Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Жидкости Движение — Изучение — Методы

Переменные Лагранжа. Объектом изучения по методу Лагранжа служат отдельные частицы жидкости, рассматриваемые как отдельные материальные точки (рис. 6.2). Изучение движения сплошной среды с использованием переменных Лагранжа заключается в решении следующих задач 1) определение поведения во  [c.230]

Изучение движения жидкости может быть произведено двумя методами. В первом методе, развитом Лагранжем, рассматривается движение с течением времени отдельных жидких частиц во втором методе, раз витом Эйлером, объектом изучения является не сама жидкость, а пространство, заполненное движуш,ейся жидкостью, и при этом изучаются изменения различных элементов движения с течением времени в каждой фиксированной точке пространства и изменения этих  [c.666]


Приближенный анализ течения газа или жидкости в трубах и каналах может быть выполнен методами гидравлики. При этом поток характеризуется средними по живому сечению канала скоростью, температурой, давлением и плотностью, изменяющимися в направлении движения. При изучении течения в каналах и трубах методами гидравлики исследуются изменения средних характеристик вдоль потока, что позволяет рассматривать реальное сложное течение как одномерное. В дальнейшем, рассматривая течение газа через вентилируемые аппараты, будем считать их установившимися и применим для их изучения методы гидравлики.  [c.63]

Уравнения (2.4.8) вместе с начальными и граничными условиями (2.4.12) — (2.4.14) однозначно определяют движение жидкости в произвольный момент времени фазы контакта. Формулы, определяющие распределение скорости и давления вдоль столба жидкости, проще всего найти, используя метод характеристик [91], успешно применявшийся многими авторами при изучении задач, связанных с гидроударом [6, 34, 47, 52].  [c.153]

Во многих установках химической технологии, переработки нефти и других видов сырья определяющими являются законы движения гетерогенных систем. Отметим, в частности, процессы с использованием неподвижного зернистого слоя катализатора, через который пропускается реагирующая газовая смесь> процессы с взвешенным под действием восходящего потока газа зернистым слоем ( кипящий или псевдоожиженный слой), процессы интенсивного барботажа жидкости газом, процессы в обогреваемых трубах или колоннах, внутри которых движется газожидкостная смесь, где проходят химические реакции. Перспективным представляется использование акустических воздействий на интенсификацию физико-химических процессов в гетерогенных системах. Сейчас становится все более очевидной необходимость более полного использования методов механики при изучении и последующем совершенствовании и интенсификации технологических процессов.  [c.10]

Наука о механическом движении и взаимодействии материальных тел и называется механикой. Круг проблем, рассматриваемых в механике, очень велик и с развитием этой науки в ней появился целый ряд самостоятельных областей, связанных с изучением механики твердых деформируемых тел, жидкостей и газов. К этим областям относятся теория упругости, теория пластичности, гидромеханика, аэромеханика, газовая динамика и ряд разделов так называемой прикладной механики, в частности сопротивление материалов, статика сооружений, теория механизмов и машин, гидравлика, а также многие специальные инженерные дисциплины. Однако во всех этих областях наряду со специфическими для каждой из них закономерностями и методами исследования опираются на ряд основных законов или принципов и используют многие понятия и методы, общие для всех областей механики. Рассмотрение этих общих, понятий, законов и методов и составляет предмет так называемой теоретической (или общей) механики.  [c.5]


При изучении движения среды методом Лагранжа задаются уравнения движения ее точек. Поп изучении движения средь методом Эйлера задается распределение скоростей в пространстве, занятом жидкостью, для каждого момента времени или задается так называемое поле скоростей.  [c.223]

Если стержень нерастяжим, то w зависит только от времени (от а не зависит). В этом случае при изучении движения участка стержня постоянной длины, находящегося между точками А и В, переменные Лагранжа неудобны. Нас интересует поведение участка стержня между точками А и В ъ целом, а не элемента стержня т. Для большей наглядности метода Эйлера представим, что стержень находится в абсолютно гибкой безынерционной трубке, тогда для описания движения участка стержня между точками А и В достаточно знать положение трубки во времени и внутренние силовые факторы в стержне (в фиксированном сечении трубки). Такое разделение движения на переносное (скорость V) и относительное (скорость у) весьма эффективно при изучении, например, динамики стержней (трубопроводов), заполненных движущейся жидкостью. В этом случае движение жидкости рассматривается совместно с движением стержня. Если жидкость несжимаема, то относительная скорость при заданном расходе не зависит от движения стержня.  [c.18]

Исторически накопление знаний с законах движения жидкостей шло по двум путям инженеры создавали гидравлику, основанную, главным образом на экспериментах, а математики — теоретическую гидромеханику, построенную на математическом анализе непрерывней деформации сплошной жидкой среды. Эти две науки имели один и тот же объект изучения — движение жидкости, но методы их, так же как и задачи, б лли различными.  [c.8]

В настоящее время разработаны и успешно применяются численные методы-решения многих теплофизических задач расчет температурного состояния-твердых тел, температурных полей в потоках жидкости и газа, в жидких и газовых прослойках, заключенных в неподвижные или вращающиеся полости исследование закономерностей движения теплоносителя с целью выявления механизма процессов теплообмена исследование структуры пограничного слоя, теплообмена и трения на твердой поверхности и т. п. Одним из наиболее успешно развивающихся направлений использования математического эксперимента в теплофизических исследованиях является изучение закономерностей тепломассообмена и трения в потоках жидкости и газа с использованием теории пограничного слоя. Поэтому в качестве примера рассмотрим более подробно основные этапы математического эксперимента по исследованию сопротивления трения и теплоотдачи турбулентного потока к твердой поверхности. Ограничим задачу случаем стационарного течения несжимаемой жидкости с постоянными теплофизическими свойствами около гладкой плоской поверхности (в общем случае проницаемой).  [c.66]

Дуров В. А. О некоторых проблемах изучения строения и динамики теплового движения в жидкостях методами релаксационной спектроскопии// //Современные проблемы теории растворов. Иваново, 1987.  [c.242]

В гидромеханике широко используются математические методы, благодаря чему ряд полученных в ней результатов обладает строгостью и точностью. Однако сложность механической структуры движений реальных жидкостей и газов не позволяет получить такие результаты для большинства случаев, важных для практики, поэтому широко используют приближенные уравнения и приближенные методы их решений. Такие решения требуют обязательной проверки, а иногда и корректировки согласно экспериментальным данным. Кроме того, эксперимент в гидромеханике служит для первичного изучения явлений, без чего нельзя построить достоверные расчетные модели. Поэтому роль эксперимента в гидромеханике весьма значительна. Современные гидродинамические лаборатории представляют собой крупные исследовательские организации со сложным и высокоточным оборудованием.  [c.7]

Гидромеханикой называется наука, посвященная изучению законов механического движения жидкостей и разработке методов использования этих законов для решения прикладных задач.  [c.5]

НИИ тела в жидкости, поэтому при неустановившихся движениях тела применяют методы, отличные от изученных выше.  [c.318]


В основу изучения кинематики жидкости положена гипотеза о непрерывности изменения кинематических параметров потока. Иногда это свойство может нарушаться, например в особых точках, на линиях или поверхностях разрыва. При кинематическом исследовании жидкой среды используют либо метод Лагранжа, согласно которому рассматривают движение индивидуальных жидких частиц и определяют для каждой из них траектории, т. е.  [c.39]

При изучении кинематики жидкости очень важно уметь находить уравнения семейств линий тока и траектории жидких частиц, положение точек разветвления потока и т. п., что необходимо для установления особенностей обтекания тел различных конфигурации. Поэтому в настоящей главе большое внимание уделено рассмотрению таких вопросов и задач, которые позволят освоить методы исследования стационарных и нестационарных течений жидкости, представить их кинематический характер, найти уравнения линий тока и траектории жидких частиц для различных видов движения.  [c.40]

Задачей первой части курса является краткое изложение основных положений гидравлики, которые необходимы для изучения ряда разделов специальных дисциплин, где приходится иметь дело с применением основных законов равновесия и движения жидкостей. Поэтому остановимся кратко на значении гидравлики для инженеров машиностроительных и механических специальностей и обратим внимание на те отрасли техники, где используются основные законы и методы гидравлики.  [c.3]

Изучением законов равновесия и движения жидкостей занимается и другая наука — гидромеханика, в которой применяются лишь строго математические методы, позволяющие получать общие теоретические решения различных задач, связанных с равновесием и движением жидкостей. Долгое время гидромеханика рассматривала преимущественно невязкую (идеальную) жидкость, т. е. некоторую условную жидкость с абсолютной подвижностью частиц, считающуюся абсолютно несжимаемой, не обладающей вязкостью — не сопротивляющейся касательным напряжениям. В последнее время гидромеханика стала разрешать также проблемы движения вязких (реальных) жидкостей, а потому роль эксперимента в гидромеханике значительно возросла. Таким образом, изучением законов равновесия и движения жидкостей занимаются две науки гидравлика (техническая механика жидкостей) и гидромеханика.  [c.6]

Метод ЭГДА (метод электродинамических аналогий) разработан Н. Н, Павловским в 1918 г. Он наиболее широко применяется при изучении фильтрационных задач. Аналогия между движением электрического тока в однородном поле и потенциальным движением несжимаемой жидкости характеризуется данными, приведены в табл. 28.1.  [c.293]

Широкий круг вопросов технической механики жидкости может быть решен с помощью специфического подхода к изучению движения жидкости, который называют методом гидравлики. Его сущность заключается в следующем.  [c.93]

Метод гидравлики прежде всего используется для внутренней задачи гидроаэродинамики, т. е. для изучения движения жидкости в трубах и каналах.  [c.94]

Механикой называют область науки, цель которой — изучение движения и напряженного состояния элементов машин, строительных конструкций, сплошных сред и т. п. под действием приложенных к ним сил. Современное состояние этой науки достаточно полно определяется ее основными составными частями общей механикой, к которой относят механику материальных точек, тел и их систем, сплошных и дискретных сред, колебания механических систем, теорию механизмов и машин и др. механикой деформируемых твердых тел, к которой относят теории упругости, пластичности, ползучести, теорию, стержней, ферм, оболочек и др. механикой жидкости и газа с разделами газо- и аэродинамика, магнитная гидродинамика и др. комплексными и специальными разделами механики, в частности биомеханикой, теорией прочности конструкций и материалов, экспериментальными методами исследования свойств материалов и др.  [c.4]

Чтобы выяснить влияние отдельных факторов на работу аппарата, можно произвести ряд подробных исследований его в эксплуатационных условиях. Такие исследования кропотливы, требуют большой затраты труда и средств и не всегда дают надежные результаты. Кроме того, вследствие ряда технических трудностей, возникающих при испытании, и невозможности непосредственных измерений многие стороны явления остаются совершенно неизученными. Описываемый ниже метод моделирования позволяет характер движения рабочей жидкости, гидравлическое сопротивление газоходов и теплообмен в них изучать на уменьшенных моделях. При этом вместо изучения в аппаратах движения горячих газов в модели можно изучать движение холодного воздуха или воды. Модель можно изготовить с прозрачными стенками в этом случае характер движения рабочей жидкости можно наблюдать визуально и фотографировать. При выполнении определенных условий моделирования движение жидкости в модели оказывается подобным движению горячих газов в образце. Условия моделирования вытекают из теории подобия (см. 2-3).  [c.256]

Поэтому коэффициенты 1/ j можно трактовать как жесткости этих пружин. Наконец, последний член лагранжиана можно рассматривать как потенциал, вызванный движущими силами = Qj, не зависящими от координат, например гравитационными силами. (Силы могут, однако, зависеть от времени.) Что касается диссипативной функции (2.38), то ее можно считать вызванной наличием диссипативных (вязких) сил, пропорциональных обобщенным скоростям. Такова вторая интерпретация уравнения (2.39) [или функций (2.37), (2.38)]. Согласно этой интерпретации уравнения (2.39) описывают сложную систему масс, связанных пружинами и движущихся в вязкой жидкости под действием внешних сил. Таким образом, мы описали движение двух различных физических систем посредством одного и того же лагранжиана. Отсюда следует, что все результаты и методы исследования, связанные с одной из этих систем, могут быть непосредственно применены и к другой. Так, например, для изучения рассмотренных выше электрических контуров был разработан целый ряд специальных методов, которые применимы и к соответствующим механическим системам. Таким путем было установлено много аналогий между электрическими и механическими или акустическими системами. В связи с этим термины, применяемые при описании электрических колебательных контуров (реактанс, реактивное сопротивление и т. д.), вполне допустимы и в теории механических колебательных систем ).  [c.59]


В настоягцей работе расчет волновых процессов в неоднородной гидросистеме проводится методом входных импедансов, разработанным в теории длинных линий [2]. Изучение волновых процессов в сложных гидросистемах при этом проводится на основании формальной аналогии записи дифференциальных уравнений Движения жидкостей в трубопроводах и уравнений распространения электрического тока вдоль линии с распределенными по длине емкостью С, индуктивностью Ь и сопротивлением Е,  [c.16]

Лабораторные термометры — см мометры лабораторные Лаваля сопло 91, 521 Лагранжа метод изучения движения жидкости 503 Ламберта закон 156 Ламинарное течение 467 Лампы накаливания 225  [c.542]

Эйлера метод изучения движения жидкости 503  [c.556]

Температура самовоспламенения 427 Метод Лагранжа для изучения движения жидкости 666, 667  [c.718]

Изучение процессов движения (в частном случае, покоя) жидкости в МЖГ ведется феноменологическим методом (ФМ). При этом, прежде всего, отказываются от рассмотрения дискретной микроструктуры среды. Феноменологический метод является в определенной степени противоположным статистическому методу, когда рассматриваются атомы и молекулы и силы взаимодействия между ними. В результате статистического осреднения можно определить свойства лсидкости — плотность, вязкость, теплоемкость и т.п.  [c.14]

Для выполнения расчетов процессов переноса на основе кинетической теории (уравнение переноса Больцмана) [588] требуются данные о молекулярном взаимодействии, которые значительно усложняют расчеты для некоторых газов [342] и неизвестны для большинства жидкостей [229]. Введением соответствующих феноменологических соотношений в механике сплошной среды [686] удается эффективно заменить фазовое пространство (координаты положения и количества движения) уравнения переноса Больцмана конфигурационным пространством (координаты положения) и свойствами переноса пос.ледние могут быть определены экспериментально. Это составляет основу второго из указанных выше методов исследования, который сравнительно недавно используется при изучении многофазных систем.  [c.16]

Исходя из предпосылки, что добавка твердых частиц всегда вызывает увеличение потерь давления на единицу длины трубы, многие авторы пытались сделать обобщения на основе наблюдаемых явлений установить соотношение между избыточными потерями давления, вызванными присутствием твердых частиц, с модифицированным числом Рейнольдса течения в трубе [45, 120, 311, б51, 822] и выявить общие закономерности на основе изучения движения отдельной частицы [822] и влияния твердых частиц на локальнзгю турбулентность жидкости [401]. К перечисленным с.ледует добавить работы [5, 210, 427], авторами которых была установлено, что отношение размера частиц к диаметру трубы несущественно. В работах [427, 869] изучалась дискретная фаза. Сообщалось также [304], что в некоторых случаях при добавлении твердых частиц (стеклянных шариков диаметром 200 мк) потери давления при течении по трубе снижались до меньшего уровня, чем в потоке чистого воздуха авторы работы [636] наблюдали в некоторых условиях возникновение непредвиденных градиентов давления. Подробнейшие исследования были выполнены Томасом [798—806], из которых следовало, что в некоторых случаях причиной снижения давления в присутствии частиц твердой фазы является неньютоновская природа смеси. Подробный обзор статей по рассматриваемому вопросу содержится в работе [167]. Обзор выявленных соотношений между потерями давления и содержанием частиц в двухфазном потоке, а также анализ методов теории подобия можно найти в работе [175].  [c.153]

Понять закономерность в движении пульпы и тем самым перейти от гипотезы к теории можно только на основе изучения диалектической взаимосвязи потока жидкости с твердым содержимым потока. Большая роль в этом должна принадлежать опыту. Опираясь на тнгательно проведенные опыты, можно будет создать теорию движения потока, насыщенного твердым содержимым, и получить необходимые для этого расчетные зависимости. Пока такой теории нет, можно говорить лишь о приближенных методах расчета пульповодов.  [c.200]

В обоих методах жидкость (ка1 ельная и газообразная) рассматривается как непрерывная среда, сплошь занимающая данное пространство. В качестве мельчайшего элемента жидкости принимается частица бесконечно малых размеров, но не отож-действляемая с молекулой или атомом вследствие этого рассматриваемая схема неприменима к изучению молекулярных движений.  [c.81]

XVIII век был веком идеалистических представлений о природе изучение ее велось чисто метафизическими методами без учета взаимосвязанности и обусловленности явлений, без ясности представления о сущности материи. Явления природы объяснялись не движением материн, а перетеканием в ней особых невесомых жидкостей нагрев и охлаждение тел объяснялись перетеканием теплорода, а горение — перетеканием флогистона, электрические явления — перетеканием особой электрической жидкости и т. п. Попытки материалистического объяснения явлений природы существовали и раньше лучшие умы еще в Древней Греции утверждали, что все в природе состоит из атомов. В XVII веке Бэкон высказал предположение о том, что теплота вызывается движением атомов. Гениальный ученый-материалист М. В. Ломоносов в 1740—1750 гг. дал понятие  [c.6]

Метод МАГА разработан А. Н. Патрашевым. Он особенно эффективен при изучении обтекания тел и потенциального движения сжимаемой жидкости. Модель изготовляется из листовой мягкой стали, на границах устанавливаются электромагниты.  [c.297]

Большое значение методов теории размерности и подобия выяснилось впервые с особой ясностью в гидравлике при изучении движения жидкости в трубах. Несмотря на практическую важность и на простоту соображений теории размерности, их применение к задачам гидравлики, принесшее огромную пользу и Jсоставившее крупный шаг 2а ] ] вперёд в истории гидравлики, произошло только в конце XIX в. после работ Осборна Рейнольдса ).  [c.42]

Турбулентные течения значительно сложнее ламинарных. Для изучения турбулентности нужны методы, существенно отличающиеся от тех, которые применяются для изучения ламинарого движения. Беспорядочный характер движения отдельных частиц (жидких комков) жидкости в турбулентном потоке требует применения методов статистической механики. Между статистической механикой молекулярного движения и статистической гидроаэромеханикой вязкой жидкости, несмотря на то что они кажутся на первый взгляд аналогичными, существует принципиальное отличие. Оно выражается прежде всего в том, что суммарная кинетическая энергия молекул не меняется со временем (по кинетической теории газов), тогда как в турбулентном потоке кинетическая энергия жидкости всегда в той или иной мере рассеивается, переходя вследствие вязкости в тепло.  [c.147]

Аналитическая форма механики, развитая Эйлером и Ла-гранжем, существенно отличается по своим методам и принципам от механики векторной. Основной закон механики, сформулированный Ньютоном произведение массы на ускорение равно движущей силе ,— непосредственно применим лишь к одной частице. Он был выведен при изучении движения частиц в поле тяготения Земли, а затем применен к движению планет под воздействием Солнца. В обоих случаях движущееся тело могло рассматриваться как материальная точка или частица , т. е. можно было считать массу сосредоточенной в одной точке. Таким образом, задача динамики формулировалась в следующем виде Частица, которая может свободно перемещаться в пространстве, находится под действием заданной силы. Описать движение в любой момент времени . Из закона Ньютона получалось дифференциальное уравнение движения, и решение задачи динамики сводилось к интегрированию этого уравнения Если частица не является свободной, а связана с други ми частицами, как, например, в твердом теле или в жидкости то уравнение Ньютона следует применять осторожно. Не обходимо сначала выделить одну частицу и определить силы которые на нее действуют со стороны остальных, окружа ющих ее частиц. Каждая частица является независимым объектом и подчиняется закону движения свободной частицы Этот анализ сил зачастую является затруднительным Так как природа сил взаимодействия заранее неизвестна приходится вводить дополнительные постулаты. Ньютон полагал, что принцип действие равно противодействию известный как его третий закон движения, будет достаточен для всех проблем динамики. Это, однако, не так. Даже в динамике твердого тела пришлось ввести дополнительное предположение о том, что внутренние силы являются цен-  [c.25]


Предположим, что по первой пли по второй причине линии тока во всех плоскостях ри—замкнутые. Тогда движущаяся частица жидкости возвращается в ту же самую точку, а затем движение повторяется. Мы имеем тогда периодическое движение. Это касается, однако, только траектории движущейся точки, спроектированной на плоскости qit, Pk в отношении же движения во времени периодичность не имеет места. Скорость, с которой точка начинает свой второй виток, не совпадает с первоначальной скоростью, потому что qk и ри в общем случае зависят от всех qi, pi и поэтому возвращения одной пары переменных к начальным значениям недостаточно для того, чтобы движение было периодическим. Однако движение содержит в себе п независимых периодов, и они охватывают неразделяющимся образом все переменные. Метод Делоне показывает, как путем изучения свойств двух основных функций — функции Гамильтона Н и производящей функции S—можно получить все частоты движения. В этом заключается суть метода. Соответствующее преобразование обнаруживает многопериодическую структуру данной системы с разделяющимися переменными и определяет частоты системы в явном виде. Этот процесс не требует ничего, кроме квадратур и разрешения уравнений относительно определенных переменных.  [c.283]

Эбонит — Коэффициент теплопроводности 185 Эвропий — Свойства 395 Эйлера метод для изучения движения жидкости 666, 667  [c.739]


Смотреть страницы где упоминается термин Жидкости Движение — Изучение — Методы : [c.503]    [c.464]    [c.425]    [c.264]    [c.283]    [c.8]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.666 ]



ПОИСК



Движение, метод

Жидкости Движение — Изучение

ИЗУЧЕНИЕ СИЛ

Лагранжа метод изучения движения жидкости

Метод Лагранжа для изучения движения жидкости жидкости

Методы изучения

Эйлера интегралы метод изучения движения жидкости

Эйлера метод изучения движения жидкости



© 2025 Mash-xxl.info Реклама на сайте