Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Условие непрерывности

При переохлаждении аустенита ниже Аг- длительность инкубационного периода будет зависеть от температуры переохлаждения. При некоторой температуре Г,, наблюдается наименьшая устойчивость аустенита, и через время /тш при выдержке при этой температуре полностью заканчиваются все превращения. При всех других температурах переохлаждения время инкубационного периода больше, поэтому температуру Т. называют температурой наименьшей устойчивости аустенита. При использовании кривых изотермического распада аустенита для оценки закаливаемости стали в условиях непрерывного охлаждения при сварке необходимо в эти кривые внести некоторые поправки.  [c.231]


В последующем изложении предполагается без специальных оговорок, что полевые величины удовлетворяют всем условиям непрерывности и дифференцируемости, т. е. всем условиям существования определяемых величин.  [c.30]

По условиям непрерывности зацепления и плавности хода передачи должно быть 8а > 1 [расчет е , см. формулу (8.25)].  [c.100]

Из условия непрерывности движения следует, что скорости струи непосредственно перед решеткой и за ней одинаковые (шр = 101), а давления рр и в этих сечениях разные первое больше второго на величину потерь брр при протекании через решетку, т. е.  [c.106]

Относительное отклонение коэффициента сопротивления от среднего значения I 1 1. Для удовлетворения условия непрерывности требуется,  [c.124]

В условиях непрерывного производства недогруженными бывают специализированные машины, выполняющие узкий круг операций при изготовлении деталей ограниченной номенклатуры, и машины, производительность которых превышает среднюю производительность смежного машинного оборудования. .  [c.25]

Из условия непрерывности и гладкости упругой линии в точках сопряжения отдельных участков балки следует, что при Хх = х = а соблюдаются условия 1) у[ = у., , откуда на основании уравнений (10.45) и (10.47) имеем С1 = С2 2) 1 = 21 откуда на основании уравнений (10.46) и (10.48) получаем Ох = О -  [c.181]

Определение перемещений методом непосредственного интегрирования дифференциального уравнения упругой линии в случае балок с большим количеством участков сопряжено со значительными трудностями. Эти затруднения заключаются не в интегрировании дифференциальных уравнений, а в технике определения произвольных постоянных интегрирования — составлении и решении систем линейных алгебраических уравнений. Так, если балка по условиям нагружения разбивается на п участков, то интегрирование дифференциальных уравнений для всех участков балки дает 2п произвольных постоянных. Добавив к двум основным оперным условиям балки 2 п — 1) условий непрерывного и плавного сопряжения всех участков упругой линии, можно составить 2п уравнений для определения этих постоянных.  [c.281]

Положив X — d в уравнениях (10.80) и (10.83), из условия непрерывного сопряжения участков w (d)/y = w (d)v найдем, что и  [c.285]

Обобщенные смещения конструкций должны подчиняться некоторым требованиям непрерывности. Для нашей балки, например, смещения Ра(х) должны быть непрерывными и кусочно-дифференцируемыми. Мы будем называть эти требования кинематическими условиями непрерывности. Их общая форма будет обсуждена в разд. 1.2.  [c.10]

Обобщенные напряжения, удовлетворяющие статическим условиям непрерывности и статическим ограничениям, мы назовем статически допустимыми.  [c.11]


Здесь f = f x) представляет собой некоторое поле, например поле напряжений, которое должно быть допустимым в том смысле, что оно должно удовлетворять некоторым дифференциальным уравнениям и условиям непрерывности. Через / г обозначен некоторый положительно определенный функционал от г, причем интегрирование распространяется на объем V тела В. Минимум в (3.29) достигается при г = г, где г есть действительное поле, вызванное в В заданными поверхностными нагрузками на Sj. Если, например, С представляет собой упругую податливость тела В, то г есть произвольное кинематически допустимое поле деформаций, а f (г) — соответствующая удельная энергия деформаций.  [c.34]

Переформулируем граничные условия на поверхности раздела фаз в терминах функции тока. В предыдущем разделе было показано, что при определенных гидродинамических условиях газовый пузырь можно считать сферическим. Тогда условие непрерывности тангенциальной компоненты скорости (1. 3. 6) будет иметь вид  [c.20]

Тогда условие (1. 3. 12) представляет собой условие непрерывности тангенциального напряжения  [c.20]

На поверхности пузырька должны выполняться условия равенства тангенциальных компонент скорости (1. 3. 6) и равенства нулю нормальных компонент скорости (1. 3. 7). Считая коэффициент поверхностного натяжения постоянной величиной, из (1. 3. 10) получим условие непрерывности тангенциальных компонент тензора напряжений  [c.65]

Еще два уравнения для определения указанных неизвестных функций находим из условий непрерывности компонент скорости течения фаз (4. 1. 18), (4. 1. 19). Поскольку возмущение скорости жидкости, вызванное присутствием пузырька, имеет порядок 0 (3), а скорость потока на бесконечном удалении и = аг (4. 1. 5) имеет порядок 0 (1), то этим возмущением скорости можно пренебречь по сравнению с величиной az. Подставляя (4. 1.5) и (4. 1. 14) в граничное условие (4. 1. 18), получим следующее уравнение  [c.126]

Задача этапа далее заключается в определении неизвестного вектора АИ и свободного члена Ло. Для этого, используя условие непрерывности функции в узлах, коэффициенты полинома выражают через вектор узловых значений функции и координаты узлов и, проделав эквивалентные преобразования, получают  [c.15]

Коэффициенты ai и аг определяются через узловые значения функции Ф , в соответствии с условием непрерывности  [c.23]

Используя условие непрерывности искомой функции в узлах аналогично предыдущему случаю, составим систему уравнений  [c.25]

Постоянные интегрирования определяются из условий закрепления бруса и условий непрерывности при переходе с первого участка на второй, т. е.  [c.144]

Кинетика фазовых превращений при различных степенях переохлаждения описывается изотермической диаграммой превращения, называемой также С-образной диаграммой превращения (рис. 13.4). Фазовое превращение в условиях непрерывного охлаждения или нагрева подчиняется тем же основным закономерностям, что и изотермическое превращение. Условно превращение при непрерывном изменении температуры можно рассматривать как серию многочисленных изотермических превращений при последовательно меняющихся температурах. Чем быстрее меняется температура, тем меньше успевает образовываться новой фазы при каждой степени переохлаждения. В результате превращение протекает в диапазоне непрерывно изменяющихся температур при большей степени переохлаждения или перегрева, чем изотермическое превращение. В этом случае кинетика фазового превращения описывается анизотермической диаграммой  [c.494]

Решение краевой задачи. Введем произвольную характеристику первого семейства д1. В силу того, что при сверхзвуковых скоростях уравнения (1.6)-(1.9) имеют гиперболический тип, форма отрезка дЬ не влияет на обтекание отрезка ад. Поэтому, если контур аЬ обладает минимальным сопротивлением при заданной характеристике ае и определенных величинах Ф, Г, то и отрезок дЬ должен иметь минимальное сопротивление при фиксированной характеристике д1 и своих фиксированных величинах Ф, X. В противном случае уменьщение сопротивления отрезка дЬ привело бы к уменьщению сопротивления всего контура аЬ. На участке 1Ь выполняются уравнения (2.15), (2.28)-(2.30), а в точке Ь — граничное условие (2.24). Условия непрерывности функций а, 1 , в точке I и первое условие из (2.12) также удовлетворяются. Но если участок дЬ контура обладает минимальным сопротивлением, то в точке I должно выполняться и условие трансверсальности (2.34), записанное для 4/ Это условие в силу произвольности выбранной характеристики д1 должно выполняться на всей характеристике ЬН. Поэтому оно должно являться интегралом системы уравнений (2.11), (2.15), (2.28)-(2.30).  [c.78]


Условие непрерывности функций а, 1 в точке с, если таковая имеет место, выражается равенствами  [c.97]

Возможности решения уравнений обобщенной модели ЭМП определяются основными положениями теории обыкновенных нелинейных дифференциальных уравнений. Теоремы существования и единственности гарантируют однозначное решение на некотором интервале времени при условии непрерывной дифференцируемости переменных и непрерывности коэффициентов уравнений в зависимости от времени. Получаемые при этом решения, в свою очередь, являются непрерывными функциями времени.  [c.62]

Для непрерывного зацепления и плавного хода передачи необходимо, чтобы до выхода из зацепления одной пары зубьев другая пара зубьев вошла в зацепление, т. е. попала на активную линию зацепления. Только в этом случае обеспечивается перекрытие работы одной пары зубьев другой и соблюдается условие непрерывной работы передачи еа>1. Если еа<<1, то произойдет размыкание контакта между зубьями.  [c.335]

Учитывая, что приведенные выше расчеты основаны на предположении о непрерывном облучении, следует оценить справедливость результатов этих расчетов по отношению к радиационному воздействию солнечных вспышек. При длительных космических полетах доза радиационного воздействия определяется в основном постоянно действующим галактическим космическим излучением и совокупностью солнечных вспышек, что практически соответствует условиям непрерывного облучения. При полетах длительностью несколько месяцев основной вклад в дозу оправданного риска дают одна-две случайно распределенные во времени вспышки. В этом случае величина эффективной дозы на конец полета существенно зависит от момента возникновения вспышки, так что вопрос о дозе оправданного риска для полетов указанной продолжительности требует дальнейшего изучения.  [c.278]

Рассмотрим теперь прямоугольник в плоскости q , q. , ограниченный сторонами 0В, ОВ, ВВ1, ВВ. В каждой точке этого прямоугольника потенциальная энергия Я удовлетворяет условию непрерывности и по qi, и по q . Значение потенциальной энергии Яд в каждой точке D этого прямоугольника меньше, чем П[, т. е. самой меньшей величины при этом < ] < е, (7а < е. Очевидно и обратное если известно, что значение потенциальной энергии меньше П[, то это соответствует значению координат, удовлетворяющих неравенствам l9i I < е, i 2 I < е.  [c.389]

Рассмотрим изопараметрические конечные элементы Лагранжа. Указанному выше условию непрерывности проще всего удовлетворить, задав F х) в виде комбинации тех же базисных функций, с помощью которых производится аппроксимация  [c.199]

Отметим, что при исследовании вопроса о существовании и единственности решения наибольшие трудности возникают при проверке условий непрерывности (в соответствующем смысле) функционала J (v), в свою очередь связанные с исследованием регулярности решений получаемых краевых задач [типа (5.432) — (5.434), (5.449), (5.455) и т. д.] ввиду сложности эти вопросы здесь не затрагиваются.  [c.307]

С другой стороны, число необходимых граничных условий, которым должно удовлетворять возмущение на поверхности разрыва, равно трем (условия непрерывности потоков массы, энергии и импульса). Во всех изображенных на рис, 57 случаях, за исключением лишь первого, число имеющихся независимых параметров превышает число уравнений. Мы видим, что эволю-ционны лишь ударные волны, удовлетворяющие условиям (88,1). Эти условия, таким образом, необходимы для существования ударных волн, вне зависимости от термодинамических свойств  [c.468]

Определим изменения давления и плотности в изотермическом скачке, предполагая газ идеальным. Условие непрерывности потока импульса (95.1), примененное к обоим сторонам скачка, дает  [c.499]

Выведем теперь условие, с помощью которого можно определить местонахождение разрывов в бегущей звуковой волне (все в том же втором приближении). Пусть и есть скорость движения разрыва (относительно неподвижной системы координат), а Ui, И2 — скорости газа по обеим его сторонам. Тогда условие непрерывности потока вещества запишется  [c.536]

Ударная волна в текущей по каналу жидкости представляет собой резкий скачок высоты жидкости /г, а с нею н ее скорости V (так называемый прыжок воды). Соотношения между значениями этих величин по обе стороны разрыва можно получить с помощью условий непрерывности потоков массы и импульса жидкости. Плотность потока массы (отнесенная к 1 см ширины канала) есть j pvh. Плотность же потока импульса получается интегрированием р-j-по глубине жидкости и равна  [c.570]

Далее, условие непрерывности касательной к разрыву компоненты скорости (т, е, условие непрерывности производной от потенциала ф вдоль линии разрыва) эквивалентно условию непрерывности самого потенциала  [c.629]

Стабильность регулировки системы холостого хода сохраняется при пробеге 8—9 тыс. км. Время контроля одного автомобиля — 2 мин. Для сокращения количества контрольных проверок на средних и небольших АТП, для которых приобретение нескольких комплектов аппаратуры нецелесообразно, достаточно в определенный день растянуть по времени выпуск автомобилей в рейсе, чтобы охватить все их проверкой. Тогда периодичность проверок составит 20. .. 40 рабочих дней при условии непрерывной эксплуатации автомобилей. В таком случае достаточно иметь один комплект газоаналитической аппаратуры, сконцентрированный в зоне ТО и ТР, эпизодически используя ее на постах ЭД. ЭД желательно проводить при возвращении автомобилей с линии. Это улучшает условия проверки (прогретый двигатель) и позволяет с учетом большего запаса времени тут же проводить регулирование карбюраторов, разгрузив при этом производственные участки.  [c.88]

Одиако даже при соблюдении иеречислеи1П11К условии непрерывный ряд твердых растворов может не возникнуть. Так, медь не обра-  [c.79]

Цементация с последующей термической обработкой повышает предел выносливости стальных изделий вследствие образования в поверхностном слое значительных остаточных напряжений сжатия (до 400—500 МПа) и резко понижает чувствительность к концентраторам напряжений при условии непрерывной протяженности упрочненного слоя по всей упрочняемой поверхности детали. Так, после цементации на глубину 1000 мкм, закалки и отпуска хромомикслепой стали (0,12 % С 1,3 % Сг 3,5 % Ni) предел выносливости образцов без концентраторов напряжений увеличился от 560 до 750 МНа, а при наличии надреза — от 220 до 560 МПа, Цементованная сталь обладает в1)1Сокой износостойкостью и контактной прочностью, которая достигает 2000 МПа.  [c.238]


Не существует также четко выраженных пределов выносливости при контактных напряжешзях, циклическом нагружении в условиях повышенных температур и при работе деталей в коррозионных средах. Разрушающее напряжение в этих условиях непрерывно падает с увеличением числа циклов. Отмечено также отсутствие отчетливо выраженного предела выносливости у деталей большого размера, что объясняется присущей таким деталям неоднородностью механических свойств по сечениям.  [c.276]

Поле скоростей называется кинематически допустимым, если оно удовлетворяет кинематическим условиям непрерывности н ограничениям, наложенным на рассматриваемую конструкцию. Так, например, в случае жестко-идеально-пластических балок, на которые наложено ограничение в виде гипотезы Бернулли, скорость прогибов должна быть непрерывна и кусочно-непре-рывно дифференцируема кроме того, она должна исчезать на опорах, а ее первая производная — на защемленном конце.  [c.18]

Для того чтобы записать условие непрерывности кочмпоненты  [c.126]

Относительная сложность и энергоемкость оборудования для сварки ТВЧ делают эти процессы наиболее приемлемыми для сварки в условиях непрерывного производства (изготовление труб, специальных профилей, биметаллических лент), где необходимо обеспечить больщую скорость сварки (десятки метров в минуту), так как процесс сварки обычно представляет собой лимитирующее звено в общей достаточно сложной и дорогой цепи технологического оборудования.  [c.134]

Допустимая дола общего облучемия человека гамма излучением или бета-частицами 5 рад за год. Какова допустимая мощность дозы общего облучения человека при условии непрерывного действия излучения на человека круглосуточно в течение всего года Мощность дозы Бырааите в мрад/ч.  [c.346]

Из неравенств (1) и (д) вытекает, что < е. На оеновании условий непрерывности функций х приходим к выводу, что при I, мало отличающемся от io,  [c.341]


Смотреть страницы где упоминается термин Условие непрерывности : [c.138]    [c.109]    [c.8]    [c.7]    [c.83]    [c.146]    [c.455]    [c.633]   
Основы теории пластичности Издание 2 (1968) -- [ c.75 ]



ПОИСК



Глававторая Коррозия пароводяного тракта ТЭС и ее предупреждение в условиях непрерывной работы оборудования Газовая коррозия

Гомогенизация аустенита сталей в изотермических условиях и при непрерывном нагреве до невысоких температур

Граничное условие первого рода. Действует непрерывный источник тепла

Граничные условия и непрерывность

Особенности фазовых превращений в условиях непрерывного охлаждения

Переход к непрерывно меняющейся энергии Условия вырождения идеального газа

Принципиальная схема лазера. Порог генерации. Условия стационарной генерации. Добротность. Непрерывные и импульсные лазеры Повышение мощности излучения. Метод модулированной добротности Лазерное излучение

Условие граничное идеализированное непрерывности иетангеициальиое

Условие динамической непрерывности

Условие кинематической непрерывности

Условие непрерывности напряжения в нейтральном сечении

Условие обеспечения непрерывного относительного вращения звеньев стержневых механизмов

Условия динамической и кинематической непрерывности на фронтах разрывов

Условия непрерывности на границах

Условия непрерывности на границе упругой и пластической областей

Условия непрерывности на поверхности раздела упругой и пластической областей

Фазовые превращения в сталях и сплавах титана в условиях непрерывного охлаждения при еварке



© 2025 Mash-xxl.info Реклама на сайте