Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные теоремы теории дифференциальных уравнений

Теорема о непрерывной зависимости от начальных значении. Наряду с теоремой о существовании и единственности решения основной теоремой теории дифференциальных уравнений является теорема о непрерывной зависимости от начальных значений (см. дополнение, 8).  [c.36]

Основные теоремы теории дифференциальных уравнений  [c.552]

ОСНОВНЫЕ ТЕОРЕМЫ ТЕОРИИ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ 553  [c.553]

В первой главе излагаются термодинамические основы термоупругости и выводятся основные соотношения и дифференциальные уравнения этой теории. Даны общие энергетические и вариационные теоремы, а также теорема взаимности с вытекающими из нее методами интегрирования уравнений.  [c.8]


Термоупругость описывает широкий круг явлений, являясь обобщением классической теории упругости и теории теплопроводности. В настоящее время термоупругость является вполне законченной областью записаны основные зависимости и дифференциальные уравнения, предложено несколько методов решения уравнений термоупругости, доказаны основные энергетические и вариационные теоремы, решено несколько задач по распространению термоупругих волн.  [c.757]

В 3.05 приводятся основные теоремы Ляпунова. Эти выдающиеся результаты послужили источником для огромного количества работ по качественной теории дифференциальных уравнений, теории нелинейных колебаний, аналитической и качественной небесной механике. Впервые они были опубликованы в докторской диссертации А. М. Ляпунова [7]. Укажем также на издания [8], [32], [71—73], содержащие подробное изложение как основных теорем Ляпунова, так и результатов многих его последователей.  [c.831]

Основная теорема теории обыкновенных дифференциальных уравнений.  [c.18]

Возможности решения уравнений обобщенной модели ЭМП определяются основными положениями теории обыкновенных нелинейных дифференциальных уравнений. Теоремы существования и единственности гарантируют однозначное решение на некотором интервале времени при условии непрерывной дифференцируемости переменных и непрерывности коэффициентов уравнений в зависимости от времени. Получаемые при этом решения, в свою очередь, являются непрерывными функциями времени.  [c.62]

Теория подобия и моделирования рассматривается как база научной постановки опытов и обобщения экспериментальных данных. Из анализа дифференциальных уравнений, характеризующих общие функциональные связи между основными факторами, и условий однозначности, включающих характеристики геометрии, физических свойств и краевые условия (начальные и граничные), получаем предпосылки к экспериментально-теоретическому изучению процессов. В решении поставленных задач приходится встречаться с различными по сложности явлениями. В некоторых случаях теоретическое решение задач позволяет получить общие качественные связи параметров, например в определении коэффициента трения при решении контактно-гидродинамической задачи. При анализе же весьма сложного процесса изнашивания твердых тел или твердосмазочных покрытий в настоящее время не удается получить достаточно общих математических описаний явлений. В связи с этим различается подход к проблеме трения и износа тел, работающих в масляной среде и всухую (с твердо-смазывающими покрытиями или из самосмазывающихся материалов). Теория подобия базируется на следующих основных теоремах  [c.160]


Такая возможность определения параметров течения, опираясь только на общие теоремы, иногда имеется в задачах теории струй, и ее обычно используют для проверки результатов вычислений. Конечно, нельзя считать, что эти результаты получаются совершенно различными путями, так как и тот и другой, по существу, исходят из одних и тех же основных дифференциальных уравнений неразрывности и движения и одинаковых представлений о течении в целом.  [c.131]

В этом параграфе приводятся решения некоторых задач теории упругости, не требующие интегрирования дифференциальных уравнений в частных производных. Решение этих задач получается с помощью логических рассуждений и простейших вычислений. При этом будет показано, что все основные соотношения теории упругости выполняются. На основании теоремы единственности можно сделать вывод, что эти решения правильны и единственны.  [c.341]

В первом разделе тома даются принципы и основные уравнения механики упругого деформируемого твердого тела теории деформаций и напряжений, дифференциальные уравнения равновесия, связь между компонентами напряжения и деформации, общие теоремы теории упругости и строительной механики, вариационные принципы и их использование для решения задач механики деформируемого твердого тела, методы конечных и граничных элементов.  [c.16]

Следует указать, что принятое изложение метода подобия не является единственно возможным. Широко используется и другой, на первый взгляд более простой способ, основанный на принципе размерностей ). Этот метод в явной форме не пользуется дифференциальными уравнениями и соответствующими им граничными, начальными и другими возможными условиями единственности решений этих уравнений, но требует достаточно глубокого понимания сущности явлений, без чего нельзя правильно выбрать основную систему физических параметров, описывающих явление, и указать, какие из них в постановке рассматриваемой конкретной задачи являются заданными наперед, а какие зависящими от них. В основе теории размерности лежит П-теорема ).  [c.372]

Конечно, применять эти теоремы к ПИНС, как и к любым нефтепродуктам, надо с определенными оговорками. Так, при моделировании химических и нефтехимических производств объекты описываются дифференциальными уравнениями, общими для модели и объекта. В нашем случае речь идет о подобии рассматриваемого ПИНС с выбранными эталонами сравнения. Однако такое сравнение невозможно, если не соблюдены основные принципы теории подобия общность основных процессов и явлений, общность механизма действия, сравнение модели и объекта в безразмерных (масштабных) величинах.  [c.41]

В этой теории не предполагается, что преобразования описываются уравнениями Гамильтона или вообще дифференциальными уравнениями. Эргодичность и перемешивание — примеры относящихся к этой теории понятий, а теорема Биркгофа или приведенное выше простое рассуждение о том, что из перемешивания следует эргодичность,—примеры относящихся сюда теорем. 2) Эргодическая теория более конкретных динамических систем, описываемых уравнениями Гамильтона. Ее основная задача — установление (или опровержение) эргодичности или других статистических свойств тех или иных динамических систем. Выше автор говорил о первом направлении, теперь он переходит ко второму.— Прим. ред.  [c.383]

Теория подобия состоит из трех основных теорем. Первая теорема подобия гласит у подобных явлений значения одноименных критериев подобия одинаковы, а индикаторы подобия равны единице. Для получения критериев подобия дифференциальные уравнения, описывающие процесс, должны быть подвергнуты преобразованию подобия, которое заключается в следующем.  [c.236]

Прежде всего рассматривается задача о движении материальной точки, находящейся под действием совокупности сил. Формулируются законы Ньютона, выводятся дифференциальные уравнения движения точки. Особо отмечается случай, когда точка находится в равновесии (статика точки). Далее формулируются основные задачи динамики точки и рассматриваются примеры (например, задача о колебаниях точки). Здесь же доказывается теорема об изменении кинетической энергии точки и подробно изучается понятие работы силы и теория потенциального силового поля.  [c.74]


Статистическая гидромеханика широко использует результаты и методы классической гидромеханики и теории вероятностей. Поэтому знание указанных двух дисциплин сильно облегчит знакомство с настоящей книгой. Тем не менее мы надеемся, что наша книга будет доступной и для лиц, имеющих лишь общую математическую и физическую подготовку. Имея з виду таких читателей, мы включили в первые два раздела основные сведения из классической гидромеханики (начиная с уравнений неразрывности и движения) и из теории вероятностей (начиная с самого понятия вероятности). Уже в этих главах, как и во всех дальнейших, мы старались уделять основное внимание принципиальным вопросам, не задерживаясь на технических деталях. С этим стремлением связано то, что мы нигде не излагаем методов решения встретившихся дифференциальных уравнений или других стандартных математических задач, а сразу приводим ответ (который иногда совсем нелегко найти). В то же время мы сравнительно подробно останавливаемся на некоторых недостаточно широко известных, но важных математических вопросах, традиционно опускаемых во всех книгах и статьях, предназначенных для механиков или физиков (типа, например, вопроса об эргодических теоремах или спектральных разложениях случайных полей) этим объясняется то, что целых два раздела книги посвящены математической теории случайных полей.  [c.25]

Вариационная теорема Рейсснера может найти применение при выводе дифференциальных уравнений теории мембран, плит и оболочек. Применение этой теоремы к выводу основных уравнений и условий для плит средней толщины читатель найдет в цитированных на стр. 132 работах Рейсснера.  [c.134]

При доказательстве стационарности больцмановского распределения, так же как и при доказательстве Я-теоремы, Больцман исходит из выведенного им основного интегро-дифференциального уравнения для функции распределения, так называемого кинетического уравнения Больцмана. В ряде работ (1880—1883 гг.) он разрабатывает затем методы приближенного решения этого уравнения, выводит из него гидродинамические уравнения и т. д. Уравнение Больцмана является в настоящее время фундаментом всей кинетической теории газов.  [c.12]

Для подобия процессов нагрева слитков в натуре и модели, согласно основной теореме подобия, требуется чтобы для натуры и модели уравнения (148) — (155) были тождественны. Подвергнем эти уравнения преобразованиям методами теории подобия. Применим метод интегральных аналогов. Для этого опускаем в дифференциальных уравнениях знаки дифференциалов, сумм и индексов. Таким образом, из уравнения (148) получаем преобразованные критерии по А. С. Невскому [60]  [c.158]

Для решения выдвигаемых перед нею задач механика жидкости и газа, так же как и теоретическая механика, применяет точные и приближенные математические приемы интегрирования основных дифференциальных уравнений движения, уравнений переноса тепла, вещества и других уравнений, выражающих законы физических процессов в жидкости и газе (например, уравнения электромагнитного поля). Для получения суммарных характеристик явлений используются общие теоремы механики и термодинамики теоремы количества и моментов количеств движения, закон сохранения энергии и др. Значительная сложность явлений вынуждает механику жидкости и газа широко пользоваться услугами эксперимента, обобщение результатов которого приводит к эмпирическим закономерностям, а иногда и к полуэмпирическим теориям. Такие отклонения от дедуктивных методов классической рациональной механики вполне естественны для столь быстро развивающейся науки, как современная механика жидкости и-газа.  [c.14]

Некоторые приложения этой теоремы будут даны ниже ( адиабатические инварианты ). Заметим, что основная идея доказательства этой теоремы (замена переменных, убивающая возмущение) важнее самой теоремы это — одна из основных идей в теории обыкновенных дифференциальных уравнений она встречается уже в элементарном курсе в виде метода вариации постоянных .  [c.259]

С.истема (21) предполагается удовлетворяющей основным теоремам теории дифференциальных уравнений (теореме существо-кинпн единственности решения и др.).  [c.15]

В настояш,ее время термопругость вполне оформилась как научная дисциплина. Четко сформулированы ее исходные предположения, выведены основные соотношения и дифференциальные уравнения. Разработан ряд методов решения дифференциальных уравнений термоупругости, получены основные энергетические и вариационные теоремы. Обш,ие теоремы и методы термоупругости в качестве частных случаев содержат, естественно, теоремы и методы теории упругости и теории теплопроводности.  [c.7]

С математической точки зрения основные теоремы динамики — теоремы о движении центра инерции, об изменении количества движения, об изменении кинетического момента и об изменении кинетической энергии дают возможность находить в частных случаях первые интегралы дифференциальных уравнений движения. Возможность получешгя этих интегралов завггеггт от особенностей системы сил. приложенных к точкам материальной системы. Эти свойства были подчеркнуты при рассмотрении соответствующих теоре.м на протяжении последней главы.  [c.105]

Дифференциальные уравнения движения свободного твердого тела. Пусть требуется найти движение свободного твердого тела относительно неподвижной системы координат OaXYZ. Согласно теореме Шаля (п. 21), любое движение твердого тела можно рассматривать как совокупность поступательного движения, определяемого движением произвольной точки тела (полюса), и движения тела вокруг этой точки как неподвижной. При описании движения полюс желательно выбрать так, чтобы его движение определялось наиболее просто. Из основных теорем динамики следует, что за полюс удобно взять центр масс. Действительно, согласно теореме о движении центра масс, последний движется как материальная точка, к которой приложены все внешние силы системы, а теоремы об изменении кинетического момента и кинетической энергии для движения вокруг центра масс (см. определение этого понятия в п. 81) формулируются точно так же, как и для движения вокруг неподвижной точки.  [c.214]


Первые 6 лекций Якоби посвящает изложению основных принципов механики принципу сохранения движения центра тяжести системы, принципу живой силы, принципу площадей и принципу наименьшего действия. С 10-ой лекции Якоби развивает теорию множителя" систем обыкновенных дифференциальных уравнений, являющуюся обобщением теории эйлеров-ского интегрирующего множителя. Якоби показывает каким образом можно в целом ряде случаев построить с помощью последнего множителя" всю систему п независимых интегралов. Изложив подробно теорию этого множителя, Якоби затем применяет ее к решению ряда механических задач. С 19-ой лекции Якоби, исходя из вариационного принципа Гамильтона, излагает тот метод интегрирования уравнения с частными производными первого порядка, который известен под названием метода Якоби-Гамильтона". В следующих лекциях этот метод примендется к ряду задач, взятых главным образом из области небесной механики. В 26 лекции Якоби излагает теорию эллиптических координат и показывает их приложение к разысканию геодезических линий эллипсоида, к задаче построения карт, к выводу основной теоремы Абеля и проч. Наконец, последние лекции Якоби посвящены изложению его классических методов интегрирования нелинейных уравнений в частных производных первого порядка.  [c.4]

Это одна из замечательнейших теорем всего интегрального исчисления, и, в частном случае, когда иоложено Н Т— U, это есть основная теорема аналитической механики. Именно она иоказывает, что если имеет место теорема живой силы, то из двух интегра.юв дифференциальных уравнений движения простым дифференцированием вообще можно вывести третий интеграл, отсюда четвертый и т. д., так что либо получатся все интегралы, либо по крайней мере некоторое число их.  [c.241]

Выполненный ранее анализ уравнения интенсивности теплообмена [3] не доведен до конца, в частности не получены определяющие числа подобия и не установлено их количество. Несложно провести анализ размерностей переменных уравнения и определить количество чисел подобия. Согласно теории подобия функцией чисел подобия может быть представлен интеграл дифференциального уравнения интенсивности теплообмена [3 a(At)/At =—amdP. В то же время согласно л-теореме теории анализа размерностей количество (сумма) определяемых и определяющих чисел подобия должно быть равно разности количества размерных переменных в уравнении и количества независимых (основных) размерностей. Перечислим переменные и их размерности  [c.43]

Основная идея метода Ланжевена в теории гидродинамических флуктуаций состоит во введении в уравнения переноса случайных источников , описывающих тепловой шум. После этого уравнения переноса становятся стохастическими дифференциальными уравнениями а их решения описывают не только регулярное (усредненное) движение, но и флуктуации на фоне этого движения. Средние значения случайных источников равны нулю, а их корреляции определяются из дополнительных условий самосо-гласования, например, из флуктуационно-диссипационной теоремы. Метод стохастических уравнений и метод уравнения Фоккера-Планка дополняют друг друга. Отметим, однако, что эти методы, вообще говоря, не эквивалентны. Мы видели, что уравнение Фоккера-Планка может быть выведено из фундаментального уравнения неравновесной статистической механики — уравнения Лиувилля, в то время как метод стохастических уравнений по своей сути является феноменологическим и его применимость необходимо обосновывать в каждом конкретном случае. Тем не менее, метод Ланжевена часто оказывается очень удобным, особенно при вычислении временных корреляционных функций флуктуаций. Поэтому представляет интерес построение стохастических гидродинамических уравнений, соответствующих уравнению Фоккера-Планка (9.1.63).  [c.237]

Для решения большинства своих задач гидроаэро- и газодинамика применяют строгие математические приемы интегрирования основных дифференциальных уравнений при установленной системе граничных и начальных условий или другие эквивалентные им математические методы (например, конформное отображение в задачах плоского движения идеальной жидкости). Для получения суммарных характеристик используются такие общие теоремы механики, как теорема количества и моментов количеств движения, энергии и др. Однако большая сложность и недостаточная изученность многих явлений вынуждают механику жидкости и газа не довольствоваться применением строгих методов теоретической механики и математической физики, столь характерных, например, для развития механики твердого тела, но и широко пользоваться услугами всевозможных эмпирических приемов и так называемых нолуэмпирических теорий, в построении которых большую роль играют отдельные опытные факты. Такие отклонения от чисто дедуктивных методов классической рациональной механики естественны для столь бурно развивающейся науки, как современная механика жидкости и газа.  [c.15]

Мы видели, что дифференциальное уравнение (84) относительного движения материальной точки имеет тот же вид, что и дифференциальное уравнение движения точки относительно неподвижной системы отсчета различие между этими уравнениями состоит лишь в том, что в уравнение относительного движения, кроме заданных сил и реакций связей, входят еще переносная и кориолисова силы инерции. С другой стороны, в главе 21 мы видели, что все общие теоремы динамики точки (теорема о количестве движения, теорема о моменте количества движения, теорема о кинетической энергии) являются следствием основного дифференциального уравнения динамики точки, выражающего второй закон Ньютона. Отсюда следует, что все эти обпще теоремы применимы и к относительному движению точки, но понятно, что, применяя эти теоремы к относительному движению, мы должны принять во внимание переносную и кориолисову силы инерции. В частности, при решении задач, относящихся к относительному движению точки, нередко приходится пользоваться теоремой о кинетической энергии. Нри составлении уравнения, выражающего эту теорему в относительном движении, необходимо принять во внимание работу переносной и кориолисовой сил инерции на относительном перемещении точки. Но так как ускорение Кориолиса Н7д всегда перпендикулярно к относительной скорости v , то следовательно, работа кориолисовой силы инерции в относительном движении равна нулю, и эта сила в уравнение теоремы о кинетической энергии не войдет. Поэтому это уравнение в дифференциальной форме будет иметь следующий вид  [c.456]

В следуюш,их И параграфах, посвященных первому закону термодинамики, его аналитическому выражению и некоторым его при- тожеппям, рассматриваются следующие темы о некоторых свойствах движения системы масс троякое действие, производимое теплотой понятие об энергии тела о количествах, определяющих состояние тела единицы для измерения энергии тела и внешней работы первая основная теорема механической теории теплоты один простой пример вычисления энергии заметка о дифференциальных уравнениях, не могущих интегрироваться в обыкновенном значении этой операции другое аналитическое выражение первой теоремы термодинамики для случая, когда состояние тела оиределяется двумя независимыми переменными и изменение совершается оборотным образом применение формул предыдущего параграфа к газам применепие первой основной теоремы термодинамики к газам отно-ш ение теплоемкости газа при постоянном давлении к теплоемкости при постоянном объеме перечисление свойств совершенного газа, выведенных из гипотезы о его строении .  [c.43]


Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]

Введение. Твердое тело представляет собой частный случай механической системы точек, когда расстояния между любыми двумя точками системы остаются постоянными во все время движения. Одним из наиболее эффективных методов изу-чершя движения твердого тела под действием приложенных к нему сил является метод, основанный на применении основных теорем динамики системы. Для изучения поступательного движения тела мы будем исходить из теоремы о движении центра масс при изучении вращения твердого тела около неподвижной оси наиболее рационально пользоваться теоремой об изменении кинетического момента. На примерах изучения простейших движений твердого тела под действием приложенных сил весьма отчетливо выявляется значение основных теорем динамики системы, позволяющих исследовать свойства движений систем ма-териальных точек, подчиненных некоторым дополнительным условиям (связям). Основные теоремы динамики системы были исторически первым, наиболее простым и естественным методом изучения движения несвободных механических систем точек, и в частности изучения динамики твердого тела В последующем развитии механики Лагранжем был создан метод обобщенных координат, позволяющий свести составление дифференциальных уравнений движения системы с 5 степенями свободы к ясной, логически безупречной последовательности алгебраических преобразований, однако физическая наглядность рассуждений была в значительной мере утрачена  [c.400]

Теорию крыла конечного размаха позволило создать использование основополагающей теоремы Н. Е. Жуковского о связи подъемной силы с циркуляцией и модели течения с присоединенным вихрем, так что эта теория является логическим продолжением и развитием идей, составляющих фундамент теории крыла бесконечного размаха, В 1910 г. С. А. Чаплыгин в докладе на тему Результаты теоретических исследований о, движении аэропланов сформулировал общие представления о вихревой системе крыла конечного размаха. В 1913 и 1914 гг. им были получены первые формулы для подъемной силы и индуктивного сопротивления. Они были доложены на третьем воздухоплавательном съезде в Петербурге. В дальнейшем основное распространение получила теория несущей линии, предложенная в Германии Л. Прандтлем для крыльев большого относительного удлинения. В рамках этой схемь было получено интегро-дифференциальное уравнение, связывающее изменение циркуляции и индуктивный скос потока. Задача свелась к отысканию различных приближенных методов его решения. В работе Б. Н. Юрьева (1926) был применен геометрический прием, в котором использовалось предположение о том, что распределение циркуляции близко к эллиптическому и что отклонения от этого распределения повторяют форму крыла в плане. Аналитические методы, применявшиеся на начальном этапе развития теории для получения приближенных решений, состояли в требовании удовлетворения основному уравнению в ограниченном числе точек по размаху. Так, в методе тригонометрических разложений В. В. Голубев (1931) заменил бесконечный тригонометрический ряд тригонометрическим многочленом, сведя бесконечную систему уравнений к конечной системе, в которой число неизвестных соответствует числу членов разложения циркуляции и числу точек на крыле. С целью более точного учета формы крыла в плане при ограниченном числе решаемых алгебраических уравнений Я. М. Серебрийский (1937) предложил для решения интегро-дифференциального уравнения использовать способ наименьших квадратов.  [c.92]

Нам представляется неудачным термин гидравлика переменной массы , широко используемый Г. А. Петровым и некоторыми другими авторами. При установившемся движении масса жидкости в каждом неподвижном отсеке потока (эйлеровы переменные) остается постоянной. Поэтому такого типа течения, на наш взгляд, лучше называть потоками с переменным по пути расходом. Гидравлическая теория таких потоков лшжет быть построена на основе законов механики о движении тела переменной массы. В то же время такая интерпретация явления имеет смысл лишь прк гидравлическом (одномерном) его описании. Попытки отдельных авторов (А. С. Кожевников и др.) строить основные дифференциальные уравнения гидродинамики, базируясь на теореме Мещерского динамики материальной точки переменной массы, строга говоря, лишены основания, так как в гидродинамической постановке учет изменения расхода потока вследствие присоединения или отделения части расхода по длине требует лишь соответствующего назначения граничных условий.  [c.719]

И эта теорема впервые была доказана Рэйли [ ], правда, при некоторых ограничивающих предположениях. Позже она была доказана в более общем виде В. Толмином [ 1. Согласно этой теореме, внутри течения существует в случае нейтральных возмущений такой слой у г/ р, в котором V — с = 0. Это обстоятельство так же, как и существование точки перегиба на профиле скоростей, имеет фундаментальное значение для теории устойчивости. В самом деле, точка С/ — с = О является особой точкой дифференциального уравнения возмущающего течения без учета трения (16.16). В этой точке вторая производная ф" равна бесконечности, если только здесь не обращается в нуль вторая производная С/". Слой у = г/ р, в котором V = с, называется критическим слоем основного течения. Если [ 7кр О, то в окрестности критического слоя, где можно принять, что  [c.430]

Дальнейшее развитие учения о движении жидкости и обобщение законов гидростатики дали возможность членам Российской академии наук в Санкт-Петербурге Леонарду Эйлеру (1707—1783 гг.) и Даниилу Бернулли (1700—1782 гг.) разработать теоретические основы гидравлики и, таким образом, создать прочную теоретическую базу, позволившую выделить гидравлику в отдельную отрасль науки. Д. Бернулли, работая над проблемами математики и механики, посвятил ряд мемуаров вопросам движения и сопротивления жидкости. В 1738 г. им опубликован капитальный труд по гидродинамике, в предисловии к которому автор указал, что его труд полностью принадлежит России, и прежде всего ее Академии наук. В этой работе Бернулли дал метод изучения движения жидкости, ввел понятие гидродинамика и предложил известную теорему о запасе энергии движущейся частицы жидкости. Эта теорема носит теперь имя Д. Бернулли и лежит в основе ряда разделов гидравлики. Л. Эйлер первый дал ясное определение понятия давления жидкости и, пользуясь им, в 1755 г. вывел основные дифференциальные уравнения движения некоторой воображаемой жидкости, лишенной трения, так называемой идеальной жидкости. Эти уравнения впоследствии были названы его именем. На основе учения Л. Эйлера возникла родственная гидравлике наука — гидромеханика, также рассматривающая законы движения жидкостей, но на основе только математического анализа, тогда как гидравлика для изучения отдельных вопросов широко использует и экспериментальный метод.  [c.7]



Смотреть страницы где упоминается термин Основные теоремы теории дифференциальных уравнений : [c.12]    [c.12]    [c.97]    [c.2]    [c.70]    [c.725]    [c.58]   
Смотреть главы в:

Качественная теория динамических систем второго порядка  -> Основные теоремы теории дифференциальных уравнений



ПОИСК



Основные дифференциальные уравнения

Основные теоремы

Теории Уравнения

Уравнение основное

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте