Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжение концентраторы

Концентрация напряжения. Концентраторы. Методы расчета напряжения, которые рассматривались в двух предыдущих главах, пригодны лишь для стержней, у которых размеры поперечных сечений неизменны или изменяются подлине стержня достаточно плавно и постепенно. Между тем конструктивные элементы, применяемые в строительстве и особенно в машиностроении, часто имеют резкие местные изменения формы упругого тела. Вблизи этих мест картина напряженного состояния сильно меняется, и в некоторых точках напряжения могут значительно превосходить те, которые получаются при расчетах по выведенным выше формулам.  [c.163]


Окружающая среда (низких температур) оказывает большое влияние на прочность деталей при эксплуатации экскаваторов и других машин в условиях Крайнего Севера. Разрушение деталей происходит главным образом по причине недостаточного учета хладноломкости материалов, некачественной сварки (наличие остаточных напряжений, концентраторов напряжений, шлаковых и газовых включений и др.) и конструктивных несовершенств деталей.  [c.221]

Исследования в области механики контактных взаимодействий, химических и диссипативных процессов в поверхностных и приповерхностных слоях трущихся материалов показывают, что материал в указанных зонах в процессе трения резко изменяет свое физическое состояние, меняя механизм контактного взаимодействия. Происходят существенные изменения в суб- и микроструктуре приповерхностных микрообъемов. Изучение кинетики структурных, фазовых и диффузионных превращений, прочностных и деформационных свойств активных микрообъемов поверхности, элементарных актов деформации и разрушения, поиск численных критериев оптимального структурного состояния, оценок качества поверхности должны быть фундаментальной основой в поисках материалов и сред износостойких сопряжений. В настоящее время исследованы закономерности распределения пластической деформации по глубине поверхностных слоев металлических материалов, кинетика формирования вторичной структуры, процессы упрочнения, разупрочнения, рекристаллизации, фазовые переходы, которые, в свою очередь, зависят от внешних механических воздействий, состава, свойств трущихся материалов и окружающей среды. Важное значение в физике поверхностной прочности имеет определение связи интенсивности поверхностного разрушения при трении и величины развивающейся пластической деформации. Сложность указанной проблемы заключается в двойственности природы носителей пластической деформации. Дислокации, дисклинации и другие дефекты структуры являются концентраторами напряжений, очагами микроразрушения. В то же время движение дефектов (релаксационная микропластичность) приводит к снижению уровня напряжений концентратора, следовательно, замедляет процесс разрушения. Условия деформации при трении поверхностных слоев будут определять преобладание одного из указанных механизмов, от которого будет зависеть интенсивность поверхностного разрушения. Межатомный масштаб связан с характерным сдвигом, производимым элементарными носителями пластической деформации (дислокациями). В легированных металлических системах величина межатомного расстоя-  [c.195]


Для оценки действительного понижения усталостной прочности в зависимости от концентрации напряжений при переменных нагрузках вводится эффективный (практический) коэффициент концентрации, представляющий собой отношение предельных номинальных напряжений, вызывающих разрушение деталей, не имеющих и имеющих концентраторы напряжений. Эффективный коэффициент концентрации напряжений меньше теоретического (расчетного) коэффициента и только для высокопрочных материалов с малой пластичностью эффективный коэффициент концентрации почти равен теоретическому. Чем выше прочность стали и хуже пластические свойства, тем сильнее влияние надрезов, причем с увеличением размера образца влияние надреза увеличивается. Чем менее пластичен материал, тем выше эффективный коэффициент концентрации напряжений и наоборот. Пластичные материалы обладают способностью сглаживать неблагоприятные для усталостной прочности пики напряжений концентратора.  [c.410]

Фокусом излома называют малую зону вокруг места возникновения начальной микроскопической трещины усталости (рис. 20.5). Чаще всего фокус излома располагается на поверхности изделия в местах концентрации напряжений. Концентраторы напряжений могут быть как конструктивными, так и в виде поверхностных дефектов (царапины, трещины, неметаллические включения и т. п.). При наличии сильных внутренних дефектов или при поверхностном упрочнении (цементация, азотирование, наклеп и т. д.) фокус излома может располагаться и под поверхностью детали.  [c.335]

Величина ударной вязкости КС определяется как отношение энергии, затраченной на разрушение образца при испытании на двухопорный ударный изгиб, к плош,ади его начального поперечного сечения в месте концентратора напряжений. Концентраторами напряжений в образцах для испытаний являются надрезы различной формы или нанесенная трещина усталости. В зависимости от вида концентратора напряжений ударную вязкость обозначают  [c.101]

На процесс разрушения при циклических нагрузках существенное влияние оказывают концентраторы напряжений. Концентраторы напряжений могут быть конструктивными (резкие переходы от сечения к сечению), технологическими (царапины, трещины, риски от резца), металлургическими (поры, раковины, неметаллические включения). Независимо от своего происхождения концентраторы напряжений в той или иной степени снижают предел выносливости при одном и том же уровне переменных напряжений. Для оценки влияния концентратора напряжений на усталость испытывают гладкие и надрезанные образцы при симметричном цикле напряжений. Надрез на образце выполняется в виде острой круговой выточки. Отношение предела выносливости, определенного на гладких образцах о , к пределу выносливости, определенному на надрезанных образцах , называют эффективным  [c.49]

С целью изучения последствий концентрации напряжений концентраторы напряжений можно разделить на весьма локальные и размытые. Весьма локальные концентраторы напряжений характеризуются тем, что объем области, занятой материалом с повышенными напряжениями, пренебрежимо мал по сравнению со всем объемом нагруженного тела. В случае размытых концентраторов напряжений объем, занятый материалом с повышенными напряжениями, составляет значительную часть всего объема нагруженного тела. Таким образом, при локальной концентрации напряжений общие размеры и форма всего напряженного тела не будут существенно изменяться в случае текучести материала в зоне концентрации, тогда как при размытой концентрации напряжений они существенно изменятся. Например, малые отверстия и скругления малого радиуса обычно считаются весьма локальными концентраторами напряжений, а крюки и шарнирные соединения серег с проушинами относятся к размытым концентраторам напряжений.  [c.400]

НИИ и развитии процесса коррозионного растрескивания огромную роль играют электрохимические факторы возникновение на поверхности сплава гальванических элементов под влиянием различных причин приводит к образованию концентраторов напряжения. Концентраторы напряжений в свою очередь способствуют коррозионному растрескиванию сплавов. Растрескивание напряженного металла можно условно рассматривать как процесс, состоящий из нескольких стадий начальной, когда разрушение идет только в одной микрообласти, и последующих стадий, вовремя которых происходит углубление начального микроразрушения, приводящего к мгновенному разрушению металла.  [c.268]


С помощью термообработки можно в широких пределах изменять структурное состояние и механические свойства металлических материалов. При отсутствии четко выраженных аномалий, как правило, термообработка оказывает на усталостную прочность примерно такое же влияние, как на предел прочности и твердость, при этом отношение предела вьшосливости к пределу прочности имеет линейную зависимость и зависит от структуры. Отклонения от этого правила наблюдаются у высокопрочных материалов их можно, вероятно, объяснить влиянием остаточных напряжений, концентраторов напряжений, возникших при обработке поверхности, и неблагоприятными структурными изменениями. У углеродистой стали наиболее высокая усталостная прочность наблюдается у образцов со структурой мартенсита отпуска, а характеристики усталости мартенситной структуры с доэвтектоидным ферритом уступают характеристикам циклической прочности нормализованных образцов. Термическая обработка, изменяя  [c.228]

Направление распространения трещины хрупкого разрушения определяется взаимодействием края трещины с местными пиками напряжения, концентраторами напряжения и изменениями вязкости материала. Так, например, при известном расстоянии от края до свободной поверхности детали трещина распространяется по направлению к свободной поверхности.  [c.396]

Для деталей, работающих в условиях приложения динамических нагрузок, у которых подавляющая часть общей работы, поглощаемой до разрушения, приходится на долю пластической деформации (штоки паровых молотов, толстая броня, стволы орудий, амортизирующие цилиндры, шасси и т. п.), важной характеристикой, определяющей служебные свойства, является ударная вязкость. Ударная вязкость, определенная на стандартных образцах с надрезом, характеризует способность металла к местным пластическим деформациям и с этой точки зрения может служить характеристикой не только разрушения при ударе, но и при других резко выраженных объемных напряженных состояниях (внутренних напряжениях, концентраторах напряжений, понижения температуры). Поэтому определение ударной вязкости имеет значение не только для деталей, работающих при высоких скоростях приложения нагрузки. При сопоставлении сталей с одинаковым пределом прочности величина ударной вязкости может быть использована как сравнительная характеристика пластичности в надрезе. Ударная вязкость чувствительно реагирует на неоднородность структуры материала, особенно в поперечном и продольном направлениях. Поэтому она может быть применена для оценки однородности материала, для контроля загрязненности металла включениями, для выявления отклонений от технологического процесса, которые не отмечаются при статических испытаниях (выявление отпускной хрупкости, старения, перегрева и т. п.). Ударная вязкость должна определяться в направлении действия наибольших напряжений при эксплуатации. Так, для некоторых труб, турбинных дисков, цилиндров амортизаторов имеет значение ударная вязкость в поперечном к волокну направлении (тангенциальная проба).  [c.16]

Высокие контактные сжимающие и растягивающие напряжения, концентраторы температуры, движение дислокаций, развитие внутренних и поверхностных дефектов, а также образование свежих поверхностей существенно меняют химическую активность поверхностей и связанных с этим явлений. Как показал в своих работах Г.Е. Лазарев, в узлах трения значительно возрастают скорости окисления материалов, электрохимических процессов, термодиффузионных и др. Достаточно сказать, что в 20...30 раз ускоряется коррозия металлов. Значительно возрастает эффективность адсорбционного понижения прочности металлов. Учитывая это, разрабатываются специальные методы регулирования фрикционных свойств поверхностей трения.  [c.80]

Влияние концентраторов напряжений. Концентраторы напряжений (надрезы, отверстия и др.) повышают предел текучести и, следовательно, смещают пороги хладноломкости в сторону более высоких температур, причем тем больше, чем резче  [c.132]

На фиг. 2 представлены типичные геометрические концентраторы напряжений Концентраторы могут быть разделены на группы по основным характеризующим их признакам.  [c.1079]

Здесь следует отметить, что надрез (концентратор) не влияет на порог хладноломкости. Это обстоятельство, естественно, объясняется тем, что на дне надреза возникает вначале трещина и вне зависимости от исходного концентратора напряженное состояние становится одинаковым (хотя оно было существенно разным до возникновения трещины).  [c.74]

Для того чтобы приблизить результаты испытаний к реальным условиям эксплуатации материала в конструкции и получить цифры, характеризующие конструктивную прочность, довольно широко стали применять испытание на растяжение с концентраторами (надрезами) —рис. 49. Прочность в этом случае (ст ) определяли как разрушающее напряжение, деленное на сечение нетто (живое сечение в месте надреза).  [c.78]

Наоборот, концентраторы (в том числе даже шероховатость поверхности), создавая напряжения растяжения, понижают предел выносливости и живучесть.  [c.83]

Критерии при выборе марки стали, кратко могут быть сформулированы так а) выбор марки стали (степени легированно-сти) определяется размером термически обрабатываемой заготовки б) уровень прочности определяет температуру отпуска в) наличие концентраторов напряжений и динамических нагрузок определяет необходимость легирования элементами, снижающими температуру перехода в хрупкое состояние (никель) или обусловливает необходимость иметь сталь повышенной и высокой чистоты.  [c.389]


Недостатком приведенных способов является наличие канавки — концентратора напряжений, снижающего сопротивление усталости вала. Поэтому сечение вала по канавке должно быть проверено расчетом.  [c.88]

Ряд исследователей, признавая электрохимическую природу коррозионного растрескивания металлов, указывают на преобладающее значение конкуренции депассивации и пассивации, локализованной на концентраторах механических напряжений.  [c.335]

Использование критерия хрупкого разрушения в виде (2.1) во многих случаях позволяет прогнозировать несущую способность различных конструкционных элементов в частности, результаты расчета по условию (2.1) весьма удовлетворительно соответствуют экспериментальным данным при испытании образцов с концентраторами [101] в случае реализации довольно больших пластических деформаций по достижении условия oi = = S (ef), где ef — интенсивность пластической деформации. Однако применение критерия хрупкого разрушения в виде (2.1) для прогнозирования условий разрушения образцов с острыми концентраторами или трещинами связано со значительными трудностями. В частности, моделирование температурной зависимости критического коэффициента интенсивности напряжений Ki T) на основе условия (2.1), как будет показано в подразделе 4.2, не позволяет адекватно описать экспериментальную кривую. Указанные обстоятельства приводят к необходимости дополнительного анализа условий хрупкого разрушения. Такой анализ на основе физических процессов, контролирующих хрупкое разрушение материала, представленный ниже, позволил дать новую формулировку необходимого условия хрупкого разрушения— условия зарождения микротрещин скола — и предложить физическую интерпретацию зависимости критического напряжения хрупкого разрушения S от пластической деформации [75, 81, 82, 127, 131].  [c.60]

Следует отметить, что в (2.11) физический смысл S вполне соответствует интерпретации этого параметра, достаточно устоявшейся в настоящее время критическое напряжение хрупкого разрушения S является параметром, достижение которого наибольшими главными напряжениями является достаточным условием для реализации хрупкого разрушения, т. е. для обеспечения страгивания и распространения микротрещины. При этом в качестве необходимого условия выступает условие зарождения микротрещин, которое многие исследователи, например в работах [101, 149—151], принимают в виде (2.3). В предлагаемом критерии хрупкого разрушения (2.11) необходимое условие хрупкого разрушения соответствует условию зарождения микротрещин скола в виде (2.7). Как уже говорилось, разрушающее напряжение а/ при одноосном растяжении образцов в диапазоне температур Го Г Тем (см. рис. 2.6 и 2.7) совпадает с напряжением распространения микротрещин Ор, тождественно равным S , что позволяет получать значения S (x) на основании указанных предельно простых экспериментов. Однако совпадение а/ с S не является общим правилом даже при хрупком разрыве в условиях одноосного растяжения в области температур Т <То разрушающее напряжение а/ не является напряжением распространения микротрещин (см. рис. 2.7), а соответствует напряжению, при котором выполняется условие зарождения микротрещин. Такая же ситуация наблюдается при хрупком разрыве в условиях объемного напряженного состояния, например при разрушении образцов с концентраторами и трещинами (см. подразделы 2.1.4 и 4.2.2).  [c.72]

Подчеркнем, что в общем случае при циклическом нагружении в условиях объемного напряженного состояния (ОНС), реа-лизирующегося, например, у вершины трещины или острого концентратора в конструкции, соотношение компонент приращения напряжений при упругой разгрузке может не совпадать с идентичным соотношением напряжений в момент окончания упругопластического нагружения [66 68, 69, 72, 73]. Поэтому интенсивность приращения напряжений 5т, при которых возобновится пластическое течение при разгрузке (или, что то же самое, при реверсе нагрузки), может быть меньше, чем в одноосном случае, где циклический предел текучести 5т = 20т для идеально упругопластического тела [141, 155]. Это обстоятельство приводит к некоторым особенностям деформирования и соответственно повреждения материала в случае ОНС. Например, при одинаковом размахе полной деформации в цикле можно получить различные соотношения интенсивности размаха пластической АеР и упругой Де деформаций за счет изменения параметра 5т-  [c.130]

Концентрация напряжений. Усталостные трещины, как правило, возникают в местах концентрации напряжений. Концентраторами напряжений могут быть отверстия в деталях, щпоночные канавки, резьбы, галтельные закругления и т. д.  [c.349]

С ростом концентрации ионов-активаторов потенциал питтин-гообразования смещается в область катодных потенциалов (рие. 4, кривая Б) и область пассивности сокращается. При этом металл находящийся в пасеивной области и корродирующий равномерно по поверхности може г подвергнуться питтинговой коррозии. Значительное влияние на положение участков питтинговой коррозии оказывают различные неметаллические включения, которые являются источниками локальных напряжений, концентраторов напряжений при внешней нагрузке, коллекторами абсорбированного водорода. Как правило, образование питтингов наблюдается около неметаллических включений [22].  [c.30]

Особенно большая неравномерность напряжений возникает в зонах резкого изменения формы детали, например, при выполнении отверстия в рабочих лопатках под связывающие проволоки, при переходе от профильной части рабочей лопатки к полке хвостовика, в разгрузочных отверстиях дисков, углах шпоночных пазов и т.д. Это явление называется концентрацией напряжений, а зоны детали местного повышения напряжений — концентраторами напряжений. Местные напряжения, действующие на очень малой площади, могут в несколько раз превышать так называемые номинальные напряжения — напряжения, рассчи-  [c.61]

Измерение магнитных параметров осуществляют с помощью прибора магнитоанизотропного сканера-дефектоскопа Комплекс 2.05 . Обработка результатов измерений на компьютере по специальной программе позволяет получить картограммы разности главных механических напряжений, концентраторов механических напряжений и областей пластических деформаций (ОПД). Опасные участки контролируемой поверхности содержат изображение форм КМН и линий изостресс (линий, равных РГМН) с указанием численных значений и знака напряжений (растягивающие + , сжимающие - ), что позволяет непосредственно по картограмме оценить степень опасности выявленных дефектов и, при необходимости, определить наиболее эф фективные методы ремонтно-восстановительных работ.  [c.128]

Для высоконагруженных гибких колес (при малых i и высоких [а]см) рекомендуют конструкционные стали с повышенной вязкостью, которые менее чувствительны к концентрации напряжений (концентратором является зубчатый вене ). Такими свойствами обладают стали с высоким содержанием никеля (например, 40ХН2МА, 20ХНЗА). Средне- и малонапряженные гибкие колеса (при t > 100 [а]см =f 30 МПа) можно изготовлять из более дешевых сталей типа ЗОХМА, ЗОХГСА. Примеры характеристик сталей приведены в табл. 4.48 [6].  [c.173]

Наличие металлической связи придает материалу (металлу) способность к пластической деформации и к самоупрочнению в результате пластической деформации. Поэтому, если внутри материала есть дефект или форма детали такова, что имеются концентраторы напряжений, то в этих местах напряжения достигают большой величины и может возникнуть даже трещина. Но так как пластичность металла высока, то в этом месте, в том числе в устье трещины, металл пластически продеформируется, упрочнится и процесс разрушения приостановится.  [c.60]


Рис. 49. Концентрация напряжеииП в устье дефекта. Концентраторы напряжений а — трещина 6, г — острый надрез а — мелкий надрез. Пунктир ср Рис. 49. Концентрация напряжеииП в устье дефекта. Концентраторы напряжений а — трещина 6, г — острый надрез а — <a href="/info/34397">мелкий надрез</a>. Пунктир ср
Дефекты строения и несплошностп являются концентраторами напряжений, т. е. по краям дефекта напряжения могут значительно отличаться от среднего (а брутто), как показано на рис. 49. Концентрация напряжения К) тем больше, чем острее дефект (сравни рис. 49, а—в) и больше его длина (сравни рис. 49, б, г), что выражается следующей формулой  [c.71]

Конвективный теплообмен 291 Константан 554 Концентратор 78 Координационное число 25 Коррозионное растрескивание 492 Коррозия 479 интеркристаллитная 488 межкристаллитная 488 под напряжением 492 Коттрелла атмосфера 101  [c.644]

Влияние азота, кислорода и водорода. Эти элементы присутствуют в сплавах или в составе хрупких неметаллических включений, например оксидов РеО, SiOj, Al. O ,, нитридов Fe4N, или в свободном состоянии, при этом они располагаются в дефектных местах в виде молекулярного и атомарного газов. Неметаллические включения служат концентраторами напряжений и могут понизить механические свойства (прочность, пластичность).  [c.14]

Выполняют расчеты валов на статическую прочность и на сопротивление усталости. Расчет проводят в такой последовательности по чертежу сборочной единицы вала составляют расчетную схему, на которую наносят все внешние силы, нагружающие вал, приводя плоскости их действия к двум взаимно перпендикулярным плоскостям (горизонтальной X и вертикальной У). Затем определяют реакции опор в гбризонтальной и вертикальной плоскостях. В этих же плоскостях строят эпюры изгибающих моментов Мх Му, отдельно эпюру крутящего момента Предположительно устанавливают опасные сечения исходя из эпюр моментов, размеров сечений вала и концентраторов напряжений (обьршо сечения, в которых приложены внешние силы, моменты, реакции опор или места изменений сечения вала, нагруженные моментами). Проверяют прочность вала в опасных сечениях.  [c.165]

Так же как и в роликовом генераторе, в целях предохранения гибкого колееа от раскатывания устанавливают подкладное кольцо 1. Закрепление подкладного кольца от осевого смещения в дисковом генераторе затруднено. В конструкции по рис. 15.6, а кольцо удерживает борт, входящий в паз гибкого колеса. Высота борта ограничена допускаемым значением упругой деформации растяжения гибкого колеса при установке подкладного кольца (т. е. не превышает десятых долей миллиметра), что не гарантирует надежного запирания кольца. Кроме того, паз как концентратор напряжений снижает прочность гибкого колеса. Матери ш подкладного кольца—сталь ШХ15 (50...58 НКСэ). Материал дисков—конструкционная сталь 45, 40Х с закалкой рабочей поверхности до 48...50 НЯСд.  [c.241]

Различают разрушение деталей вследствие потери статической прочности или сопротивления усталости. Потеря статической прочности происходит тогда, когда значение рабочих напряжений превышает предел статической прочности материала (например, а,,). Это связано обычно со случайными перегрузками, не учтенными при расчетах, или со скрытыми дефектами деталей (раковины, трещины и т. п.). Потеря сопрот1 вления усталости происходит в результате длительного действия переменных напряжений, превышающих предел выносливости материала (например, а ,). Сопротивление усталости значительно понижается при наличии концентраторов напряжений, связанных с конструктивной формой детали (галтели, канавки и т. п.) или с дефектами производства (царапины, трещины и пр.).  [c.5]

Поломка зубьев (рис. 8.11). Поломка связана с напряжениями изгиба. На практике наблюдается выламывание углов зубьев вследствие концентрации нагрузки. Различают два вида поломки зубьев поломка от больших перегрузок ударного или даже статического действия (предупреждают защитой привода от перегрузок или учетом перегрузок при расчете) усталостная поломка, происходящая от действия переменных напряжений в течение сравнительно длительного срока службы (предупреждают определением размеров из расчета на усталость). Особое значение имеют меры по устранению концентраторов напряжений (рисок от обработки, раковин и трещин в отливках, микротрещин от термообработки и т. п.). Общие меры предупреждения поломки зубьев — увеличение модуля, положительное смещение при нарезании зубьев, термообработка, наклеп, уменьшение концентрации нагрузки по краям (жесткие валы, зубья со срезанными углами — см. рис. 8.13, ж, бочкообразные зубья — см. рис. 8.14, в и пр.).  [c.105]

Применение локальных критериев к анализу разрушения в материальной точке также наталкивается на ряд противоречий. В частности, при таком подходе практически невозможно прогнозировать разрушение тела с трещинами или острыми концентраторами, в котором реализуется высокий градиент напряжений и деформаций. Трудности описания разрушения в высокоградиентных полях напряжений и деформаций в первую очередь связаны с тем фактом, что для зарождения разрушения необходима реализация тех или иных физических процессов в некотором конечном объеме материала, а не в материальной точке. Поэтому даже при выполнении условия зарождения разрушения в материальной точке реально разрушение не происходит до тех пор, пока критическое состояние не возникает в некотором объеме материала.  [c.6]

Следует отметить, что процесс развития разрушения (рост трещины) можно представить как непрерывное зарождение макроразрушения (разрушения в объеме структурного элемента) в высокоградиентных полях напряжений и деформаций, возникающих у растущей трещины. Тогда ответственными за развитие разрушения являются по сути все те же локальные критерии разрушения (см. рис. В.1). Таким образом, если не рассматривать тело с трещиной как специфический объект исследований (чем традиционно занимается механика разрушения), а рассматривать трещину как концентратор напряжений, тО анализ развития разрушения в конструкции принципиально не будет отличаться от анализа разрушения в теле без трещины с использованием локальных критериев разрушения. Единственное отличие расчета зарождения разрушения в теле без трещины от расчета развития трещины в элементе конструкции заключается в методе определения НДС в первом случае НДС определяется непосредственно из решения краевой задачи, ва втором — на основании параметров механики разрушения. Очевидно, что это отличие не является принципиальным и связано с менее трудоемким способом расчета НДС у вершины трещины через параметры механики разрушения. В общем случае НДС у вершины трещины можно определить с помощью решения краевой задачи, например МКЭ.  [c.8]


Смотреть страницы где упоминается термин Напряжение концентраторы : [c.136]    [c.86]    [c.125]    [c.178]    [c.42]    [c.43]    [c.219]    [c.384]    [c.144]    [c.334]    [c.46]   
Методика усталостных испытаний (1978) -- [ c.21 ]



ПОИСК



Влияние концентраторов напряжений

Влияние концентраторов напряжений на проявление масштабного фактора

Влияние среднего напряжения на выносливость при наличии концентратора

Концентратор

Концентраторы напряжений Понятие

Концентраторы напряжений в структурно-неоднородных средах

Концентраторы напряжений и начало их зарождения

Методика оценки прочности ободов направляющих аппаратов турбин с концентраторами напряжений по теории приспособляемости

Определение предельных нагрузок конструктивных элементов нефтегазопроводов с трещиноподобными дефектами и концентраторами напряжений

Пластическая деформация у концентраторов напряжений

Приложение П. Концентраторы напряжений и коэффициенты концентрации

Применение концентраторов напряжений при статических испытаниях

Применение критериев к деталям, не имеющим концентраторов напряжений

Разность потенциалов, обусловленная концентратором напряжения

ТРЕЩИНЫ ВБЛИЗИ КОНЦЕНТРАТОРОВ НАПРЯЖЕНИЙ (ДВУМЕРНЫЙ СЛУЧАЙ)

Теория истинных напряжений при наложении концентраторов напряжений

Трещиноватость у носика привносимого в тело концентратора напряжений

Усталостная прочность образцов с концентратором напряжений при нулевом среднем напряжении

Усталостная трещина как концентратор напряжений. О предельной остроте надреза

Хрупкое разрушение и концентраторы напряжений

Щели и трещины как концентраторы местных напряжений



© 2025 Mash-xxl.info Реклама на сайте