Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория пластичности деформационная

Использование в теории пластичности.деформационной теории, уравнения которой, в сущности, описывают нелинейную упругость, обосновано только при нагружениях, близких к простым. Можно показать, что пропорциональное возрастание внешних нагрузок — объемных f, = pFf и поверхностных /, = p/f — приводит к простому нагружению (т. е. к пропорциональному возрастанию компонентов тензора напряжений Qij = pa j), если при малых деформациях и несжимаемости материала интенсивности напряжений и деформаций связаны степенной зависимостью  [c.746]


В третьей части (гл. 11 и 12) излагаются вариационные принципы теории пластичности. Деформационная теория пластичности рассматривается в гл. II. Вариационные принципы и теория предельной несущей способности излагаются в гл. 12.  [c.13]

В этой главе обсуждаются вариационные принципы деформационной теории пластичности ). Среди других теорий пластичности деформационная теория отличается тем, что это единственная из моделей, в которой связь между текущими напряжениями и деформациями такова, что если заданы напряжения, то определяются деформации, и наоборот. Одиако эта связь может быть в обоих направлениях неоднозначной. Например, если напряжения выражены через деформации по формулам  [c.316]

С другой стороны, расчетные схемы осесимметричной и плоской задач теории упругости позволяют достаточно точно и эффективно описать взаимодействие ряда реальных машиностроительных конструкций, таких, как замковые соединения лопаток турбомашин, резьбовые и фланцевые соединения различных типов, многослойные контейнеры литья под давлением и др., в которых передача усилий осуществляется посредством контакта отдельных деталей. Контактные задачи в данной главе рассматриваются при процессах нагружения конструкций, близких к простым, без учета истории нагружения. Решения при этом получаются для наиболее опасных, максимальных нагрузок. В этом случае целесообразно использовать теории пластичности деформационного типа, наиболее простые и надежные в реализации, требующие минимальной трудоемкости вычислений на ЭВМ. Для линеаризации задачи термопластичности используется метод переменных параметров упругости, который естественно сочетается с алгоритмом поиска зон контактирования и проскальзывания, является довольно быстро-сходящимся и не требует хранения громоздкой информации о решении на предыдущей итерации.  [c.16]

Широкое распространение при расчетах на неустановившуюся ползучесть получила теория старения в формулировке Ю. Н. Работ-нова [177], расчеты по которой выполняются так же, как расчеты по теории пластичности деформационного типа. Задавая в качестве диаграммы деформирования материала = а,- (е ) изохронную кривую для рассматриваемого момента времени и выполняя упругопластический расчет, получаем решение задачи ползучести. Для того чтобы проследить за ходом изменения НДС конструкции во времени, необходимо выполнить серию расчетов по изохронным кривым ползучести. Особенностью этих расчетов является то, что при табличном задании изохронных кривых первичные кривые ползучести используются без какой-либо схематизирующей аппроксимации со всеми особенностями. Хотя вследствие перераспределения напряжений решение будет приближенным, оно будет тем точнее, чем меньше меняются напряжения и зона контакта в процессе ползучести. Сравнение результатов расчетов элементов конструкций по различным теориям [166] показывает, что при расчете ряда конструкций такой подход предпочтительнее, так как упрощает подготовку информации, уменьшает затраты машинного времени и позволяет осуществить более подробную дискретизацию области. При использовании теории  [c.146]


Тензометрирование лопаток 325, 326 Теория пластичности деформационная 531—533  [c.695]

Ниже будут представлены основные соотношения некоторых теорий пластичности деформационной, билинейной и теории течения. Эти теории, в которых не учитывается влияние скорости деформации на соотношения между напряжениями и деформациями, часто применяются к динамическим задачам пластичности ввиду того, что они довольно подробно исследованы, а также ввиду хороших практических приближений, какие эти теории дают для определенного класса задач.  [c.13]

Для суждения о возможности применения деформационной теории нужно знать, в какой мере реализуются условия пропорционального нагружения в каждом элементе объема тела, подвергнутого действию внешних сил. Достаточные условия этого состоят в следующем 1) внешние силы возрастают пропорционально, 2) упругой сжимаемостью материала можно пренебречь, то есть можно положить е = О, и 3) функция /(т ). закона упрочнения (79.1) является степенной функцией (А. А. Ильюшин). Последнее условие мало реально для металлов, поэтому пропорциональное нагружение в действительных изделиях осуществляется редко. Однако, имеются основания полагать, что уравнения теории, пластичности деформационного типа остаются достаточно точными и тогда, когда нагружение несколько отличается от пропорционального наибольшие расхождения с опытными данными обнаруживаются в тех случаях, когда в процессе нагружения поворачиваются главные оси.  [c.170]

В инженерной практике во многих случаях оценка НДС производится на базе упрощенных схем деформирования (реологических схем) материала и элементов конструкций. Так в основном анализ НДС ведется в рамках теории упругости или деформационной теории пластичности с использованием методе-  [c.4]

Теории пластичности разделяются на группы. Теории одной группы, называемые деформационными, пренебрегают тем, что в общем случае нет однозначной связи между напряжениями и деформациями в пластической области, и используют конечные зависимости между компонентами напряжений и деформаций [94]. Они могут успешно применяться в пределах, ограниченных условиями простого нагружения, при котором внешние силы растут пропорционально одному параметру, например времени. Теории другой группы не пренебрегают неоднозначностью зависимости напряжений и деформаций, уравнения в них формируются в дифференциальном виде, позволяющем поэтапно прослеживать сложное (например, циклическое) деформирование материала. Эти теории называют теориями пластического течения [94, 124].  [c.13]

Значения интенсивностей напряжений и деформаций в рамках деформационной теории пластичности определяются в соответствии с зависимостью, использованной в работе [311],  [c.207]

Деформации у вершины трещины определяются с помощью известных зависимостей деформационной теории пластичности, а также закона Гука [124]  [c.209]

На рис. 16.3 приведены результаты расчета по теории Ильюшина (кривая 1), теории устойчивости, построенной на основе теории течения с изотропным упрочнением (кривая 2) и модифицированной теории (кривая 3) для сжатых стальных цилиндрических оболочек ( = 2-10 МПа, ат = = 390 МПа). Экспериментальные результаты (отмечены кружочками) лучше подтверждают теорию устойчивости Ильюшина, построенную на основе деформационной теории. Дело в том, что до-критический сложный процесс по траекториям малой кривизны в момент бифуркации имеет бесконечно малое продолжение без излома траектории в направлении касательной к траектории деформации. Следовательно, теория течения с изотропным упрочнением не описывает сложный процесс выпучивания в момент бифуркации. Аналогичное явление наблюдается при использовании теории пластичности для траекторий средних кривизн. Если используются теория течения и теория средних кривизн, для вычисления интегралов Nm, Рт следует применять соотношения (16.45), (16.46) при со = 0 и со = (й соответственно.  [c.347]

Деформационная теория пластичности и физически нелинейная теория упругости  [c.262]


По аналогии с тем, что было сделано в задачах линейной теории упругости (см. 1.4) и деформационной теории пластичности (см. 5.5), решение интегрального тождества (вариационного уравнения) (5.284) называют обобщенным решением задачи (5.271), (5.272), (5.274), (5.283)  [c.279]

Если материал подчиняется деформационной теории пластичности без разгрузок (см. 5.4), то, используя результаты, полученные в 5.5, и теорему II.3 приложения II, приходим  [c.288]

Очевидно, что все рассуждения проходят с небольшими несущественными изменениями и для случая деформационной теории пластичности без разгрузок (физически нелинейной теории упругости), в которой связь напряжений с деформациями имеет форму  [c.293]

В деформационной теории пластичности доказана теорема о единственности полей напряжений, деформаций и перемещений в случае упрочняющегося материала, т. е. при соблюдении неравенств  [c.306]

Действительно, вводя аналогично понятию полной энергии Э в теории упругости или деформационной теории пластичности понятие энергии приращений перемещений при отсутствии массовых сил  [c.308]

Деформационная теория пластичности  [c.532]

Так называемая деформационная теория пластичности представляет по существу распространение на пластическое тело того закона связи между напряжениями и деформациями, который устанавливается нелинейной теорией упругости. Пластический потенциал, который заменяет здесь упругий потенциал, для изотропного тела есть функция инвариантов тензора деформаций. Обычно нри этом применяются следующие гипотезы  [c.533]

ДЕФОРМАЦИОННАЯ ТЕОРИЯ ПЛАСТИЧНОСТИ  [c.535]

Границы применимости деформационной теории пластичности  [c.542]

Уравнения (16.5.4) представляют собою параметрические уравнения предельного пути нагружения, выходящего из точки Q, для которого соотношения деформационной теории пластичности (16.5.3) еще остаются справедливыми. Заменив р на —Р, мы получим симметричную кривую, соответствующую тому случаю, когда точка А остается на месте, а движется точка В. Проводя касательные к линиям (16.5.4), мы получим угол II, ограниченный прямыми, составляющими углы а с осью xi (рис. 16.5.2). Для приращений параметров Qi и ( 2, которые изображаются векторами, лежащими внутри этого угла, уравнения деформационного типа сохраняют силу. Определим угол а. Для этого продифференцируем соотношения (16.5.4). Получим  [c.547]

Теперь мы можем вернуться к той простейшей теории пластичности, с рассмотрения которой мы начали 16.1. При изучении границ применимости деформационной теории и при анализе простейшей модели мы встретились с такой ситуацией, когда начальная поверхность нагружения была гладкой, а последующие поверхности становятся сингулярными, коническая точка появляется в точке нагружения и следует за нею по пути нагружения. Сейчас речь будет идти об особенностях другого рода. Начальная поверхность нагружения может состоять из частей нескольких гладких поверхностей, образующих при пересечении ребра. Простейший пример, рассмотренный в 16.1, ато призма Сен-Венана, ограниченная шестью гранями. Эта призма в процессе деформации может расширяться с сохранением подобия в этом случае следует говорить об изотропном упрочнении, а может переноситься параллельно без изменения размеров в случае трансляционного упрочнения. При выводе формул  [c.554]

Рассмотренные здесь соотношения между напряжениями и деформациями составляют основу так называемой деформационной теории пластичности. Это название отражает то положение, что с напряженным состоянием связаны сами деформации, а не их приращения.  [c.157]

Уравнения (8.41), (8.42) называются соотношениями деформационной теории ползучести, так как связывают между собой непосредственно деформации с напряжениями и построены по аналогии с соотношениями деформационной теории пластичности.  [c.159]

В основе деформационной теории пластичности лежит представление о том, что подобно тому, как это имеет место для упругого тела, также и для упруго-пластического тела  [c.280]

Из теории А. А. Ильюшина вытекают как частные случаи, две наиболее известные теории пластичности деформационная теория пластичности (теория малых ynpyto-пластических деформаций) и теория вязко-пластйческого течения.  [c.133]

В теории пластичности изучаются законы, связывающие напряжения с упругопластическими деформациями, и разрабатываются методы решения задач о равновесии и движении деформируемых твердых тел. Теория пластичности, являющаяся основой современных расчетов конструкций, технологических процессов човки, прокатки, штамповки и других, а также природных процессов (например, горообразования), позволяет выявить прочностные и деформационные ресурсы материалов. Пластические деформации до разрушения достигают значений  [c.250]

Наряду с развитием общей теории упругопластических процессов, описанной в 5.4, 5.5, для практического приложения необходима разработка упрощенных теорий пластичности. Эти теории можно условно разбить на две группы. К первой группе относятся теории, приемлемые для описания частных видов процессов и материалов. К числу таких теорий относятся деформационная теория пластичности Генки, теория малых упругопластических деформаций Ильюшина, теория процессов малой и средней кривизны, теория процессов для траекторий в виде двузвенных ломаных и т. д. Ко второй группе относятся приближенные теории, использующие дополнительные гипотезы. Примером такой приближенной теории может служить рассмотренная в 5.7 гипотеза компланарности, а также так называемая гипотеза локальной определенности Ленского.  [c.258]

Кривая одноосного растяжения малоуглеродистой стали с разгрузкой испытуемого образца (рис. 58) показывает, что остаюч-деформация измеряется отрезком ОО. Пластическая деформация начинает проявляться на участке АВ и происходит без увеличения нагрузки. На участке ВС происходит упрочнение материала, поэтому угол наклона касательной к кривой ВС и к оси абсцисс tg р называют модулем упрочнения. Упрочнение имеет направленный характер, т. е. материал меняет свои механические свойства и приобретает деформационную анизотропию, при этом пластическая деформация растяжения ухудшает сопротивляемость металла при последующем его сжатии (эффект Ба-ушингера). Как видно из приведенной кривой, растяжение малоуглеродистой стали при пластических деформациях нагруженного и разгруженного образца значения деформаций для одного и того же напряжения . в его сечении не является однозначным. Методы теории пластичности, наряду с изучением зависимости между компонентами напряжений и деформаций, возникающих в точках тела, определяют величины остаточных напряжений и деформаций после частичной или полной разгрузки дetaли, а также напряжения и деформации при повторных нагружениях.  [c.96]


Однако, при нагружении конструкций из малоуглеродистых, низко- и среднелегированных сталей, содержащих плоскостные дефекты, имеет место, как правило, развитое пластическое течение в вершине данных концентраторов (зона АВ на рис. 3.2). В общем случае это снижает опасность хрупких разрушений, так как часть энергии нагружения расходуется на образование пластических зон. В данных зонах напряжения и деформации уже не контролируются величиной коэффициентов интенсивности напряжений, а определяются из соотношений теории пластичности. Дпя некоторого упрощения описания процесса разрушения в механике разрушения вводят критерии, описывающие поведение материала за пределом упругости 5 — критическое раскрытие трещины и — критическое значение независящего от контура интегрирования некоторого интеграла. Деформационный критерий 5 основан на раскрытии берегов трещины до некоторых постоянных критических значений для рассматриваемого материала. На основе контурного Jj,-интеграла представляется возможность оценить момент разрушения конструкций с трещинами в упругопластической стадии нагружения посредством определения энергии, необходимой для начала процесса разрушения. При этом полагается, что критическое значение энергетического параметра, предшествующее разрушению, является характеристикой материала. Существуют также и другие характеристики разрушения, которые не получили широкого распространения на практике. Например, сопротивление микросколу [R ]. сопротивление отрыву, угол раскрытия вершины трещины, двухпараметрический критерий разрушения Морозова Е. М. и др.  [c.81]

Обраи1,аясь к диаграмме деформирования идеально пластического тела, мы видим, что свойства его в известной мере оказываются промежуточными между свойствами твердого тела и жидкости. До достижения пластического состояния тело упруго и, следовательно, должно безусловно рассматриваться как твердое. После достижения предела текучести оно деформируется неограниченно или течет подобно жидкости. Можно было бы сказать, что жидкость — это твердое тело с пределом текучести, равным нулю. В связи с такой двойственной природой пластического тела и теории пластичности оответственно делятся на две группы теории течения, уподобляющие пластическое тело жидкости, и теории деформационного типа, которые строятся по образу и подобию теории упругости. Слово теории употреблено здесь во множественном числе. Единой универсальной теории пластичности до сих пор не существует, разные авторы придерживаются разных точек зрения. Ответить на вопрос, какая именно из этих теорий ближе к истине, нелегко. При решении практических задач все они дают очень близкие результаты.  [c.59]

Для материалов, не обладающих упрочнением, точнее для модели идеально пластического неупрочняющегося тела теория типа течения логически безупречна и в отличие от деформационной теории она довольно хорошо подтверждается экспериментом в той мере, в какой подтверждается схема идеальной пластичности. Следующий шаг будет состоять в построении теории пластичности для упрочняющихся материалов. Здесь также можно стать на точку зрения теории течения, но результаты оказываются крайне сложными. Поэтому при инженерных расчетах, когда необходимо учитывать упрочнение материала, часто пользуются более простой деформационной теорией, хотя следует иметь в виду, что она нестрога и во многих случаях неточна.  [c.59]

До сих пор речь шла о решении задач деформационной теории пластичности как о решении обобщенных уравнений Ляме или Бель-трами — Митчелла. Однако те же задачи могут рассматриваться как вариационные задачи, для решения которых могут быть привлечены вариационные принципы.  [c.306]

Ge (л, 4) Gj = 20 -Ь sin 20 и 0 = ar sin(l/9). Мы получили полный аналог деформационной теории пластичности уравнения (16.5.3) описывают как упругое поведение трубы, так и ее упругопластическое поведение. Очевидно, что пластический модуль Gj представляет собою отношение Qjq, он может быть выражен как через величину Q, так и через величину q, которые играют роль соответствующих октаэдрических составляющих напряжения и деформации.  [c.547]

Остановимся, наконец, на варианте теории трансляционного упрочнения, принадлежащем Новожилову и Кадашевичу. Эти авторы предполагают, что тензоры s,j и efj связаны соотношениями типа соотношений деформационной теории пластичности  [c.553]

В задачах теории пластичности стеленной закон редко дает удовлетворительное описание экспериментальных кривых. Как правило, приходится решать упругопластическую задачу, в рамках деформационной теории пластичности нет разницы между формулами, описывающими упругое и пластическое состояния, но функция s(t ) оказывается линейной для достаточно малых значений v и нелинейной после достижения предела текучести. Это обстоятельство, естественно, усложняет решение задачи, хотя трудности не носят принципиального характера. Более серьезным моментом служит то, что предположение о несжимаемости материала для упругопластических тел, строго говоря, не выполняется. Имеются многочисленные решения, учитывающие эффект сжимаемости, нам не кажется, что получаемое при этом уточнение настолько серьезно, чтойы была необходимость излагать соответствующие результаты.  [c.636]

Характерной особенностью /-интеграла является его независимость от формы н размеров контура С (контур может быть как очень малым, так и совпадать с граиицей тела). При этом контур С может оказаться внутри пластической зоны, пересекать ее или же быть вне ее — во всех этих случаях значение J остается неизменным [165]. Заметим, что последнее доказано для случая деформационной теории пластичности, не предполагающей разгрузку материала по липейпому закону Гука, Это эквивалентно тому, что материал является нелинейно упругим.  [c.64]

Для определення напряженного и деформированного состояния идеального упругопластического тела с трещиной воспользуемся деформационной теорией пластичности. Известно [194], что действительные перемещения соответствующие состоянию равновесия, реализуют минимум нолно1 1 энергии  [c.219]


Смотреть страницы где упоминается термин Теория пластичности деформационная : [c.630]    [c.701]    [c.638]    [c.207]    [c.207]    [c.299]    [c.533]    [c.565]    [c.669]   
Основы теории упругости и пластичности (1990) -- [ c.299 ]

Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.739 ]

Теория пластичности (1987) -- [ c.222 ]

Теория упругости и пластичности (2002) -- [ c.155 ]

Теория и задачи механики сплошных сред (1974) -- [ c.0 ]

Основы теории пластичности Издание 2 (1968) -- [ c.54 ]



ПОИСК



Границы применимости деформационной теории пластичности

Деформационная теория пластичности и теория течения

Деформационная теория пластичности и физически нелинейная теория упругости

Деформационные теории пластичности и ползучести. Численные методы

Деформационные швы

Маха (E.Mach) деформационная теория пластичности

Минимальные принципы в деформационной теории пластичности

О деформационных моделях теории пластичности и сложных сред

Об ограничении числа гладких функций нагружения для сингулярной поверхности нагружения. Деформационные теории пластичности

Основы деформационной теории пластичности

ПЛАСТИЧНОСТЬ Теории пластичности

Применение к ползучести деформационной теории пластичности

Теория деформационная

Теория пластичности

Теория пластичности деформационна пластического течения

Теория пластичности деформационна ползучести



© 2025 Mash-xxl.info Реклама на сайте