Отличие синергетического метода анализа механических свойств от методов сплошной среды связано с учетом деградации сплошной среды в связи с ее эволюцией от сплошной в дискретную (фрактальную). Развиваемый новый подход к анализу механического поведения твердых тел базируется на представлениях В.И. Вернадского о единстве природы. Однако на пути познания сложного потребовалось искусственное выделение из объектов и явлений природы определенных качеств и свойств и отнесение их к различным областям. К примеру, изучение свойства воды быть мокрой, т.е. способной смачивать другие объекты, он отнес к области физики поверхностных явлений. Свойство воды быть прозрачной было отнесено к оптике. Вопрос, из чего состоит вода и какова ее структура, стал изучаться различными разделами химии.  [c.234]

Механические свойства твердых тел......90  [c.69]

МЕХАНИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ ТЕЛ  [c.90]

Диаграмма растяжения. Зависимость напряжения ст от относительного удлинения i является одной из важнейших характеристик механических свойств твердых тел. Графическое изображение этой зависимости называется диаграммой растяжения. По оси ординат откладывается механическое напряжение 0, по оси абсцисс — относительное удлинение е (рис. 102).  [c.91]


Теоретическая механика является той частью общей механики, которая изучает движения материальных точек, их дискретных систем и абсолютно твердых тел. Ясно, что факты, найденные в теоретической механике, отражают наиболее общие закономерности механических движений, так как при их установлении приходится почти полностью абстрагироваться от конкретной физической природы реальных тел, рассматривая лишь их главные механические свойства. Законы, установленные в теоретической механике, как и другие законы естествознания, объективно отражают реально существующую действительность. На основе законов, установленных в теоретической механике, изучается механика деформируемых тел теория упругости, теория пластичности, гидродинамики, динамика газов. Следовательно, теоретическая механика является фундаментом общей механики. Отчасти из-за исторических  [c.18]

К настоящему времени накоплено множество данных по проявлению золотого сечения в физических и биологических системах. Установлены ранее неизвестные связи золотого сечения со свойствами различных объектов, проявляющихся в физических свойствах воды, громкости и частоты звука, спектре видимого света, физико-механических свойствах твердых тел, физиологических функциях организма и т.п. [53-56].  [c.74]

Феррит - твердый раствор внедрения углерода в a-Fe. Углерод располагается в решетке a-Fe в с центре грани куба. Максимальная растворимость достигает 0,02% С при 727 °С. При комнатной температуре максимально растворяется до 0,006% С. Твердость и механический свойства феррита близки к свойствам технического железа.  [c.155]

Нейзильбер МНЦ15-20 1,4-10 38-45 55-65 — 4,0 Мягкий Твердый Механические свойства равноценны латуни но более устойчив против коррозии  [c.783]

Листы и полосы изготовляют из меди марок Ml, М1р, М2, М2р, М3 и МЗр по ГОСТ 859-78. Холоднокатаные листы и полосы. изготовляют мягкими и твердыми. , Механические свойства листов и полос соответствуют указанным в тйбл. 8.55.  [c.337]

Медные горячекатаные и холоднокатаные листы и холоднокатаные полосы (по ГОСТ 496—70). Листы и полосы изготовляют нз меди марок М1, М1р, М2, М2р, М3, МЭрпо ГОСТ 859—66. Холоднокатаные листы и полосы поставляют отожженными (мягкими) и неотожженными (твердыми). Механические свойства медных листов и полос должны соответствовать указанным в табл. 318.  [c.327]

Твердые припои имеют высокую температуру плавления пайка этими припоями затруднительна, но спай обладает высокими механическими свойствами. Например, опай сплавов на основе меди имеет свойства не хуже, чем основной металл.  [c.623]

При переходе сплава из жидкого состояния в твердое происходит усадка, сопровождаемая уменьшением удельного объема зерна. В результате усадки между зернами в местах сощшкосновения растущих дендрнтов, в междуосных пространствах возникают микропустоты, которые могут заполняться неметаллическими включениями (сульфидами, фосфидами и т. п.) или оставаться микроскопическими усадочными раковинами и порами. Такие включения и поры ухудшают механические свойства сплава, так как ири его нагреве и приложении к нему нагрузок становятся очагами развития трещин, надрывов и тому подобных дефектов.  [c.8]

Повышенное качество сварных швов обусловлено получением более высоких механических свойств наплавленного металла благодаря надежной защите сварочной ванны флюсом, интенсивному раскислению и лепгрованпю вследствие увеличения объема жидкого шлака, сравнительно медленного охлаждения шва под флюсом и твердой шлаковой коркой улучшением формы и поверхности сварного шва и постоянством его размеров по всей длине вследствие регулирования режима сварки, мехаиизированной подачи и перемещения электродной проволоки.  [c.194]

Сплавы на основе титана. Физико-механические свойства и коррозионная стойкость технических марок титана м.огут бь[ть в значнтслы10Й степени повышены легированием их другими более стойкими элементами. Для изготовления титановых сплавов в качестве добавок берут элементы, образующие с титаном непрерывные или ограниченные твердые растворы двух-, трех- или многокомпонентных однофазных систем. Некоторые и.з этих сплавов обладают пределом текучести, достигающим 1000 Мн/лХ  [c.285]

По механическим свойствам стекло в случае быстрых нагружеяив подобно твердому телу Х яа, а при малых скоростях деформации - жидкости Ньютона. В последнем случае стекло нохво растянуть без образования "шейки" на образце.  [c.14]

Сун1.естБснное влияние на механические характеристики оказывает также анизотропия сварных швов, наличие мягких и твердых прослоек и других отклонений, в >1званных особенностями металлургических процессов и физико-механических свойств материалов.  [c.113]

Механические свойства сплавов МЛ5 и МЛ6 могут быть повытепы гомогенизацией при 420 °С, 12—24 ч. При нагреве частицы избыточных фаз растворяются, н после охлаждения на воздухе фиксируется однородный твердый раствор. Более высокие значения ст и а,, сплав МЛ5 приобретает после старения при 175 °С, а МЛ6 при 190 "С, 4—8 ч (табл. 24).  [c.340]

Р почти не влияет на структуру чугуна, так как не ускоряет и не замедляет графитообразования. Твердость чугуна от присутствия Р в твердом растворе повышается, а вязкость значительно понижается. Следовательно, Р ухудшает механические свойства чугуна, однако улучшает литейные свойства, понижает температуру плавления, увеличивает жидкотекучесть и способствует хорошему заполнению формы. В обычном литье содержится 0,1—0,9% Р высококачественное литье должно содержать не более 0,4% Р.  [c.73]

Процесс нарушения когерентности сопровождается уменьшением напряжений температура его окончания является температурой снятия напряжений II рода (стц)- Одновременно снимаются напряжения III рода(стш). Уменьшение блоков а-фазы происходит не только из-за нарушения когерентности решеток, но и вследствие снятия упругих напряжений в результате пластических сдвигов в микрообластях под воздействием значительных упругих напряжений в условиях повышенной пластичности металла. Температуры, при которых происходит дробление блоков, и соответствующие температуры, при которых изменяются механические свойства, могут изменяться под влиянием упругих напряжений кристаллической решетки, определяемых степенью деформации, содержанием С и легирующих элементов. При третьем превращении могут протекать начальные стадии рекристаллизации твердого раствора (а-фазы), деформированного в результате внутрифазового наклепа.  [c.109]


Си с А1 образует ограниченные твердые растворы и химическое соединение СнА12, обладающее высокой твердостью и хрупкостью. В сложных алюминиевых сплавах Си входит в состав тройных соединений. В деформируемых алюминиевых сплавах содержание Си не превышает 7%, а в литейных — 8%. Для таких сплавов Си — основной легирующий элемент, обеспечивающий высокие механические свойства после термической обработки однако Си ухудшает антикоррозионную стойкость алюминиевых сплавов.  [c.321]

Сплавы типа дуралюмина (например, марки 2017 и 2024) содержат несколько процентов меди и, вследствие выделения uAla вдоль плоскостей скольжения и границ зерен, обладают повышенной прочностью. Выше температуры гомогенизации (приблизительно 480 °С) медь находится в твердом растворе. При закалке этот раствор сохраняется. При комнатной температуре происходит медленное выделение uAlj, и сплав постепенно упрочняется. Если закалка сплава от температур, отвечающих твердому раствору, производится в кипящей воде или, если после закалки его нагреть выше 120 °С (искусственное старение), то uAla выделяется преимущественно вдоль границ зерен. В результате участки, примыкающие к интерметаллическому соединению, обедняются медью. При этом границы зерен становятся анодами по отношению к зернам, а сплав приобретает склонность к межкристаллитной коррозии. Продолжительный нагрев восстанавливает однородность состава сплава в зернах и на границах зерен и устраняет склонность к коррозии такого типа. Однако это сопровождается некоторым ухудшением механических свойств. На практике сплав закаляют примерно от 490 °С, а затем следует старение при комнатной температуре.  [c.352]

Важнейшими механическими свойствами всех твердых тел являются упругость, пластичность, вязкость. Под упругостью понимают свойство тела восстанавливать свои размеры и форму после снятия действующих на него сил. Математически это выражается однозначной зависимостью между напряжениями и деформациями. Протовоположным свойством является пластичность, которое состоит в том, что после снятия действующих сил тело изменяет свои размеры и форму в зависимости от истории нагружения. Наконец, свойство вязкости проявляется в том, что после нагружения тела напряжения и деформации в нем изменяются с течением времени.  [c.31]

К.А. Осипов и С,Г. Федотов [180] установили прямую зависимость между теплосодержанием на 1 г-атом твердого металла в точке ппавления AHts и механическими свойствами метшлов  [c.328]


Смотреть страницы где упоминается термин Твердые Механические свойства : [c.346]    [c.380]    [c.335]    [c.335]    [c.336]    [c.338]    [c.345]    [c.275]    [c.491]    [c.23]    [c.5]   
Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.338 , c.340 ]

Ракетные двигатели (1962) -- [ c.279 ]



ПОИСК



Асадов, А. 3. Кулиев, М. Ш. Мамедов Механические свойства и коэффициент линейного расширения твердых растворов

Влияние очень высоких скоростей на условия разрушения . 6. Механические свойства твердых тел при высоких давлениях

Механические и тепловые свойства твердых тел

Механические и физические свойства некоторых твердых медноцинковых припоев

Некоторые физико-механические свойства флюсов в твердом состоянии

Обработка Сила резания твердые металлокерамические Механические свойства

Основные методы исследования электрических и механических свойств твердых электроизоляционных материалов

Основные физико-механические свойства метал локераыических твердых сплавов

Особенности плавления и кристаллизации аморфных Механические свойства твердых тел

СТРУКТУРА И ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ ТЕЛ

Физико-механические свойства поверхностей твердых тел и взаимодействие их при контактировании



© 2025 Mash-xxl.info Реклама на сайте