Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплошная среда, модель

Сплошная среда — модель деформируемых тел, жидкостей и газов, как угодно изменяющих свою форму в процессе движения. Механические и физические характеристики отдельных точек этой среды представляют средние значения характеристик молекул, заключенных в макрочастице, окружающей точку.  [c.8]

Можно отметить следующие особенности предлагаемого учебного пособия. Более полно изложены основные физические модели сплошной среды — модели упругости, пластичности и ползучести, методы решения упругопластических задач и задач ползучести применительно к стержням и другим элементам конструкций.  [c.6]


В зависимости от структуры моделирующей среды модели-аналоги разделяются на модели — сплошные среды, модели-сетки и комбинированные модели, являющиеся сочетанием первых и вторых. Достоинства, недостатки, а также примеры применения этих моделей освещены в работах [42, 45, 95, 105, ПО, ИЗ, 117, 274].  [c.16]

V — относительный объем сплошной компоненты а и — нормальные к поверхности препятствия напряжение и компонента девиатора тензора напряжений Q — поток энергии (излучения) р — осредненная плотность разрушаемого материала. Уравнение энергии записано в соответствии с работой [151] для сплошной компоненты материала. Удельная энергия разрушаемой среды состоит из энергии сплошного материала, энергии с наличием пор и энергии, идущей на образование новых поверхностей разрушения. При записи последнего уравнения (VI.1) учтена только энергия сплошной среды. Модель (VI.1), как и модель пузырьковой жидкости, является односкоростной, т. е. возникающие в процессе разрушения поры как бы вморожены в матрицу сплошного материала и движутся вместе с ней. Скорость деформации  [c.161]

В предыдущих главах мы уже познакомились с рядом важных классических моделей сплошных сред моделью идеальной жидкости и газа, моделью упругого тела, моделью вязкой жидкости, моделью проводящей жидкости в магнитной гидродинамике и др. Этот список далеко не исчерпывает совокупность известных моделей суш ествует ряд других моделей, с некоторыми из них мы познакомимся дальше. В настоящее время в связи с применением новых материалов, расширением диапазонов использования уже употребляемых материалов, необходимостью учета электромагнитных свойств и эффектов в механике, применением условий большого вакуума или, наоборот, очень больших давлений, сверхнизких температур или, наоборот, очень больших температур, в связи с рассмотрением сложных явлений в живых организмах и т. д. и т. п. проблема построения новых моделей актуальна. Теория построения новых моделей в физике и механике в настоящее время развивается интенсивно.  [c.334]

Сплошная среда — модель, в которой  [c.11]

В соответствии с используемой в механике сплошных сред моделью осред-ненного движения и взаимодействия молекул, где рассматриваются средние величины, непрерывно распределенные по заданному объему газа, основными физико-математическими характеристиками совокупности молекул в этом объеме являются  [c.13]


В работе автора (Ивакин, 1950) эти сплошные модели иногда называются моделируемыми упругими сплошными средами (или приведенными к сплошной среде моделями).  [c.215]

В методическом отношении книга написана весьма удачно. Изложение начинается с формулировки общих принципов сохранения, справедливых для любой сплошной среды, а затем вводятся замыкающие реологические и термодинамические соотношения (уравнения состояния), подробное обсуждение которых и составляет основное содержание книги. Характер таких уравнений состояния положен в основу классификации реальных неньютоновских сред. При атом наряду с формальным континуальным подходом авторы широко используют феноменологический подход и постоянно апеллируют к интуиции читателя, что способствует расширению круга читателей за счет лиц, обладающих различными типами мышления. Б отличие от большинства известных работ формально-аксиоматического направления авторы большое внимание уделяют принципу объективности поведения материала, что позволяет выделить модели, описывающие реальные материалы, из  [c.5]

В [Л. 113] гидросмесь трактуется как сумма двух потоков фиктивных континуумов (жидкости и частиц). В отличие от большинства других исследователей М. А. Дементьев специально подчеркивает эту фиктивность, оправдывая ее лишь приложимостью методов механики сплошной среды. В [Л. 113] для оценки надежности использования модели фиктивного континуума рекомендуется сопоставлять объем характерного структурного образования турбулентности, определяемого кубом поперечного масштаба турбулентности  [c.29]

Как следует из вышеизложенного, анализ зарождения и развития разрушения в элементе конструкции в значительной степени зависит от универсальности тех или иных локальных критериев разрушения. При формулировке критериев эмпирическим путем — только на основе непосредственных механических испытаний — возникает опасность неадекватной оценки разрушения конструкции при нагружении, отличном от нагружения при проведенных экспериментах. Повысить степень универсальности локальных критериев можно, опираясь на физические механизмы, протекающие на микроуровне. Одним из путей решения данного вопроса является создание физико-механических моделей разрушения материала, на основании которых могут быть даны формулировки локальных критериев разрушения в терминах механики сплошной среды на базе физических и структурных процессов деформирования и повреждения материала.  [c.9]

Компонентные и топологические уравнения. Для одного и того же объекта (детали) на микро- и макроуровнях используют разные математические модели. На микроуровне ММ должна отражать внутренние по отношению к объекту процессы, протекающие в сплошных средах. На макроуровне ММ того же объекта служит для отражения только тех его свойств, которые характеризуют взаимодействие этого объекта с другими элементами в составе исследуемой системы.  [c.166]

Для описания движения материальных объектов, в том числе и гетерогенных смесей, необходимы схематизации и математические модели. Вопросы математического моделирования гетерогенных систем слабо отражены в монографиях по механике. И именно этим вопросам посвящена основная часть (около 70% ) настоящей книги. Рассматривается как феноменологический метод (гл. 1), так и более глубокий и более сложный метод осреднения (гл. 2 и 3), а также их совместное использование (гл. 4). Автор стремился излагать материал, выявляя основные идеи, с единых позиций, установившихся в механике сплошных сред. Настоящая монография, но существу, представляет раздел механики сплошных сред, а именно — основные уравнения механики сплошных гетерогенных сред.  [c.5]

Конкретизация модели многофазной сплошной среды, естественно, требует привлечения механических и термодинамических свойств фаз. При этом практически всегда предполагают, что свойства каждой фазы в смеси определяются теми же самыми соотношениями, что и в случае, когда эта фаза занимает весь объем, причем деформация в эти соотношения входит через истинный тензор деформации 8 и истинные скорости деформации Таким образом, зная свойства каждой фазы, имеем уравнения состояния (1.2.12)  [c.32]


Приближенные методы описания гидродинамики газожидкостных систем в рамках феноменологического подхода можно классифицировать следующим образом [62] простые аналитические методы, к которым относятся модели гомогенного и раздельного течений интегральный и дифференциальный анализы течений модель сплошной среды, а также специальные методы. Все эти методы основаны на допущениях, справедливость которых достаточно ограниченна.  [c.184]

Наиболее обоснованной моделью течения двухфазной среды является так называемая модель сплошной среды, основанная на построении и решении дифференциальных уравнений неразрывности и Навье—Стокса для каждой из фаз вместе с граничными условиями и условиями на межфазной поверхности.  [c.186]

Таким образом, в данном разделе была предложена двухжидкостная модель течения газожидкостной смеси, использованная затем для описания режима расслоенного течения газожидкостной смеси в горизонтальном канале. Данный метод позволяет получить корректные результаты при условии, что длина волны возмущений, распространяющихся в системе, много больше характерного размера канала. В следующем разделе в рамках модели сплошной среды будет дан теоретический анализ расслоенного течения  [c.202]

В предыдущем разделе на базе уравнений двухжидкостной модели были определены гидродинамические характеристики расслоенного течения жидкости и условия стабильности данного режима течения при распространении возмущений в системе. В ряде случаев, когда допущения, принятые в разд. 5.3 при выводе уравнений расслоенного течения, теряют свою правомерность, необходим более строгий теоретический анализ, основанный на фундаментальных уравнениях гидромеханики. Такой метод, как было указано в разд. 5.1, получил название модели сплошной среды. В данном разделе в рамках этой модели будут даны постановка и решение задачи о распространении возмущений в газожидкостной системе и о стабильности межфазной поверхности при расслоенном течении в горизонтальном канале [67].  [c.203]

Как уже говорилось выше, прп достаточно высоких относительных скоростях фаз расслоенное течение может перейти в снарядное [69]. В следующем разделе на основе интегрального ана.тиза II модели сплошной среды будет построена модель снарядного течения газожидкостной смеси.  [c.208]

Математической моделью технического объекта на микроуровне является система дифференциальных уравнений в частных производных, описывающая процессы в сплошной среде с заданными краевыми условиями. Система уравнений, как правило, известна (уравнения Ламе для механики упругих сред уравнения Навье—  [c.5]

Моделирование реальных физических систем, имеющих сложную структуру, материальной точкой, механической системой и сплошной средой, является результатом упрощения, идеализации и стилизации физического явления и пренебрежением его несущественных свойств. В связи с этим точное математическое исследование моделей является приближенным исследованием физической задачи.  [c.8]

Если в рассмотренных моделях жидкостей учесть электромагнитные силы, действующие иа точки сплошной среды, то получим модели жидкостей магнитной гидродинамики.  [c.557]

Описание модели сплошной среды  [c.24]

Книга является введением в современную механику сплошных сред. В ней изложена общая теория определяющих уравнений и термодинамики сплошных сред. Рассмотрена общая теория деформаций (нелинейный случай), построены модели гиперупругой среды и рассмотрены частные случаи модели пластической среды, вязкоупругость и теория течения вязких жидкостей. В приложениях приведен весь необходимый математический и термодинамический аппарат.  [c.351]

Систему материальных точек в том случае, когда число их очень велико и они расположены плотно друг по отношению к другу, можно приближенно заменить моделью сплошной среды, с непрерывным распределением вещества, его физических свойств (плотности, вязкости, тепло- и электропроводности и др.), а также общих механических характеристик движения среды (перемещений, скоростей, ускорений, сил и др.).  [c.103]

Предметом изучения кинематики служат те же модели материальных тел, что и принятые в статике. Это — материальная точка и система материальных точек, сплошная среда и ее частный вид — абсолютно твердое тело, но, конечно, в той степени абстракции от физических свойств, которая присуща геометрическим образам кинематики, о чем уже была речь выше.  [c.144]

Если в теории сопротивления материалов расчетные формулы получают на основе гипотезы недеформируемого поперечного сечения стержня, то в теории упругости это ограничение не учитывается. Выводы теории упругости позволяют рассматривать деформации упругих тел произвольных размеров и очертаний, которые не могут быть решены элементарными методами теории сопротивления материалов. Вместе с тем теория упругости так же, как и другие разделы механики сплошных сред, не может обойтись без некоторых общих предположений относительно модели рассматриваемого тела. Такие предположения предусматривают  [c.5]

При модо.лироваиии полей с помощью поля электрич. тока в сплошной среде модель выполняется из полупроводника [жидкий электролит, залитый в сосуд из  [c.268]

Рассмотрт другие частные модели сплошных сред модель линейного упругого тела и модель линейной вязкой жидкости. Построение этих моделей проводится параллельно, так как способы их введения, как мы увидим, формально аналогичны. По существу же эти две модели описывают два совершенно различных типа механического поведения реальных сред.  [c.165]


Для некоторых элементов необходимо задавать константы элемента. В основном, константы задаются для элементов, которые используются для моделирования трехмерных моделей сплошной среды моделями низшей размерности, нанример, в случае фермеппых, балочных и оболочечных элементов. Константы  [c.9]

Большинство имеющихся на русском языке монографий аналогичного направления либо написаны в слишком формально-математизированном стиле, едва ли доступном широкому кругу инженеров и других читателей, не имеющих специальной физико-математической подготовки, либо же чересчур упрощают предмет и не дают единого взгляда на него, в результате чего основополагающие фундаментальные принципы оказываются затерянными в массе сведений чисто прагматического характера, касающихся многочисленных конкретных реальных сред и частных типов их движения, распространенных в природе и технологии. В этом отношении книга Астариты и Марруччи восполняет определенный пробел, обеспечивая физически содержательное и в необходимой степени математически строгое введение в теоретическую реологию и в общую теорию моделей сплошных сред.  [c.5]

Большинство феноменологических моделей, описывающих процесс разрушения, в том числе усталостного, основываются на рассмотрении элементарного акта разрушения в бесконечно малом объеме материала [12, 38, 141, 282, 336, 349, 351]. Такой подход обязательно приводит к постулированию совпадения зон максимального повреждения и разрушения материала. При моделировании развития трещин в сплошной среде, где любой параметр НДС и повреждения относится к материальной точке, разрушение должно пройти через совокупность точек с максимальной повреждаемостью. В целом ряде случаев построенные на этой основе модели не позволяют объяснить существующие экспериментальные данные. Например, известно, что при смешанном нагружении тела с трещиной, описываемом совместным изменением КИН Ki и Ки, фактическое увеличение скорости развития трещины при росте отношения AKnl Ki оказывается существенно выше, чем это следует из НДС (и соответственно повреждения) в точках, через которые пройдет трещина [58]. В предельном случае при нагружении тела с трещиной только по типу II скорость роста определяется величиной максимальных деформаций, локализованных на продолжении трещины, а направление развития разрушения оказывается перпендику-  [c.136]

На макроуровне используют математические модели, описывающие физическое состояние и процессы в сплошных средах. Для моделирования применяют аппарат уравнений математической физики. Примерами таких уравнений служат дифференциальные уравнения в частных производных—уравнения электродинамики, теплопроводности, упругости, газовой динамики. Эти уравнения описывают поля электрического потенциала и температуры в полупроводниковых кристаллах интегральных схем, напряженно-деформированное состояние деталей механических конструкций и т. п. К типичным фазовым переменным на микроуровне относятся электрические потенциалы, давления, температуры, концентрадии частиц, плотности токов, механические напряжения и деформации. Независимыми переменными являются время и пространственные координаты. В качестве операторов F и У в уравнениях (4.2) фигурируют дифференциальные и интегральные операторы. Уравнения (4.2), дополненные краевыми условиями, составляют ММ объектов на микроуровне. Анализ таких моделей сводится к решению краевых задач математической физики.  [c.146]

Математические модели деталей и процессов на микроуровне отражают физические процессы, протекающие в сплошных средах и непрерывном времени. Независимыми переменными в этих моделях являются пространственные координаты и время. В качестве зависимых переменных выступают фазовые переменные, такие как потенциалы, напряженности полей, концентрации частиц, деформации и т. п. Взаимосвязи переменных выражаются с помощью уравнений математической физики — интегральных, интег-родифференциальных или дифференциальных уравнений в частных производных. Эти уравнения составляют основу ММ на микроуровне.  [c.154]

E j h в рассмотренных моделях жидкостей учесть э ектро-магпитпые силы, действующие на точки сплошной среды, то ioj y4HM модели жидкостей магнитной гидродинамики.  [c.575]

В главе изложены математические основы МДТТ, необходимые для более глубокого изучения курса, основные понятия и описание модели сплошной среды.  [c.7]

Как известно из общего курса физики, материальные тела обладают сложной молекулярной структурой, причем молекулы среды совершают тепловые движения хаотичные в газах, более или менее упорядоченные в жидкостях и аморфных телах и колебательные в кристаллических решетках твердых тел. Эти внутренние движения определяют физические свойства тел, которые в модели сплошной среды задаются наперед основными феноменологическими закономерностями (например, законы Бойля — Мариотта, Клапейрона — в газах, законы вязкости — в ньютоновских и неиыотоповских жидкостях, закон Гука — в твердых телах).  [c.103]

Простейшим примером сплошной среды служит рассмотренная в предыдущих главах модель абсолютно твердого тела. Характерная особенность статики абсолютно твердого тела заключается в отсутствии сколько-нибудь значительного внимания к вопросу о внутренних силах в такого рода телах. В 4 коротко говорилось о принципе затвердевания, который устанавливает необходимые условия равновесия деформируемых сред, сводящиеся к уравнениям равновесия соответствующих, выделенных в них, затвердевших объемов под действием приложенной совокупности внешних сил. Понятие о внутренних силах вводилось в том же 4 в связи с применением метода сечений, идея которого сохраняет свою силу и в статике сплошной деформируемой среды. Р4менно в механике сплошных сред понятие о внутренних силах раскрывается во всей своей глубине.  [c.103]

Своеобразие модели сплошной среды как бесконечного множества точек, непрерывно заполняющих некоторую область пространства, вынуждает особо подходить к способу задания ее положения в данный момент времени, а тачсже ее движения во времени.  [c.329]

Проведем в установившемся потоке (т. е. таком, что поле скоростей в нем не зависит от времени — стационарно) одтю-родной идеальной несжимаемой жидкости бесконечно тонкую трубку тока (рис. 326). Если жидкость однородна и кесжп-маема, то плотность ее одинакова во всем потоке. Идеальная л<идкость представляется такой моделью сплошной среды, в которой при ее движении полностью отсутствуют касательные на-пря /кения (внутреннее трение). Выделим в трубке в данный момент времени t объем, заключенный между двумя ортогональными к боковой поверхности трубки сечениями Oi и В смежный момент t + dt выделенный объем жидкости сместится вдоль труб- >-ки тока и займет положение, ограни- ченное сечениями а и а.  [c.245]

На основе энергетических пршщипов механики сплошных сред внутренние и внешние силовые факторы в однопараметрической модели конструкции связаны следующим образом /29/  [c.127]

Как мы видели, трещина в деформируемом теле создает очаг возмущения напряженного состояния, характерный сильной концентрацией напряжений у ее острия. На первый взгляд любая малая трещина благодаря стремлению напряжений к неограниченному росту с приближением к кончику трещины должна была бы породить прогрессирующий процесс разрушения. Однако такой теоретический результат следует из модели идеально упругой сплошной среды и не соответствует реальным физическим свойствам материала. Дискретная структура реального материала и нелинейность механических соотношений для него в сильной степени изменяют картину фиаико-меха-нического состояния, следующую из линейной теории упругости. В результате, как показывает опыт, в одних условиях трещина может устойчиво существовать, не проявляя как-либо себя, а в других — происходит взрывоподобный рост треш ины, приводящий к внезапному разрушению тела. Существуют попытки проанализировать это явление на атомном уровне методами физики твердого тела. Они представляют определенное перспективное направление в этой проблеме, но, к сожалению, до сих пор полученные здесь результаты далеки от уровня прикладных инженерных запросов.  [c.383]



Смотреть страницы где упоминается термин Сплошная среда, модель : [c.350]    [c.149]    [c.219]    [c.7]    [c.12]    [c.10]    [c.382]    [c.382]   
Курс теоретической механики. Т.1 (1982) -- [ c.103 ]



ПОИСК



Анизотропия и квазианизотропия, причины анизотропии, анизотропия и напряжения, модели ВТИ, ГТИ СПЛОШНЫЕ НЕУПРУГИЕ ИЗОТРОПНЫЕ СРЕДЫ

Дискретно-вариационный метод и построение энергетически согласованных дискретных моделей сплошных сред

Добавление II Седов, Модели сплошных сред с внутренними степенями свободы

Замкнутые системы механических уравнений для простейших моделей сплошных сред. Некоторые сведения из тензорного анализа

Классификация сплошных сред и их различные модели Замыкание основной системы уравнений движения сплошной среды и ее вид для разных сред

Конечноэлементные модели нелинейного термомеханического поведения сплошных сред

ЛИНЕЙНЫЕ МОДЕЛИ ЖИДКОСТИ Жидкость как сплошная среда скоростного типа

Механическая модель сплошной среды

Модели локально активных сплошных сред

Модели скоростного разреза, расчет времен, коэффициенты отражения, миграция, изображение рассеивающих объектов, кратные волны СПЛОШНЫЕ УПРУГИЕ АНИЗОТРОПНЫЕ СРЕДЫ

Модели — сплошные среды Особенности моделей — сплошных сред

Модель сплошной среды макроскопическая

Модель сплошной среды, используемая при решении вопросов механики (в частности, механики жидкости). Силы, действующие на жидкость. Напряженное состояние жидкости

Модель сплошной среды. Описания процессов

Описание модели сплошной среды

Основные подходы к построению математических моделей в механике сплошной среды

Предмет механики жидкости и газа. Модель сплошной текучей среды

Прибор для настройки характеристик нелинейных элеменЗадание дискретных граничных условий на моделях — сплошных средах

Среда модель

Среда сплошная

Упрощенные нелинейные энергетически соглесованные континуальные модели сплошных сред



© 2025 Mash-xxl.info Реклама на сайте