Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Постановка задачи теории упругости деформаций

В данном параграфе будет рассмотрена приближенная постановка задачи теории упругости, описанная в 1.6. Принципиальное отличие данной постановки от рассмотренных в предыдущих параграфах состоит в том, что характер деформации в данной точке пластинки нельзя описать заданием значения единственного имеющегося в нашем распоряжении компонента перемещения — прогиба W, здесь необходимо вводить в качестве искомых неизвестных производные от w, имеющие смысл углов поворота окрестности рассматриваемой точки.  [c.146]


Барре де Сен-Венан (1797—1886), член Парижской академии наук, один из создателей современной теории упругости. Разработал точную теорию кручения и изгиба призматических стержней произвольного поперечного сечения. Известен также работами в области пластических деформаций, теории колебаний. Сформулировал принцип, существенно упрощающий постановку задач теории упругости и сопротивления материалов.  [c.96]

Таким образом, при прямой постановке задачи теории упругости требуется определить три компоненты перемещений и, V, ш), шесть компонент деформаций г , ху)  [c.53]

Обратная постановка задач теории упругости. Возможна обратная постановка задачи теории упругости, когда.задаются напряжения, деформации или перемещения для всех внутренних точек тел как функции координат точек, а требуется определить условия па границах тела, которым соответствует заданное напряженное и деформированное состояние тела.  [c.53]

Лля того чтобы дать постановку задачи теории упругости в напряжениях, нужно выразить условия совместности деформаций (1.22) гл. 1  [c.78]

В математическом решении, из которого затем получены асимптотические формулы для напряжений, граничные условия относились не к деформированной поверхности разреза, а к исходной на оси х. Кроме того, у конца треш,ины в результате деформации возникают значительные изменения углов наклона свободных поверхностей, т. е. деформации соизмеримы с единицей. Для точной постановки задачи теории упругости требуется учет больших деформаций и соблюдение граничных условий на текуш,ей поверхности разреза, т. е. на той, которая получается при деформации тела внешними нагрузками. При этом задача становится нелинейной и довольно сложной. Образую-ш,ийся в конце разреза малый, но конечный радиус кривизны возрастает с ростом величины внешних нагрузок и обеспечивает ограниченные (хотя и большие) напряжения (см. здесь гл. 4). Наконец, имитация треш,ины тонким математическим разрезом или тонким эллиптическим вырезом также вносит различие в напряженное со-  [c.103]

В данной работе изложены основы теории и методы расчета муфт с упругими элементами из высокоэластичных материалов. Все прикладные вопросы прочности и жесткости муфт решены на базе современных методов теории упругости и вязкоупругости. Использован один из наиболее эффективных расчетных методов — метод конечных элементов, который дает возможность решать широкий круг задач при самых общих предположениях относительно конструктивных и реологических особенностей исследуемых изделий. Вариационная постановка задач теории упругости и сведение их к проблеме минимизации некоторых специальных функционалов потенциальной энергии деформации позволили получить достаточно точные решения при сравнительно больших деформациях, в том числе и в случае геометрически нелинейных задач.  [c.4]


Аналогично можно построить алгоритм метода упругих решений при постановке задачи теории малых упругопластических деформаций в перемещениях.  [c.274]

После установления Навье в 1821 г. основных уравнений и создания Коши теории напряжений и деформаций важнейшее значение для развития теории упругости имели исследования Сен-Венана. В его классических работах по теории кручения и изгиба на основе общих уравнений теории упругости дано решение задач кручения и изгиба призматических брусьев. В этих исследованиях Сен-Венан создал полуобратный метод решения задач теории упругости, сформулировал знаменитый принцип Сен-Венана , дающий возможность получить решение задач теории упругости. С тех пор было затрачено много усилий на развитие теории упругости и ее приложений, доказан ряд общих теорем, предложены общие методы интегрирования дифференциальных уравнений равновесия и движения, решено много частных задач, представляющих принципиальный интерес. Развитие новых областей техники требует более глубокого и широкого изучения теории упругости. Большие скорости вызывают необходимость постановки и решения сложных вибрационных проблем. Легкие металлические конструкции привлекают серьезное внимание к вопросу упругой устойчивости. Концентрация напряжений вызывает опасные последствия, поэтому пренебрегать ею рискованно.  [c.5]

Постановка граничных условий для уравнений Ламе особенно проста, когда речь идет о первой основной задаче теории упругости, т. е. когда на поверхности задано и, = Ui. Если на границе заданы усилия, то следует по закону Гука выразить напряжения через деформации, т. е. первые производные от перемещений, и внести в граничные условия (8.4.6). Таким образом, на границе оказываются заданными некоторые линейные комбинации из первых производных функций ш, которые мы выписывать не будем.  [c.249]

В учебнике излагаются теория напряжений в деформаций, основные соотношения, принципы и теоремы теории упругости, постановка и методы решения задач теории упругости, плоская задача теории упругости в декартовых и полярных координатах, теория изгиба и устойчивости тонких пластин (прямоугольных и круглых в плане), приближенные методы решения задач теории упругости (вариационные методы, метод сеток, метод конечных элементов), основы теории тонких упругих (безмоментных и пологих) оболочек, основы теории пластичности. Большое внимание уделено приложениям, ра-вобрано большое количество задач. В конце каждой главы приведены вопросы для самопроверки в задачи для тренировки, к части из которых даны решения.  [c.2]

Решение задачи теории упругости в обратной постановке значительно проще. Особенно просто эта задача решается, если задано внутреннее поле перемещений. В самом деле, если перемещения и, V, ш заданы как функции координат точек тела (включая и точки на поверхности тела), то, используя уравнения Коши, находим деформации, а затем  [c.53]

Если объемные силы и температура как функции координат известны и на границе заданы перемещения, то из уравнений (5.1) с известными начальными данными можно найти перемещения внутренних точек тела и таким образом решить задачу теории упругости в перемещениях. Напряжения после этого вычисляются с помощью закона Гука. Уравнения совместности деформаций при такой постановке задачи удовлетворяются автоматически, так как формулы, выражающие деформации через перемещения, представляют собой, как известно, общее решение уравнений совместности.  [c.343]

Выводя вариационные принципы в этой главе, допустим, что зависимости напряжения — деформации не изменяются в процессе нагружения. Это допущение ограничивает применимость деформационной теории процессами, в которых нагрузка возрастает монотонно. Следовательно, оно приводит к тому, что деформационная теория пластичности становится неотличимой от нелинейной теории упругости, обсуждаемой в гл. 3, за исключением материалов, которые подчиняются условию текучести. Более того, будем предполагать, что деформации малы, и приведем постановку задачи теории пластичности в следующем виде )  [c.316]


Главное, что будет излагаться в этой книге, по существу, состоит из трех основных частей 1) основные понятия о перемещениях, внутренних напряжениях, деформациях и работе внутренних сил, а также о процессе нагружения малого элемента твердого тела 2) основные механические свойства твердых тел, такие, как упругость и идеальная пластичность, текучесть, ползучесть и релаксация, вязкость и динамическое сопротивление, усталость и разрушение 3) основные кинематические и геометрические гипотезы, упрощающие математическую постановку задач о напряжениях, деформациях, перемещениях и разрушениях твердых тел при различных внешних воздействиях, а также основные уравнения и методы решения задач о деформации и прочности тел. Методы сопротивления материалов отличаются от более строгих методов теории упругости и пластичности в основном введением ряда упрощающих предположений кинематического и геометрического характера и, тем не менее, в большинстве случаев оказываются достаточно точными.  [c.12]

Однако, при использовании локального энергетического критерия (в котором объем, выделяемый вокруг конца трещины, сколь угодно мал) следует решать асимптотическую задачу в более точной, нелинейной постановке, удовлетворяя граничным условиям на деформированной поверхности конца разреза [166]. При этом сингулярность решения задачи теории упругости пропадает, напряжения и градиенты у закругленного в результате деформации края трещины ограничены. Например, из работы [315] имеем  [c.203]

Возможна также постановка обратной задачи теории упругости. В этом случае задаются напряжения, деформации или перемещения для всех внутренних точек тела как функции координат. Требуется определить условия на границах тела, которым соответствует заданное напряженно-деформированное состояние.  [c.35]

Постановка краевой задачи теории упругости. Рассмотрим несимметричный по толщине упругий трехслойный стержень с жестким заполнителем (рис. 4.1). Систему координат Xjy,z свяжем со срединной плоскостью заполнителя. Для описания кинематики пакета будем использовать гипотезу ломаной нормали-, в тонких несущих слоях 1, 2 справедливы гипотезы Кирхгофа, в несжимаемом по толщине сравнительно толстом заполнителе 3 нормаль остается прямолинейной, не изменяет своей длины, но поворачивается на некоторый дополнительный угол ф х). Деформации считаем малыми.  [c.136]

В заключение следует указать, что поскольку для следующих закону Гука анизотропных тел самого произвольного типа удельная энергия деформации является однородной квадратичной формой от компонентов деформации, для них остается справедливым ряд положений, доказанных ранее для линейно упругих изотропных тел. В частности, остается справедливой формула (12.6) и вытекающая из нее теорема Клапейрона (13.4), а также обобщение этой теоремы (13.3). Остается справедливой и теорема взаимности работ (что было показано в 15) и сохраняются в силе рассуждения при доказательстве теоремы единственности. Рассмотрение задач теории упругости анизотропных тел (в классической постановке) производится аналогично случаю изотропных тел, только при выражении напряжений через деформации приходится пользоваться не формулами (6.2) или (6.6), а более сложными линейными зависимостями (19.2), причем в последних (оставаясь в рамках допущений классической теории упругости) надо положить В дальнейшем заниматься  [c.227]

Суть этой задачи состоит в том, что требуется найти поле напряжений и деформаций в призматическом стержне произвольного поперечного сечения под действием любых сил, распределенных по поверхностям обоих его торцов (каковые считаются перпендикулярными оси стержня). Боковая поверхность стержня принимается свободной от нагрузки объемными силами пренебрегают. Данная задача теории упругости (в указанной выше общей ее постановке) весьма трудна и до сих пор еще не решена. К ее решению можно, однако, подойти с позиций принципа Сен-Венана.  [c.238]

Обратной постановкой задачи в теории упругости (обратной задачей) называют такую, когда по некоторым известным функциям (функциям напряжений, деформаций или смещений), справедливым для всей области тела, находят ту нагрузку на поверхности тела и вообще условия на поверхности, которым соответствуют заданные или известные функции.  [c.27]

Не менее успешным оказывается применение начала возможных перемещений и в теории упругости, и, как будет показано позже, в теории пластических деформаций и в теории ползучести, как в условиях равновесия, так и в условиях движения и даже в случае реологической постановки задачи в относительно широком смысле.  [c.69]

Во всех тех предыдущих разделах настоящего курса, в которых обсуждалось статическое внешнее воздействие на деформируемые системы и использовалась линейная постановка проблемы (линейные уравнения), мы обнаруживали единственное положение равновесия системы, испытавшей деформацию, и относящиеся к нему внутренние усилия. Этот факт находится в полном соответствии с теоремой о единственности ре-щения задачи линейной теории упругости (см. т. I, 9.5).  [c.277]

В работе изучается напряженное состояние брусьев в геометрически нелинейной постановке, но с линейной зависимостью между деформациями и напряжениями, т. е. рассматриваемая задача физически линейная, а геометрически нелинейная. Решение задачи сводится к граничным задачам плоской теории упругости (одной бигармонической функции) в области поперечного сечения бруса. Рассматривается частный пример, когда область поперечного сечения является кругом. В работе приведены. явные выражения компонентов напряжений и деформации для круглого сечения.  [c.433]


В классической линейной теории упругости принята следующая постановка задачи уравнения равновесия формулируются для недеформированного состояния, компоненты деформаций связаны с перемещениями линейными зависимостями, а материал подчиняется закону Гука, т. е. напряжения и деформации связаны между собой линейными зависимостями. В этом случае задача определения напряженно-деформированного состояния сводится к линейным дифференциальным уравнениям, всегда имеющим единственное решение. Нетрудно показать, что напряженно-деформированное состояние, соответствующее этому единственному решению, является устойчивым.  [c.77]

Необходимо подчеркнуть, что теорема единственности доказана нами для геометрически линейной постановки задачи теории упругости. Если условие (8.4.8) не выполнено, единственности может не существовать. Это может означать одно из двух о либо принятая модель сплошной среды некорректна, либо материал неустойчив. При- Рис. 8.4.1 мером такого неустойчивого материала служит материал с падающей диаграммой растяжения, подобной изображенной на рис. 8.4.1. Видно непосредственно, что одному п тому же значению напряжения на этой диаграмме соответствуют два разных значения деформации. Вопрос о действительном существовании таких неустойчивых упругих материалов остается открытым диаграммы вида изображенной на рис. 8.4.1 наблюдаются при описании пластического поведения и представляют зависшюсть условного напряжения, т. е. растягивающей силы от деформации. Пример неустойчивости такого рода был рассмотрен в 4.13. Для геометрически нелинейных систем теорема единственности несправедлива нарушение единственности соответствует потере устойчивости упругого тела. Рассмотрению подобного рода задач в элементарной постановке была посвящена вся четвертая глава.  [c.247]

Из постановки задачи теории упругости в перемеш вниях [3, 4] получаются следующие результаты, используемые при таком моделировании. Деформирование сплошного тела с приложением нагрузок по внешней поверхности тела или внутренним сечениям, реализуемое с соблюдением условий равновесия, и замораживание полученных деформаций приводит после размораживания незакрепленного тела к освобождению всех деформаций, имевших место при нагружении и замораживании [1]. Деформирование двух частей модели, разделенных поверхностью /5", вызывающее одинаковые перемещения по этой поверхности, или деформирование одной части при нулевых перемещениях поверхности 8, приводит после замораживания и склейки этих частей по поверхности 8 и размораживания модели к освобождению всех деформа-щй имевшг х место при замораживании ее частей. Эти рвзуль  [c.61]

Мы пришли, таким образом, к своеобразной постановке задачи теории упругости, когда напряжения и деформации существуют в теле не как результат приложения к нему внешней нагрузки, а за счет, так сказать, самонагрзгжения тела, осуществляемого путем его предварительного деформирования и взаимного соединения затем отдельных участков его поверхности.  [c.184]

Рассмотрим плоскую задачу теории упругости для кусочнооднородной среды. Пусть имеется многосвязная область D, ограниченная гладкими контурами L, (/ = 0, 1, 2,. ... т), из которых все контуры Lj (/ 0) расположены вне друг друга, а контур 0 охватывает все остальные. Область D заполнена упругой средой с постоянными Яо и цо, а области )/ (ограниченные контурами Lj) средами с постоянными X/ и ц/ (индекс буквы соответствует индексу области). Далее, для удобства будем использовать постоянные х/, различные для плоской деформации и плоского напряженного состояния (см. 4 гл. III). На границах раздела сред следует, как обычно, задавать. те или иные условия сопряжения. Например, такой известной технологической операции, как посадка с натягом, соответствует задание скачка вектора смещений 6/(0- В случае же плоско-напряженной деформации имеет смысл постановка таких условий, при которых внешние напряжения пропорциональны (в случае, когда толщины пластинки и включений различны )).  [c.413]

В первых пяти главах учебника рассматриваются общие вопросы теории упругости (теория напряжений и деформаций, основные соотношения и теоремы, постановка и лгетоды решения задач теории упругости, плоская задача в декартовых координатах, плоская задача в полярных координатах). В шестой и седьмой главах излагаются основные уравнения теории тонких пластин (гибких и жестких) и некоторые задачи изгиба и устойчивости пластин. Восьмая глава учебника посвящена рассмотрению приближенных методов решения задач прикладной теории упругости (вариационных, конечных разностей, конечных элементов). В девятой главе рассматриваются основы расчета тонких упругих оболочек, причем основное внимание уделено вопросам расчета безмоментных и пологих оболочек. В десятой главе изучаются основы теории пластичности. Здесь рассмотрена и теория расчета конструкций по предельнол1у состоянию.  [c.6]

Как уже отмечалось, решение задач теории упругости в прямой постановке (в перемещениях либо напряжениях) представляет очень большие сложности и общих методов решеипя задач в такой постановке пока не существует, Обратная постановка задач часто не соответствует потребностям практики, так как жизнь обычно ставит задачи в прямой постановке. Прп этом известны граничные условия, и требуется определить поло напряжений, деформаций п перемещений, соответствующих заданным граничным условиям.  [c.58]

Увеличение предела упругости определяется накопленной пластической деформацией и может быть с ней связано оцреде-ленным соотношением (рис. 20). Постановка задачи теории приспособляемости будет следующей зная интервалы изменения действующих нагрузок и температурного поля, а также деформационные характеристики материала, необходимо опреде-  [c.36]

Один нз вариантов постановки двумерной задачи теории упругости — это задача о плоском напряженном состоянии тонкой изотропной пластины со свободными поверхностями. Для плоского напряженного состояния = О и поэтому ej = —v (а - - Оу) [2]. Другим вариантом двумерной задачи теории упругости является задача о плоской деформации, которая также описывается уравиеииями (1.51), гдеследуеттолькозаменить и v на = /(1 —V ), V = v/(l — V) и использовать соотношения = 0, = —v (а -f- Оу) [2J.  [c.36]

Рассматриваемая в данной главе стохастическая краевая задача теории упругости является основой статистической механики композитов со случайной структурой. Начало систематическому изучению этой задачи положено работой И.М. Лифшица и Л.Н. Розенцвейга [160] применительно к поликристаллам, в дальнейшем многочисленные результаты были обобщены в монографиях [62, 130, 162, 172, 247, 296, 320 и др.]. При единой практически для всех работ в этом направлении постановке задачи, связанной с представлением упругих модулей микронеоднородной среды как случайных статистически однородных функций координат и выбором граничных условий в виде, обеспечивающим однородность макроскопических деформаций, а также общности подхода к решению с использованием метода функции 1 ина уравнений теории упругости в перемещениях для неограниченной изотропной или анизотропной среды существуют различия в получаемых результатах для эффективных свойств композитов и, в большей мере, для оценки полей напряжений и деформаций в компонентах композитов. Это обусловлено статистической нелинейностью исследуемой задачи и построением приближенных решений, которые неодинаково адекватны физической модели композита, в частности, его структуре.  [c.39]


Постановка задачи. Рассмотрим упруго-пластическое равновесие полого шара, испытываюш,его внутреннее давление р. Вследствие центральной симметрии (г, tp, (— сферические координаты) сдвиги Тхл и касательные напряжения равны нулю, а е = , о = о . При этом каждый элемент шара испытывает простое нагружение, так как главные направления не меняются, а коэффициент = Таким образом, при решении этой задачи можно исходить непосредственно из уравнений теории упругопластических деформаций.  [c.108]

Для обеспечения равенств в правую часть первого неравенства (13) следует добавить мощности, расходуемые на необратимые процессы. Физическое объяснение появлению потоков энергии разных знаков в углы клина опирается на рассмотрение клина с заглаженными углами (напряжения непрерывны в точках отрыва), для которого нормальные к поверхности клина напряжения будут совершать работу разных знаков над средой около передней и задней точкек отрыва, а клин будет испытывать лобовое сопротивление. Величина Q пропорциональна квадрату деформации, т.е. относится к разряду величин, пренебрегаемых при постановке линейной задачи теории упругости и определяется апостериори. По этой причине остается справедливым утверждение о равенстве нулю главного вектора внешних сил, приложенных к границе. Напряжения на продолжении трещины имеют асимптотику (ж —а + О, у = 0)  [c.660]

В области механики деформируемого твердого тела. Здесь излагаются основы современной теории пластичности (обгцей, малых унругонластических деформаций и теории течения), линейной и нелинейной вязкоупругости. Отдельно рассмотрена теория ква-зистатического переменного нагружения упругопластических тел в тепловых и радиационных полях. Предлагаются постановки динамических задач теории упругости (линейные колебания, волны и колебания физически нелинейных тел вблизи резонанса).  [c.8]

Ситуации, в которых и упругие, и пластические деформации, возникающие в теле при нагружении, имеют примерно одинаковый порядок, обычно относят к задачам упругопластичности. Много широко известных задач такого типа встречается в теории балок и теории кручения валов, а также в исследовании толстостенных труб и оболочек, находящихся под давлением. В общем случае постановка задач в упругой зоне, пластической зоне и на границе между ними включает следующие соотношения.  [c.260]

Общая постановка задач о трещинах продольного сдвига, где распределению смещений соответствует случай так называемой антиплоской деформации (напряженное состояние в бесконечном цилиндрическом теле, возникающее под действием постоянных нагрузок, направленных вдоль образующих цилиндра), рассмотрена в работе Г. И. Баренблатта и Г. П. Черепанова (1961). В отличие от трещин нормального разрыва и трепщн поперечного сдвига, в этом случае возможно получить эффективные точные решения многих задач, так как единственное отличное от нуля смещение w удовлетворяет в этом случае уравнению Лапласа. Здесь возможно непосредственное применение широко развитых методов и результатов гидродинамики благодаря очевидной аналогии задач теории упругости для антиплоской деформации и задач плоской гидродинамики. В указанной работе были получены точные решения задач для бесконечного тела, содержащего круговое отверстие с одной или двумя трещинами, нагруженного на бесконечности постоянным касательным напряжением (аналог задач О. Л. Бови для трещин нормального разрыва),и смешанной задачи для изолированной прямолинейной трещины, на части которой задано постоянное смещение (аналог задачи о расклинивании клином конечной длины, рассмотренной И. А. Маркузоном. в 1961 г.). Здесь же исследованы задачи взаимодействия бесконечной системы одинаковых трещин, расположенных вдоль действительной оси, и случай, когда равные трещины расположены в виде вертикальной однорядной решетки. При рассмотрении задачи о развитии криволинейных трещин продольного сдвига, а также трепщн, форма которых мало отличается от прямолинейной или круговой, авторы использовали гипотезу о том, что развитие криволинейной трещины продольного сдвига происходит по направлению максималь-  [c.386]

При наличии в теле трещины для суждения о характере ее распространения и тем самым для суждения о прочности также необходимо знание напряженного состояния. Задача онределения нанряжешюго состояния около конца трещины отличается от обычных задач онределения концентрации напряжений тем, что геометрически линеаризованная постановка краевых условий и физически линейная теория упругости приводят к бесконечным напряжениям и бесконечным градиентам напряжений в конце тонкого разреза. При этом понятие коэффициента концентрации напряжений теряет смысл. Разумеется, мол<ио было бы пытаться сохранить числовое безразмерное выражение коэффициента концентрации напряжений посредством учета сложных детальных особенностей деформации материала у конца разреза. Однако для решения задач о трещине совсем не обязательно интересоваться, детальными процессами, идущими в весьма малой окрестности конца разреза [155, 168]. Достаточно знать характер и интенсивность напряженного состояния в области, окружающей конец разреза вместе с малым объемом, где сосредоточен механизм разрушения (рис. 12.1). Это означает отказ от использования коэффициента концентрации напряжений в пользу a HMntoTH4e Koro  [c.79]

Возможности использования теории упругости в расчетах деталей машин заметно расширились в последние годы в связи с развитием численных методов решения задач, позволяющих достаточно просто описать геометрическую форму детали (обычно очень сложяую). С помощью этих методов уже ныне многие практически важные контактные задачи могут быть решены в достаточно точной постановке, а проблемы расчета напряжений и деформаций в деталях машин в условиях упругости при известных внешних нагрузках уже практически не существует.  [c.115]

Теоретической основой постановки экспериментальных исследований для многочисленных механизмов, работающих в масляной среде, является контактно-гидродинамическая теория смазки. Контактно-гидродинамический режим смазки является типичным для условий работы зубчатых и фрикционных передач, подшипников, катков и других механизмов. Основная задача теории заключается в определении контактных напряжений, геометрии смазочного слоя и температур при совместном рассмотрении уравнений, описывающих течение смазки, упругую деформацию тел и тепловые процессы, протекающие в смазке и твердых телах. Течение смазки в зазоре описывается уравнениями, характеризующими количество движения, сплошность, сохранение энергии и состояние. Деформация тел определяется основными уравнениями теории упругости. Температурные зависимости находятся из энергетического уравнения с использованием соответствующих краевых условий. Плоская контактно-гидродинамическая задача теории смазки решалась с учетом следующих допущений деформация ци-лидров рассматривалась как деформация полуплоскостей упругие деформации от поверхностного сдвига считались малыми для анализа течения смазки использовалось уравнение Рейнольдса при вязкости смазки, явля-  [c.165]

Ггей+Г охарактеризуем напряженное состояние среды функцией Оъ. = 1(х1, Р ), где Оэ.— эквивалентные напряжения в точках I детали, возникшие в результате действия сил Ру, / — функция, достижение которой в точке Хгей+Г значения [о] означает, что в данной точке материал находится в предельном состоянии. Под [а] в зависимости от постановки задачи проектирования выступают значения предела текучести, предела прочности и т. д. Деформации материала являются упругими, если в соответствующих областях выполняется неравенство сГэ -<[о]. Нарушение этого неравенства трактуется в различных теориях как появление зон текучести, областей неупругих деформаций, разрыва сплошности материала и др.  [c.108]


Смотреть страницы где упоминается термин Постановка задачи теории упругости деформаций : [c.31]    [c.73]    [c.79]    [c.332]    [c.252]   
Механика слоистых вязкоупругопластичных элементов конструкций (2005) -- [ c.40 , c.43 , c.44 ]



ПОИСК



656 —• Постановка задачи

Деформация упругая

Задача упругости

Задачи теории упругости

К постановке зг ачи

О постановке краевых задач теории наложения больших упругих и вязкоупругих деформаций

Постановка задачи теории упругости

Постановка задачи теории упругости в напряжениях деформаций

Теория деформаций

Теория упругости

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте