Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упрочнение теории

Теория упрочнения. Теория устанавливает зависимость между скоростью деформации ползучести, деформацией ползучести и напряжением  [c.309]

Пластичность учитывается в форме состояния упрочнения теории течения  [c.148]

Гипотеза упрочнения теории пластического течения  [c.395]

Для описания ползучести при одноосном напряженном состоянии были предложены различные теории. Наиболее распространенные из них — теория упрочнения, теория течения, теория старения, теория наследственности. Смысл этих теорий сводится к следующему. На основании тех или иных предположений, иногда чисто гипотетических, устанавливается аналитическая зависимость между отдельными параметрами, характеризующими процесс ползучести,— напряжением, деформацией, скоростями их изменения и временем,— т. е. составляется уравнение состояния, от которого затем переходят к уравнению ползучести. В табл. 7  [c.169]


Теории пластичности идеализированного материала исходят из представления о материале, как об изотропной среде, в общем случае обладающей способностью к упрочнению. В качестве частного случая может рассматриваться также материал, не обнаруживающий упрочнения. Теории пластичности и основанные на их использовании методы расчета расс.матривают только малые деформации и предполагают устойчивость процесса деформации.  [c.462]

При разработке феноменологической модели используется теория ползучести с анизотропным упрочением [123, 251, 252, 369] (эта теория в отличие от теории упрочения [120, 157, 306] весьма точно описывает поведение материала при переменном направлении деформирования), разработанная с учетом случая деформирования материала в упругопластической области. При этом, как указывалось выше, под пластической деформацией понимается деформация, включающая как деформацию ползучести, так и мгновенную пластическую деформацию. Таким образом, теорию ползучести с анизотропным упрочнением можно интерпретировать как теорию пластического течения, когда кривые деформирования материала зависят от интенсивности скоростей пластических деформаций, и вместо вязкоупругой задачи рассматривать упругопластическую.  [c.14]

Ф1(и, Г), получим формулировку упругопластической задачи в рамках теории пластического течения и схемы трансляционно-изотропного упрочнения. При дальнейшем вырождении функции Ф до вида Ф2 7 ) получим формулировку теории пластичности со схемой трансляционного упрочнения. Наконец, принимая A oi, IP, Т) =0, В(р Т) =0 и Ф = Фг(7 ), имеем схему иде-  [c.15]

НДС анализировали с помощью МКЭ [43, 77, 102] путем решения упругопластической задачи в геометрически нелинейной постановке на основе теории течения, условия текучести Мизеса, модели трансляционно-изотропного упрочнения [124]. Образец  [c.101]

Для анализа НДС при ползучести используется теория упрочнения или уравнение Нортона в сочетании с концепцией истинных напряжений [10, 93]  [c.172]

С целью исследования основных закономерностей деформирования материала у вершины трещины при циклическом нагружении были решены МКЭ упругопластические задачи с использованием теории пластического течения в сочетании с моделью трансляционного упрочнения [72, 83]. Объектом численного исследования служила пластина высотой 60, длиной 480 мм с трещиной длиной L = 20 мм и притуплением б = 0,04 мм (рис. 4.2). Минимальный размер КЭ составлял 0,02 мм, что примерно соответствует размеру зерна конструкционных сталей. Нагружение осуществлялось по двум схемам, представленным на рис. 4.2, а. В первой схеме моделировалось деформирование материала у вершины трещины только по I моде нагружения (Pi =5 0, Рг = 0), во второй —по I и П модам одновременно.  [c.204]


Теория пластического течения с изотропным упрочнением. В соответствии с этой теорией приращение полной деформации  [c.267]

В частном случае изотропного упрочнения ( = 0) имеем а = а° и соотношение (11.98) совпадает с соотношением (11.87) теории течения с изотропным упрочнением.  [c.270]

При практическом использовании теории течения с трансляционно-изотропным упрочнением функцию g находят из опыта на простое нагружение, что не является строгим подходом. В этом случае на основании формул (11.94), (11.90) имеем  [c.270]

Уравнение (14.20) показывает, что кривые ползучести геометрически подобны. Теория упрочнения хорошо подтверждается экспериментально.  [c.309]

Теория течения описывает более широкий класс траекторий деформирования (траекторий малой кривизны), чем теория малых упругопластических деформаций (прямолинейные траектории). Поэтому долгое время считали, что теория устойчивости, построенная на основе теории течения с изотропным упрочнением, должна лучше соответствовать экспериментальным данным, чем теория устойчивости Ильюшина. В действительности оказалось наоборот.  [c.347]

На рис. 16.3 приведены результаты расчета по теории Ильюшина (кривая 1), теории устойчивости, построенной на основе теории течения с изотропным упрочнением (кривая 2) и модифицированной теории (кривая 3) для сжатых стальных цилиндрических оболочек ( = 2-10 МПа, ат = = 390 МПа). Экспериментальные результаты (отмечены кружочками) лучше подтверждают теорию устойчивости Ильюшина, построенную на основе деформационной теории. Дело в том, что до-критический сложный процесс по траекториям малой кривизны в момент бифуркации имеет бесконечно малое продолжение без излома траектории в направлении касательной к траектории деформации. Следовательно, теория течения с изотропным упрочнением не описывает сложный процесс выпучивания в момент бифуркации. Аналогичное явление наблюдается при использовании теории пластичности для траекторий средних кривизн. Если используются теория течения и теория средних кривизн, для вычисления интегралов Nm, Рт следует применять соотношения (16.45), (16.46) при со = 0 и со = (й соответственно.  [c.347]

Чтобы наглядно оценить влияние упрочнения материала на распределение напряжений и деформаций в плоской задаче теории пластичности, вновь вернемся к задаче о толстостенной трубе, рассмотренной в 10.13.  [c.331]

В части I приводятся основные уравнения механики и теплофизики многофазных сред различной структуры, рассматриваются методы описания межфазного взаимодействия в дисперсных средах, исследуются ударные и детонационные во.п-ны и волны горения в конденсированных средах, газовзвесях и пористых телах, дается теория обработки и упрочнения металлов взрывом.  [c.2]

Альтернативная точка зрения на процесс пластической деформации материала с упрочнением состоит в том, что пластическая деформация представляет собою именно пластическое течение материала, происходящее в общем так же, Kai пластическое течение идеально пластического материала, описанное в 15.9. Но теперь поверхность нагружения в изображающем пространстве напряжений не остается неизменной, она меняет свою форму по мере движения изображающей точки в пространстве напряжений, которое было описано в 15.2. Как и в теории идеальной пластичности, в основу теории пластичности с упрочнением люжно положить тот или иной принцип или постулат. Такие постулаты вводились по-разному разными авторами, но все они приводят к одному и тому же следствию, а именно к допущению закона течения, ассоциированного с данной мгновенной поверхностью нагружения.  [c.536]

Один вариант теории пластического течения с упрочнением мы уже разобрали в 16.1. Предполагая, что поверхность течения есть призма Треска — Сен-Венана, и считая, что мы находимся все время на одной и топ же грани этой призмы, мы проинтегрировали по существу уравнения (16.3.2) и пришли к некоторому варианту деформационной теории. Другой вариант был предложен Прагером, он основан на предположении, что как функция /, так и функция Н зависят лишь от второго инварианта девиатора тензора напряжений, например  [c.540]


В разделе IV (главы 11—12) изучаются основы теории пластичности (предельные поверхности, постулат пластичности, частные теории пластичности). Наряду с традиционно излагаемыми теориями малых упругопластических деформаций, теорией течения с изотропным упрочнением читатель знакомится с новыми теориями (теория пластического течения с трансляционно-изотропным упрочнением, теории пластичности для траекторий малой и средней кривизны, двузвенных траекторий, гипотезой локальной определенности, гипотезой компланарности), нашедшими широкое применение в современных инженерных расчетах.  [c.4]

Пренебрегая кинематическим упрочнением и принимая соответствующие зависимости для модуля вектора скорости деформации ползучести, можно получить варианты технических теорий ползучести. При Э j = Ф (Я, s ), например, получаем теорию упрочнения (теорию деформационного упрочнения). Для распространения теории упрочнения на знакопеременные циклические нагружения Окриджской национальной лабораторией разработана модифицированная теория деформационного упрочнения, учитывающая знак исходной деформации в пространстве деформаций ползучести.  [c.260]

Экспериментальные работы, выполненные А. М. Жуковым [50], показывают, что теория пластичности с трансляционным упрочнением только качественно может описать явления деформационной анизотропии. Это объясняется прежде всего тем, что здесь рассматривается жесткое смещение поверхности пластичности без ее расширения. В действительности при пластической деформации поверхность пластичности расширяется (изотропное упрочнение) и смещается (трансляционное упрочнение). Теория пластичности, учитывающая оба указанных упрочнения, рассмотрена Ю. И. Кадашевичем и В. В. Новожиловым [75]. Они заменили в условии пластичности (3.25) девиатор напряжения на девиатор 5 — активного  [c.111]

Наиболее распространенными теориями ползучести являются теория старения, теория течения (следует отличать от теории пластического течения) и теория упрочнения [120, 157, 194, 309]. Теория старения малопригодна для описания деформирования материала при нестационарном во времени т нагружении, когда o(T) onst [10, 194]. Теория упрочнения при нестационарном нагружения во многих случаях имеет приоритет по отношению к теории течения, так как дает более близкие к эксперименту результаты [10, 194].  [c.13]

И 3 соответственно расчет по теории с анизотропным и изоторпным упрочнением (Г = 900 С)  [c.36]

На рис. 1.6 для сравнения представлены кривые ползучести при статическам и ступенчатом нагружениях, рассчитанные по различным теориям ползучести. Из рисунка видно, что лучшее описание процесса ползучести при нестационарном нагружении дает теория анизотропного упрочнения. В случае циклического нагружения материала, работающего при высоких температурах, теория изотропного упрочнения (обычно именуемая просто теорией упрочнения) будет давать заниженные значения накопленной деформации ползучести (при расчете по теории упрочнения использовали зависимость Sf = где и гпс — эмпирические константы).  [c.37]

При нагружении на линии продолжения трещины в пластической зоне отношение напряжений, параллельных трещине, к напряжениям, ориентированным перпендикулярно к ней, q — = OyylOxx практически постоянно (q — 0,62 0,68) и не зависит от предела текучести, модуля упрочнения (в варьируемом диапазоне), степени нагружения материала у вершины трещины (рис. 4.3), а также от параметра нагружения a = KnlKi. На рис. 4.3 штриховыми линиями отмечена некорректная область, где начальное притупление трещины оказывает влияние на НДС (представлен случай, когда Кп — 0). Вне этой области НДС отвечает нагружению бесконечно острой трещины с притуплением, равным нулю. Полученные результаты в части влияния притупления на НДС достаточно хорошо соответствуют решению по теории линий скольжения, где жесткость напряженного состояния, а следовательно, и параметр q перестает изменяться, начиная с у > 3,81 р (р — радиус притупления трещины) [124].  [c.205]

Результаты расчетов представлены на рис. 5.2, б. Здесь же показана кривая ОН, полученная в результате решения МКЭ прямой упругопластической задачи, базирующегося на теории течения в сочетании со схемой трансляционного упрочнения [124] при нагружении образца по схеме, показанной на рис. 5.2, а. В расчете принимали предел текучести Рт = = 1060 МПа, модуль упрочнения = 1800 МПа. Из рис. 5.2,6 видно достаточно удовлетворительное соответствие решений прямой (кривая 3) и обратной (кривые 1, 2) задач. Максимальное различие в результатах получилось при г/ = 7ч-9ммиг/ = = 0 н- 2 мм для кривых 1 и 2 соответственно.  [c.275]

Указанные требования выполняются посредством решения динамической упругопластической задачи МКЭ, базирующейся на теории неизотермического течения и модели трансляционно-изотропного упрочнения (см. раздел 1.1). В программе для ЭВМ, реализующей диналмическую задачу, предусмотрен учет влияния скорости деформирования на параметры, определяющие поверхность текучести материала, а также учтена возможность использования нескольких материалов в конструкции.  [c.334]

Для расчета НДС в пластической области принималась теория пластического течения в сочетании с моделью изотропного упрочнения, а поверхность текучести ф(и, ) (где г = ) для сталей 08Х18Н10Т и 10ГН2МФА задавали в соответствии с рис. 6.5. Анализ НДС при взрывной развальцовке трубок проводили при температуре Г = 20°С физико-механические свойства материалов представлены в табл. 6.1.  [c.347]


На основе физической теории надежности создаются методы расчета надежности нефтехимических аппаратов, методы ускоренных испытаний, устанавливаются режимы защиты и упрочнения поверхностей аппаратов. Интеграция теории надежности с вышеназванными физико-техническими дисциплинами привела к появлению таких направлений в теории надежности, как прочностная надежность, трибологическая, коррозионная надежность. В этих направлениях решаются задачи расчета, испытаний и обеспечения надежности на основе методов теории прочности, фибологии и коррозии металлов, а также в условиях воздействия на изделия соответственно механических нагрузок, агрессивных сред, трения и изнашивания.  [c.71]

Теория течения с трансляционно-изотропным упрочнением. В соответствии с данной теорией, предложенной В. В. Новожиловым и Ю. И. Кадашевичем, основные соотношения имеют вид (рис. 11.9, 11.10)  [c.268]

Если считать нагружение квазипростым а = Э), то а°1 а-а°) = = ala и соотношение (11.98) вновь совпадает с выражением (11.87) теории течения с изотропным упрочнением, а не с выражением  [c.270]

Кривая одноосного растяжения малоуглеродистой стали с разгрузкой испытуемого образца (рис. 58) показывает, что остаюч-деформация измеряется отрезком ОО. Пластическая деформация начинает проявляться на участке АВ и происходит без увеличения нагрузки. На участке ВС происходит упрочнение материала, поэтому угол наклона касательной к кривой ВС и к оси абсцисс tg р называют модулем упрочнения. Упрочнение имеет направленный характер, т. е. материал меняет свои механические свойства и приобретает деформационную анизотропию, при этом пластическая деформация растяжения ухудшает сопротивляемость металла при последующем его сжатии (эффект Ба-ушингера). Как видно из приведенной кривой, растяжение малоуглеродистой стали при пластических деформациях нагруженного и разгруженного образца значения деформаций для одного и того же напряжения . в его сечении не является однозначным. Методы теории пластичности, наряду с изучением зависимости между компонентами напряжений и деформаций, возникающих в точках тела, определяют величины остаточных напряжений и деформаций после частичной или полной разгрузки дetaли, а также напряжения и деформации при повторных нагружениях.  [c.96]

Все теории, основанные на приведенных выше условиях пластичности, не позволяют при заданных выше силах и найденным по этим теориям напряжениям определить деформации. При постановке задач, кроме внешних сил, должны быть заданы и перемещения на границах области пластичности, а это практически не всегда возможно. Это и ряд других важных для практики моментов (учет упрочнения материала) органичивают применение различных теорий.  [c.103]

Для материалов, не обладающих упрочнением, точнее для модели идеально пластического неупрочняющегося тела теория типа течения логически безупречна и в отличие от деформационной теории она довольно хорошо подтверждается экспериментом в той мере, в какой подтверждается схема идеальной пластичности. Следующий шаг будет состоять в построении теории пластичности для упрочняющихся материалов. Здесь также можно стать на точку зрения теории течения, но результаты оказываются крайне сложными. Поэтому при инженерных расчетах, когда необходимо учитывать упрочнение материала, часто пользуются более простой деформационной теорией, хотя следует иметь в виду, что она нестрога и во многих случаях неточна.  [c.59]

Мы не закончили изложения теории Будянского в 16.4. Для построения полной модели тела, подчиняющегося уравнениям деформационного типа для некоторых путей нагружения, отличных от пропорционального, необходимы дополнительные гипотезы. Один факт существен, и его следует еще раз подчеркнуть соотношения деформационной теории могут быть справедливы для непропорциональных нагружений только тогда, когда последующие поверхности нагружения, ограничивающие область упругой разгрузки, имеют угловую точку, перемещающуюся по пути нагружения вместе с концом вектора в. Чтобы выяснить некоторые свойства упругопластических систем, которые, вероятно, принадлежат и упругопластическому телу, рассмотрим некоторую простую модель. В качестве такой модели выберем круглую тонкостенную трубу из упругопластического материала, не обладающего упрочнением. Труба изгибается моментами Mi и и перпендикулярных плоскостях 2 1, Xi и Х2, Ж3. Обознзчим радиус трубы R, тол-  [c.545]

Простейшая теория течения, которая формулиру(зтся с помощью уравнений (16.3.3) или (16.3.5), была названа теорией изотропного упрочнения. Действительно, согласно этой теории поверхность нагружения, определяемая уравнением (16.3.1), сохраняет свою форму, т. е. изменяется с сохранением подобия. Если откладывать по осям координат в девятимерном пространстве напряжений компоненты девиатора, то эта поверхность  [c.552]

Заметим, что при рассмотрении отдельных частных задач теории пластичности вместо всего пространства напряжений можно рассматривать подпространства с меньшим числом измерений. Но здесь приходится проявлять известную осторожность. Так, например, при плоском напряженном состоянии пластическая деформация будет трехмерной и использование двумерной кинематической модели типа Прагера может привести к неверным результатам, как отметил Будянский в дискуссии но статье Прагера. Эти трудности не возникают, если воспользоваться вариантом гипотезы трансляционного упрочнения, который был предложен Циглером. Согласно этой гипотезе тензор s определяется следующими дифференциальными уравнениями  [c.553]


Смотреть страницы где упоминается термин Упрочнение теории : [c.247]    [c.134]    [c.108]    [c.49]    [c.169]    [c.349]    [c.352]    [c.355]    [c.107]    [c.3]    [c.552]    [c.371]   
Физические основы пластической деформации (1982) -- [ c.211 , c.223 ]



ПОИСК



Матричная теория приспособляемости, учитывающая упрочнение и геометрические эффекты второго порядка. Перевод Гохфельда

Обобщение теории с анизотропным упрочнением Хажинский)

Обобщение теорий с изотропным упрочнением Самарин, С.А.Шестериков)

Описание процесса неизотермпческого малоциклового деформирования металлов на базе теории термовязкопластичности с комбинированным упрочнением

Основные понятия теории пластичности уплотняемых тел (Пластические и вязкие деформации. Ассоциированный закон течения. Учет упрочнения. Условия устойчивости материала)

Основы теории упрочнения металлов при пластической деформации и разупрочнения деформированных металлов при нагреве

Плоская деформация при наличии линейного упрочнеОбщая теория пластичности с линейным упрочнением

Ползучесть Теория упрочнения

Применение теории деформационного упрочнения к анализу процесса многопроходной деформации

Теории деформационного упрочнения

Теории изотропного и анизотропного упрочнения

Теории пластичности анизотропного упрочнения

Теории пластичности анизотропного упрочнения Данилов)

Теории пластичности анизотропного упрочнения анизотропным упрочнением 120, 121 Обобщение теорий с изотропным упрочнением 119, 120 - Определение времени

Теории пластичности анизотропного упрочнения разрушения 121 - Понятие

Теории пластичности изотропного упрочнения

Теории пластичности изотропного упрочнения Данилов)

Теории радиационного упрочнения металлов

Теория Билби деформационного упрочнения

Теория Применение теории упрочнения

Теория деформаций - Основные зависимости изотропным и анизотропным упрочнением

Теория изотермического упрочнения

Теория кривых упрочнения

Теория неизотермического пластического течения с изотропным и анизотропным упрочнением Темис)

Теория пластического деформирования материалов, обладающих эффектом дополнительного упрочнения

Теория пластического упрочнения металлов

Теория пластичности изотропного материала с анизотропным упрочнением

Теория пластичности ортотропного материала с изотропным упрочнением

Теория пластичности — Задача с анизотропным упрочнением

Теория пластичности — Задача с трансляционным упрочнение

Теория ползучести Задача Экспериментальная с анизотропным упрочнение

Теория ползучести Задача Экспериментальная упрочнения

Теория ползучести с анизотропным упрочнением

Теория ползучести с анизотропным упрочнением Хажинский)

Теория течения при изотропном упрочнении

Теория течения с изотропным упрочнением — Основное уравнение

Теория трансляционного упрочнения

Теория упрочнения Тэйлора

Теория упрочнения волокнами

Теория упрочнения — Решение зада

Теория упругости — Упрочнение

Теория упругости — Упрочнение сгостенной

Теория упругости — Упрочнение снятой

Теория упругости — Упрочнение спилкой

Теория упругости — Упрочнение энергии

УРАВНЕНИЯ ТЕОРИИ ТЕРМОВЯЗКОПЛАСТИЧНОСТИ С КОМБИНИРОВАННЫМ УПРОЧНЕНИЕМ

Упрочнение

Формальные теории деформационного упрочнения



© 2025 Mash-xxl.info Реклама на сайте