Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжения непрерывность

Этот результат раскрывает смысл бесконечного значения вязкости удлинения, полученного в разд. 6-4. Бесконечное значение вязкости удлинения в течении с предысторией постоянной деформации означает, что при этих условиях напряжение никогда не достигает стационарного состояния. При Л е > 0,5 напряжение непрерывно возрастает в любом эксперименте конечной длительности. Следовательно, в любом реальном эксперименте по удлинению не следует ожидать бесконечных напряжений.  [c.292]


Местные искажения решетки наступают при приложении внешних нагрузок, а также в зонах действия внутренних напряжений. Возникновение Дислокаций может вызвать появление новых дислокаций на смежных участках. Существуют источники самопроизвольного возникновения дислокации две совместившиеся линейные дислокации образуют под действием напряжений непрерывно действующий генератор дислокаций (источники Франка-Рида).  [c.172]

В предыдущем параграфе было указано, что необходимым и достаточным условием равновесия деформируемого тела является равенство нулю главного вектора и главного момента сил, приложенных к каждой части тел, которую можно мысленно из него выделить. Это должно остаться в силе и для частей тела, имеющих общую с поверхностью тела поверхность. Будем считать, что компоненты тензора напряжений непрерывны вплоть до границы.  [c.39]

Будем считать, что граница L области 5 не пересекает себя, замкнута и в каждой точке имеет касательную. Кроме того, примем, что компоненты вектора перемещения и тензора напряжений непрерывны вплоть до границы L.  [c.130]

Через ai q,p) будем обозначать, для краткости, преобразование Лапласа от граничных значений компонент вектора напряжения на оси хг ai x%t)= an Q,X2,t). При решении уравнений (6.2) и (6.3) удобно выразить искомые перемещения через напряжения на плоскости xi =0, поскольку в рассматриваемой задаче напряжения непрерывны при переходе через эту плоскость. Для этой цели будем решать уравнения (6.2) и (6.3) следующим образом. Согласно результатам 5 гл. III решение уравнений (6.2), (6.3) для вектора перемещения u(ui,U2, Нз), не зависящего от хз, сводится к решению волновых уравнений (5.51), (5.52) гл. III для определения потенциалов Ф, 4 i и 4 2, связанных с вектором и формулой, получаемой из (5.50) и (5.57) гл. III,  [c.494]

При измерении остаточных напряжений непрерывно регистрировали электродный потенциал самопишущим милливольтметром с усилителем.  [c.190]

На фронте волны x=t), распространяющейся со скоростью звука, напряжение убывает по экспоненциальному закону а = =ехр(—х/2), а за упругим фронтом напряжение непрерывно возрастает до напряжения, действующего на конце стержня.  [c.148]

Прерывистый распад не наблюдался в сплаве после старения при температурах выше 950 С и ниже 850 С. При высоких температурах старения, очевидно, отсутствует движущая сила рекристаллизации, поскольку высокие упругие напряжения непрерывного выделения быстро релаксируют. В нижнем интервале температур старения (ниже 850° С) развиваются значительные искажения решетки, однако диффузионные процессы в этих условиях в значительной мере затруднены даже в отношении граничной диффузии.  [c.59]


Какие напряжения непрерывны на поверхности разрыва напряжений  [c.251]

В случае /Пз = О (нелинейно-вязкое тело) процесс деформирования неустойчив сначала и с увеличением деформации напряжение непрерывно уменьшается от величины Сто = (при е = 0).  [c.74]

На границе упругой и пластической зон напряжения непрерывны, т. е.  [c.125]

Линии разрыва скоростей. Пусть вдоль некоторой линии L напряжения непрерывны, а вектор скорости разрывен в произвольной точке L проведем систему координат х, у, направив ось у по касательной к линии L. Разрыв в нормальной составляющей скорости невозможен, и следует рассмотреть лишь разрыв в тангенциальной составляющей Vy. Повторим рассуждения, приведенные  [c.162]

На неизвестном контуре Lj (/ =1,2), разделяющем упругую и пластическую области, все напряжения непрерывны.  [c.29]

На неизвестном контуре Lj (/ => О, 1), разделяющем упругую и пластическую области вокруг отверстия, все напряжения непрерывны. На основании граничных условий и соотношений Колосова—Мусхелишвили получаем краевую задачу для определения аналитических функций Ф(z) и f(z) и неизвестного контура Lj  [c.35]

На границе Lj раздела упругой и пластической зон все компоненты напряжений непрерывны )  [c.43]

На неизвестном контуре Гт, разделяющем упругую и пластическую области, все напряжения непрерывны. Используя рмулы (1.1.9) и (1.7.2), получим граничные условия на контуре  [c.48]

Ради удобства повторим формулировку краевой задачи. На неизвестном контуре Гт , разделяющем упругую и пластическую области, все напряжения непрерывны. Используя рмулы (1.7.2) и соотношения Колосова—Мусхелишвили (1.1.9), получим на контуре следующие условия  [c.56]

Вычисляя напряжения в пластической области по функции (2.2.54) и считая, что на неизвестном контуре L, разделяющем упругую и пластическую области, все напряжения непрерывны, с помощью формул (2.2.55) получим граничную задачу для определения аналитических функций Ф (z ),  [c.97]

Основные задачи теории упругости для полуплоскости. Пусть в бесконечной плоскости имеется разрез L, представляющий собой всю действительную ось Ох. Предположим, что при переходе через контур L напряжения непрерывны, т. е.  [c.111]

Интегральные уравнения указанной задачи найдем из соотношения (1.152), предположив, что в неограниченной плоскости имеются два параллельных бесконечных разреза у = л < сю, при переходе через которые напряжения непрерывны, а смещения  [c.131]

С помощью уравнений (10.4) и (10.5) определяем окружные и меридиональные напряжения и строим их эпюры по оси. Если одновременно имеются и жидкость и равномерное давление, то интеграл в (10.5) есть сумма правых частей равенств (10.6) и (10.7). Отметим, что на тех участках, где геометрия оболочки неизменна, эпюры напряжений непрерывны.  [c.351]

При этом в общем случае ориентация главных площадок и значения главных напряжений непрерывно изменяются при переходе от точки к точке.  [c.32]

Заштрихованная часть материала передает на поверхность этого внутреннего цилиндра (указанного пунктиром) напряжения, кото- J ur. 7.04. рые очень похожи на продольные касательные, как показано стрелками. Если сечение изменяется постепенно, то распределение касательных напряжений непрерывно меняется и, во всяком случае, они появляются не раньше, чем в сечении ху. Математические результаты указывают, что практически можно считать распределение напряжений равномерным уже в сечении UV, на расстоянии от АВ, равном диаметру средней части. В виду неизбежной разницы между теоретической и действительной задачами, сходимость между теорией и наблюдением можно считать для данного случая удовлетворительной.  [c.491]

Предыдущие результаты находятся в контрасте с результатами, полученными в 4.3 для бесконечного упругого тела с постоянными вдоль отрезка напряжениями. В рассматриваемом случае смещения разрывны по построению, тогда как напряжения непрерывны. В предыдущей же задаче, если в ней отрезок тоже рассматривать как трещину, имеет место обратное. Интересно заметить, что в обоих решениях фигурирует одна и та же функция f х, у), но при вычислении напряжений и смещений в этих двух задачах используются различные комбинации производных этой функции разного порядка.  [c.87]

Из (5.6.3) следует, что коэффициенты смещения В [ и Впп принимают на разных сторонах линии у = О различные значения, т. е. указанные коэффициенты вдоль этой линии разрывны. Вместе с тем коэффициенты и для напряжений непрерывны. Напомним, что в методе фиктивных нагрузок имела место обратная ситуация (см. (4.6.17) и (4.6.18)).  [c.96]


В методе разрывных смещений ситуация несколько иная. В этом случае основное решение, используемое для построения численного метода, характеризуется тем, что все компоненты напряжения непрерывны в центре отрезка, на котором имеет место постоянный разрыв смещения (см. (5.2.11)). Следовательно, если мы наложим несколько таких решений, как изображено на рис. 5.4 и 5.5, то на каждом граничном элементе все напряжения будут непрерывны.  [c.103]

Мы видим, что перерезывающая сила Qq для эллипсоидальных днищ получается большей, чем для полусферических в отношении a jb . В том же отношении возрастут, очевидно, и напряжения непрерывности. Взяв, например, с/ > = 2, мы получим из выражений (g) и (h)  [c.534]

Последующие выводы связаны с допущениями, что компоненты вектора ю (гг ) и тензора напряжений — непрерывные диф( )еренцпруе-мые функции координат в объеме пространства, занятого телом.  [c.346]

Дальнейшее повышение долговечности можно получить только радикально изменяя технологию изготовления несущих конструкций рабочих органов. Следует изготавливать узлы, передающие контактную нагрузку, из стального литья. Хорошо выполненное стальное литье, очевидно, обеспечивает большую местную жесткость, плавиость формы, низкие остаточные напряжения, непрерывность волокон. Приварка литого узда к сварной ггопструкцпи, которая потом подвергается еще обработке для снятия технологических напряжений, дает возможность построить долговечные конструкции, работающие в особо тянселых условиях.  [c.375]

Анализ диаграмм рис. 86 для сталей 15Х2МФА (I) и 15Х2НМФА (II) показывает, что при повышенных и комнатных температурах с момента образования шейки в образце напряжения непрерывно возрастают вплоть до разрушения, а при пониженных температурах перед разрушением наблюдается интенсивное разупрочнение. Э ект разупрочнения с понижением температуры становится все более значительным.  [c.144]

Тогда при р" " = р- из (XI.30) найдем, что SA = Sn, т. е. напряжения на площадках поверхности разрыва напряжений непрерывны. Так как при плоском деформированном состоянии в выбранной локальной системе координат 5 = -j- oly, то в силу (XI.32) G y = Разрывы терпят только нормальные напряжения Озся и a 2. Из условия пластичности найдем, что  [c.249]


Смотреть страницы где упоминается термин Напряжения непрерывность : [c.125]    [c.37]    [c.513]    [c.457]    [c.226]    [c.480]    [c.15]    [c.70]    [c.109]    [c.248]    [c.250]    [c.311]    [c.193]    [c.961]    [c.62]    [c.191]    [c.535]   
Механика трещин Изд.2 (1990) -- [ c.105 ]



ПОИСК



Гипотеза наибольших напряжени непрерывности (сплошности)

Гипотеза наибольших напряжений непрерывности (сплошности) материала

НЕПРЕРЫВНЫЕ СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ Параметрические стабилизаторы на кремниевых стабилитронах

Напряжение в непрерывных средах 342, — не является векторной

Напряжение в непрерывных средах 342, — не является векторной величиной 343,— нормальное 155, 343,—продольное 153,— растягивающее 154, 344, — сжимающее 344, сложное 157, — срезывающее или касательное 344 напряжений концентрация вблизи

Напряжение в непрерывных средах 342, — не является векторной малого отверстия 506, 522 , 527, — крутильных распространение

Напряжения и деформации в непрерывных однородных средах

Образование напряжений и деформаций прн непрерывном нагреве и остывании

Определение времени жизни изоляции при непрерывно повышающемся напряжении

Определение номинальных напряжений с непрерывно распределенными

Основные параметры интегральных микросхем компенсационных стабилизаторов напряжения непрерывного действия

Радиальное распределение напряжений в непрерывно-неоднородной упругой полуплоскости

Распределение напряжений в непрерывно-неоднородном полом цилиндре под действием давления

Распределение напряжений в непрерывно-неоднородном прямолинейно-анизотропном теле, зависящее от двух координат

Распределение напряжений в непрерывно-неоднородном теле, обладающем цилиндрической анизотропией, зависящее от двух координат

Стабилизаторы постоянного напряжения непрерывного действия

Условие непрерывности напряжения в нейтральном сечении



© 2025 Mash-xxl.info Реклама на сайте