Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материал неустойчивый

При изучении волновых процессов в стержнях предполагает ся одномерное напряженное состояние, которое нарушается влиянием радиальной инерции, ведущей к дисперсии волны при ее распространении [133, 411], изменением сечения, неоднородностью материала, неустойчивостью материала под нагрузкой [94, 124, 125, 348] и другими особенностями поведения. В связи с этим ограничена максимальная скорость деформирования, при которой может быть исследовано поведение материала путем анализа волновых процессов в стержнях.  [c.143]


Большая часть работы (до 95%), затрачиваемой на деформацию, превращается в теплоту (происходит нагрев), остальная часть энергии аккумулируется в виде повышенной плотности дефектов решетки (вакансий и главным образом дислокаций). О накоплении энергии свидетельствует также рост остаточных напряжений в результате деформации. В связи с этим состояние пластически деформированного материала неустойчиво и может изменяться, например при термической обработке.  [c.83]

Для конкретного торцового уплотнения и определенной жидкости при постоянной частоте вращения вала в качестве переменного критерия режима можно принять величину, обратную контактному давлению в паре трения (рис. S.7). Кривая /(1/рк) приближенно отражает зависимость, соответствующую трению пары углеграфит — металл на воде. Работа пары трения в режимах левой ветви (при трении без смазочного материала) неустойчива, так как увеличение контактного давления (случайное или закономерное) приводит к резкому увеличению коэффициента трения, в режимах правой ветви (от граничной до жидкостной смазки) — устойчива, так  [c.251]

В настоящем разделе представлена модель вязкого разрушения материала, рассматривающая процесс непрерывного образования и роста пор [76, 80]. Модель базируется на введенном понятии пластической неустойчивости структурного элемента материала как состоянии, контролирующем критическую деформацию е/ при вязком разрушении, что позволяет отойти от описания процесса непосредственного слияния пор.  [c.116]

Вибрации являются источником вредного шума шум не только вредно влияет на физиологию человека, но приводит к так называемой акустической усталости материала. Вибрации искажают основное движение элементов машин, механизмов и систем управления по предписанным кинематическим законам, порождают неустойчивость заданного закона движения и часто приводят к отказу всей системы.  [c.15]

В быстроходных машинах вращающиеся звенья устанавливают таким образом, чтобы центр масс звена находился на оси его вращения. Однако точно выполнить это условие не всегда удается из-за сложности геометрической формы звеньев и неоднородности материала, и при вращении их возникает неуравновешенная центробежная сила, вызывающая колебания. Движение при наличии поперечных колебаний становится неустойчивым, что меняет условия взаимодействия звеньев механизма.  [c.307]


Таким образом, если учитывается ползучесть материала, то при расчетах на устойчивость следует руководствоваться двумя критериями неустойчивости (15.1), (15.2). Может оказаться, что конструкция, устойчивая на первом этапе нагружения, может потерять устойчивость на втором этапе своего функционирования.  [c.324]

Рассмотренный в [38] универсальный параметр инвариантности и предельная повреждаемость означают достижение бифуркационной неустойчивости системы, границы которой несут фундаментальную информацию о свойствах среды, в данном случае предельно поврежденного материала.  [c.319]

В основе действия контактного осветлителя лежит принцип контактной коагуляции, основанный на том, что при движении воды через слой зернистой загрузки происходит адсорбция коллоидных и взвешенных агрегативно неустойчивых частиц, на поверхности зерен фильтрующего материала.  [c.250]

Свободная энергия деформированного (наклепанного) металла больше, чем отожженного, за счет энергии искажений, связанной с дислокациями и точечными дефектами, введенными при деформации. Поэтому наклепанный материал находится в термодинамически неустойчивом состоянии при всех температурах и переход его в более стабильное состояние с меньшей свободной энергией не связан строго с какой-либо определенной температурой. В этом принципиальное отличие такого перехода от фазовых превращений.  [c.298]

Устойчивость формы равновесия упругой системы зависит от ее размеров, материала, значений и направления внешних сил. Прямолинейная форма равновесия центрально-сжатого стержня (см. рис. 13.2, а) устойчива при малых значениях сжимающей силы и неустойчива, когда значения этой силы  [c.483]

Одной из важнейших характеристик сопротивления материала трещинообразованию является величина предельной нагрузки, связанная с началом развития трещины, которое зачастую отождествляется с понятием полного разрушения. Однако это справедливо только в случае лавинообразного неустойчивого распространения. Во многих случаях взаимодействия трещин с препятствиями и границами, а также в задачах взаимодействия систем трещин, как показывают эксперименты и расчеты [98, 185, 216, 219, 309, 326, 331, 395], на значительном участке изменения нагрузки развитие трещины протекает устойчиво. Очевидно, что наличие устойчивых трещин в конструкциях и сооружениях, работающих зачастую в определенных режимах изменения внешних нагрузок, гораздо менее опасно, а искусственное усиление таких сооружений (за счет постановки заклепок,, пластин и стрингеров, высверливания отверстий на пути распространения трещин и т. д.) может значительно продлить их жизнь .  [c.161]

Заметим, что вершина трещины, начиная свое дви>кение, проходит расстояние, равное начальному размеру концевой зоны (ввиду малости которой, этим периодом пренебрегают). В дальнейшем неустойчивые трещины медленно подрастают до критического размера (когда начинается спонтанное развитие). В связи с этим выделим две последовательные фазы разрушения. Вначале элемент сплошной среды переходит в некоторое промежуточное состояние (концевая зона), а затем трещина, попадая в концевую зону, производит окончательное разрушение элемента. Детали этого процесса таковы, что па начальном этапе трещина двигается по уже сформированной концевой зоне (предполагается, что к моменту i = 0 в теле уже существует трещина h с концевой областью do), и поэтому берега разреза уже имеют дополнительное раскрытие за время инкубационного периода. На последующем основном этапе развития трещины такой ситуации уже нет. Трещина разрывает сплошной материал, формируя перед этим концевую область. Раскрытие берегов разреза в концевой области начинается с момента попадания вершины в соответствующую точку вязкоупругой среды (обозначим этот момент через t ). Тогда уравнение медленного роста трещины на этом этапе получим, полагая, что в любой момент выполняется условие (39.3)  [c.317]

Карбиды. Широко применяется карбид кремния - карборунд (Si ). Он имеет высокую жаропрочность (1500... 1600 С), твердость, устойчивость к кислотам и неустойчивость к щелочам. Применяется в качестве нагревательных стержней, защитных покрытий графита. В заряженном состоянии в виде крошки карборунд применяется как абразивный материал.  [c.138]


Следует отметить, что величина у, определенная из экспериментов с устойчивым ростом трещины, оказывается несколько меньше величины у, определенной из экспериментов с неустойчивым ростом трещин. Это связано с динамическими эффектами, с влиянием вязкости и других свойств материала, проявляющихся при неустановившемся характере деформирования.  [c.556]

Рассматривая, однако, структурные изменения при ТМО, необходимо отметить, что в результате такой обработки, в отличие от МТО, наиболее существенно изменяется энергетический параметр п, характеризующий среднюю энергию, поглощаемую каждым единичным объемом при нагружении. Резкое повыщение статической прочности, вызванное возрастанием параметра п, вследствие роста интенсивности поглощения энергии сопровождается в то же время сильным увеличением степени искаженности решетки материала в упрочненном состоянии. Это усиливает метастабильность получаемого структурного состояния, вследствие чего эффект упрочнения оказывается неустойчивым при повышенных температурах и больших сроках службы стали. Поэтому ТМО целесообразно применять главным образом для повышения статической прочности при кратковременных нагрузках. Таким образом, относительное влияние каждого из энергетических параметров п и Уз на получаемое в результате термомеханического воздействия упрочненное состояние. металла оказывается различным, и это различие предопределяет поведение материала при дальнейшей службе. Структурно-энергетический подход позволяет (с помощью указанных параметров) дифференцированно оценивать факторы упрочнения с учетом конкретных условий эксплуатации металла.  [c.86]

При этом в опытах было обнаружено, что если кипящий металл находится под давлением инертного газа, то теплоотдача обычно оказывается более высокой (примерно в 1,5 раза), чем тогда, когда металл находится под давлением своего насыщенного пара. По-видимому, это объясняется тем, что газ, частично растворяясь в жидкости, облегчает вскипание и увеличивает число действующих центров парообразования. Инертный газ также способствует более раннему переходу от неустойчивого к развитому режиму кипения. Теплоотдача при кипении металлов зависит также от физико-химических свойств и материала поверхности нагрева, ее однородности. Все это приводит к тому, что опытные данные, полученные разными исследователями, значительно различаются.  [c.278]

Начало распространения трещины является критической ситуацией для материала и тем более для элемента конструкции. Она отвечает точке неустойчивости, после которой снижается рассеивание в оценках усталостной прочности по критерию зарождения усталостной трещины. Они тем более достоверны, чем больший размер трещины использован в оценке долговечности. Однако степень неопределенности в оценках ресурса ВС остается, в том числе и потому, что после достижения критической длины трещины происходит быстрое.  [c.47]

При синергетическом описании эволюции открытых систем рассматриваются переходы от одних механизмов самоорганизации (способы диссипации энергии при разрушении материала) к другим в критических точках неустойчивости, которые названы точками бифуркации [43-46]. В точках бифуркации система претерпевает принципиальные изменения в способности реагировать на подводимую энергию извне, а следовательно, кинетические уравнения в точках бифуркации должны дискретно сменять любой свой вид, либо дискретно меняются параметры этих уравнений. Чтобы применить к металлу указанный подход описания эволюции открытых систем с целью изучения распространяющихся трещин в элементах конструкций при многопараметрическом воздействии, необходимо показать существование в металле строго упорядоченных процессов (механизмов) разрушения и доказать независимость их реализации от условий или параметров внешнего воздействия.  [c.100]

Процессы пластической деформации реализуются последовательно в результате переходов от единичных актов движения дислокаций к коллективным процессам их движения с окончательным переходом к единичным, а далее к коллективным процессам ротационной неустойчивости деформации (отдельные и коллективные повороты объемов материала). При этом процесс скольжения (сдвиговая деформация) сосуществует с ротациями объемов металла.  [c.143]

Дальнейшее увеличение количества частиц в газовом потоке повышает вероятность их стыкования в радиальном направлении и приводит к наращиванию плотности объемной решетки , доводя ее при максимальной концентрации до состояния фильтрующегося движущегося плотного слоя (рис. 8-1,d). Такой аэротранспорт имеет максимальную производительность (гиперфлоу). Перепад давления в подобных плотных дисперсных потоках расходуется лишь на трение частиц о стенки канала и на преодоление веса столба транспортируемого материала (восходящий слой). Следует указать и на промежуточную неустойчивую зону, в которой проскоки газа заполняют все поперечное сечение канала и разделяют компактные массы частиц на отдельные пробки материала (рис. 8-1,г). Эта схема аналогична поршневому режиму псевдоожижения. В наших опытах подобный режим возникал при неотрегулированной работе питающего устройства. По данным (Л. 188] частицы песка и алюминия транспортировались в вертикальном канале воздухом, СОг и гелием при j, = 254-f-2200 кг кг (р = — 0,13 м 1м ) лишь в пробковом режиме.  [c.249]

При вязком разрушении по механизму образования, роста и объединения пор критической величиной служит, как правило, пластическая деформация е/ в момент разрыва — образования макроразрушения. Для расчета е/ Томасоном, Макклинтоком, Маккензи и другими исследователями предложен ряд моделей, в которых критическая деформация при зарождении макроразрушения связывается с достижением некоторой другой эмпирической критической величины, например с критическим расстоянием между порами, с критическими напряжениями в перемычках между порами, с критическим размером поры и т. п. Альтернативным подходом к определению ef, не требующим введения эмпирических параметров, является физико-механическая модель вязкого разрушения, использующая понятие микро-пластической неустойчивости структурного элемента. В модели предполагается, что деформация sf отвечает ситуации, когда случайное отклонение в площади пор по какому-либо сечению структурного элемента не компенсируется деформационным упрочнением материала и тем самым приводит к локализации деформации по этому сечению, а следовательно, к потере пластической устойчивости рассматриваемого элемента без увеличения его нагруженности.  [c.147]


Будем полагать, что в момент начала процесса неустойчивого деформирования за счет наличия пор нагруженность материала такова, что его реология начинает подчиняться закону упругопластического, а не упруговязкого деформирования. При этом принимается, как и в подразделе 2.2.2, что локальное изменение деформации в характерном сечении не приводит к изменению соотношения компонент тензора напряжений (а следовательно, и параметров qn = a fOi и q,n omfoi) в структурном элементе. Окончательно условие достижения критической деформации при межзеренном разрушении формулируется аналогично условию предельного состояния в случае внутризеренного вязкого разрушения  [c.156]

С нашей точки зрения, снижение критической деформации в агрессивной среде в первую очередь связано с увеличением темпа развития повреждений и, как следствие, с ростом скорости деформации в режиме ползучести (см. раздел 3.3). Уменьшение критического уровня повреждаемости при кавитационном разрушении маловероятно, так как на критическое событие — слияние микропор, обусловленное пластической неустойчивостью, — не будет оказывать влияние когезивная прочность материала. Итак, предположим, что критическая повреждае-  [c.167]

Пусть при некотором значении ро<Рт процесс нагружения был остановлен. После этого начинается второй этап медленной затухающей ползучести из точки М в точку М. Такой процесс выпучивания устойчив, поскольку он ограничен по перемещениям. Если рт <Ро<Рт (точка N на рис. 15.5), то, несмотря на ограниченную ползучесть материала, выпучивание конструкции не прекратится вплоть до достижения мерой выпучивания f некоторого критического значения, после чего происходит выщелкивание элемента конструкции, которое называют иногда локальной катастрофой. Локальная катастрофа в квазистатической постановке представляет собой во времени разрывную бифуркацию. Если материал обладает неограниченной ползучестью, то постановка задачи об устойчивости на неограниченном интервале времени не имеет места. Всякий процесс выпучивания при неограниченной ползучести является неустойчивым (рис. 15.6). При некотором конечном значении времени / скорость выпучивания  [c.324]

Макроуровень. Неустойчивость разрушения на этом уровне при отрыве в условиях плоской деформации контролируется максимальным размером зоны пластической деформации, являютцимся инвариантом к внешним условиям и зависящим только от предела текучести материала (стт) [23]  [c.342]

Полученные данные свидетельствовали о структурно-ориентационной неустойчивости мезоструктуры в поле приложенных внешних сил. и выявляемые полосы с мелкими зернами оказывали на критическое состояние материала при переходе от мезо- к макроскопическому масштабу. Они оказывались предвестником образования ые-сплошностей, способных насквозь пересечь деформируемую листовую заготовку. Установлено, что управляющим параметром в использованной термомеханической обработке являлось критическое обжатие, связанное с де юрмационными возможностями сплава.  [c.31]

Как ни странно, но между биологической эволюцией и эволюцией Вселенной e ib много общего. Формирование биологических видов и создание планет — это создание новой информации в результате случайного выбора, возникающего при неустойчивости исходного состояния. Конкуренция и естественный отбор присущи как живой, так и неживой природе. Гравитационные неоднородности, давшие толчок формированию звезд и планетных систем, конкурировали друг с другом за конденсируемый материал. Название основного труда Ч. Дарвина Происхождение видов путем естественного отбора говорит само за себя. Не так уж наивен был Эмпедокл, который задолго до теории Дарвина объяснял происхождение различных видов животных результатом отбора. По его курьезной теории, случайные комбинации различньис органов (ног, хвостов, туловищ) подверга-224  [c.224]

Р — коэффициент пластической неустойчивости металла мягкой прослойки, работающей в составе листовых конструкций, (для материала, описываемого диаграммой деформирования жесткопластичного тела по критерию dfa / fife = О (и = 0,5)).  [c.105]

Эта длина неустойчивой трещины при заданном напряжении а. Таким образом, по Гриффитсу прочность материала при хрупком разрушении определяется наличием уже существующих микротрещин. При известном распределении трещин в материале прочность его тем выше, чем выше его поверхностная энергия П. Проводилась экспериментальная проверка этой теории применительно к стеклу, которая состояла в определении прочности стекла в зависимости от длины искусственно создаваемых трещин. Было получено вполне удовлетворительное соответствие для такого хрупкого материала, как стекло.  [c.74]

Функция ф(е) для реальных материалов всегда оказывается монотонно возрастающей, с увеличением деформации напряжение увеличивается. Это условие означает, что материал сам по себе устойчив. Но в опыте на растяжение непоюредотвенно измеряется сила или пропорциональная ей величина Оо. Может случиться, что процесс растяжения окажется неустойчивым, это значит, что величина о или Р, достигнув некоторого предельного значения, начнет уменьшаться при дальнейшем росте деформации.  [c.144]

Необходимо подчеркнуть, что теорема единственности доказана нами для геометрически линейной постановки задачи теории упругости. Если условие (8.4.8) не выполнено, единственности может не существовать. Это может означать одно из двух о либо принятая модель сплошной среды некорректна, либо материал неустойчив. При- Рис. 8.4.1 мером такого неустойчивого материала служит материал с падающей диаграммой растяжения, подобной изображенной на рис. 8.4.1. Видно непосредственно, что одному п тому же значению напряжения на этой диаграмме соответствуют два разных значения деформации. Вопрос о действительном существовании таких неустойчивых упругих материалов остается открытым диаграммы вида изображенной на рис. 8.4.1 наблюдаются при описании пластического поведения и представляют зависшюсть условного напряжения, т. е. растягивающей силы от деформации. Пример неустойчивости такого рода был рассмотрен в 4.13. Для геометрически нелинейных систем теорема единственности несправедлива нарушение единственности соответствует потере устойчивости упругого тела. Рассмотрению подобного рода задач в элементарной постановке была посвящена вся четвертая глава.  [c.247]

Чтобы исследовать устойчивость равновесия, мы можем вообразить импульсные возмущения, за которыми следуют действительные вариации равновесных перемещений. Поскольку диссипации энергии нет, сумма потенциальной и кинетической энергий остается постоянной. Если при отклонении от равновесной конфигурации потенциальная энергия должна увеличиваться, то кинетическая энергия должна уменьшаться. Однако если потенциальная энергия должна уменьшаться, то кинетичеткая энергия будет возрастать. Эти два случая описываются соответственно как устойчивый и неустойчивый по отношению к малым возмз/-щениям. Устойчивость, очевидно, требует, чтобы потенциальная энергия в положении равновесия достигала минимума, а неустойчивость—чтобы она была максимальной. При таком использовании потенциальной энергии подразумевается, что в движении, следующем за возмущением 1) объемные и поверхностные силы двигаются вместе с элементами материала, на которые они действуют в равновесной конфигурации, и 2) эти силы не меняют ни величины, ни направления.  [c.262]

Этим трем основным стадиям должна предшествовать труд-нонаблюдаемая ) стадия образования звезд. Считается, что звезды рождаются группами в протяженных газово-пылевых облаках вследствие гравитационной неустойчивости однородного распределения материи места случайного увеличения плотности облака становятся (из-за нарушения гравитационного равновесия) центрами, к которым вещество стекается, — центрами гравитационной конденсации вещества. Они и являются зародышами будущих звезд. Стадия образования звезды — стадия гравитационного сжатия — является сложным и пока еще не до конца понятым периодом ее эволюции. Мы остановимся здесь только на конечных результатах процесса гравитационного сжатия. В процессе сжатия температура звезды, точнее протозвезды, должна постепенно увеличиваться. Количественную оценку степени разогревания звезды можно получить из теоремы вириала. Согласно этой теореме у звезды, находящейся в механическом равновесии, средние по времени энергия епл теплового движения и гравитационная энергия Vg связаны соотношением  [c.601]


Наиболее просто формулируется условие локального разрушения в теории так называемых квазихрупких трещин, когда наибольший размер области необратимых деформаций в рассматриваемой точке контура трещины мал по сравнению с длиной трещины и расстоянием этой точки до ближайшей границы тела. Простейший вариант этого условия на основе физических и математических идей А. А. Гриффитса [347, 348], Г. Нейбера [190] и Г. М. Вестергарда [432, 433] был предложен Дж. Р. Ир вином [354—358]. Он заключается в том, что коэффициент при особенности в выражении для напряжений в рассматриваемой точке в момент локального разрушения (и продвижения трещины в этой точке) считается равным некоторой постоянной материала при этом напряжения вычисляются в предположении, что тело идеально yrapyroie. По1Скольку указанный коэффициент представляет собой некоторую функцию внешних нагрузок, длины трещины и геометрии тела, находимую ш решения упругой задачи в целом, условие локального разрушения на (контуре трещины в принципе позволяет определить е развитие и, л частности, отыскать ту комбинацию внешних нагрузож, которая разделяет области устойчивости и неустойчивости (подробнее об этом будет сказано в следующих параграфах).  [c.16]

В результате испытаний устанавливается стойкость материала к тепловым воздействиям, причем она в различных случаях может быть неодинаковой например, материал, выдерживающий кратковременный нагрев до некоторой температуры, может оказаться неустойчивым по отношению к тепловому старению при длительном воздействии даже более низкой температуры и т. п. Как указывалось, испычанип на действие повышенной температуры иногда проводятся при одновременном воздействии повышенной влажности воздуха (тропические условия) или электрического поля.  [c.84]


Смотреть страницы где упоминается термин Материал неустойчивый : [c.156]    [c.165]    [c.132]    [c.320]    [c.134]    [c.10]    [c.155]    [c.92]    [c.538]    [c.71]    [c.143]    [c.148]    [c.150]    [c.160]   
Основы теории пластичности Издание 2 (1968) -- [ c.83 ]



ПОИСК



Материал структурно-неустойчивый

Механически неустойчивые материалы

Неустойчивость

Неустойчивость состояния материала. Material instability. Materielle Unstabilit

Пластическая деформация кристаллических материалов в условиях структурной неустойчивости

Ра неустойчивое



© 2025 Mash-xxl.info Реклама на сайте