Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения термоупругости и методы их решения

При решении апериодических задач термоупругости в основном применяются три метода. Первый основан на исключении из дифференциальных уравнений термоупругости  [c.792]

Помимо математической формулировки задач термоупругости в виде дифференциальных уравнений и краевых условий возможна также интегральная форма представления решения. Такая форма позволяет выявить некоторые общие свойства температурного и напряженно-деформированного состояний тела и наряду с классическими методами строгого аналитического решения построить эффективные алгоритмы приближенных решений.  [c.23]


Метод 2. В гл. 12 будет показано, что наличие нелинейностей в исходном дифференциальном уравнении при формулировке МГЭ можно преодолеть посредством модификации члена Q в уравнении (9.11), отвечающего действию внутренних источников. Таким образом, в самом общем алгоритме решения задач диффузии, учитывающем возможность изменения со временем и граничных условий, и интенсивностей внутренних источников, которые к тому же определяются только в результате решения связанных систем дифференциальных уравнений (как в теории консолидации или термоупругости), удобнее следующий процесс пошагового изменения времени.  [c.257]

Одним из эффективных методов составления исходных дифференциальных уравнений и решения соответствующих краевых задач теплопроводности и термоупругости для кусочно-однородных тел (многослойных, армированных, со сквозными и с несквозными включениями) в случае выполнения на поверхностях сопряжения их однородных элементов условий идеального термомеханического контакта, для многоступенчатых тонкостенных элементов, локально нагреваемых путем конвективного теплообмена тел, тел е зависящими от температуры свойствами, с непрерывной неоднородностью является метод [52], основанный на применении обобщенных функций [7, 18,22, 50,87] и позволяющий получать единые решения для всей области их определения. В этих случаях физико-механические характеристики и их комбинации кусочно-однородных тел, толщина (диаметр) многоступенчатых оболочек, пластин, стержней, коэффициент теплоотдачи с поверхности тела могут быть описаны для всего тела (поверхности) как единого целого с помощью единичных, характеристических функций, а физико-механические характеристики тел с непрерывной неоднородностью с зависящими от температуры физико-механическими характеристиками могут быть аппроксимированы с помощью единичных функций. В результате подстановки представленных таким образом характеристик в дифференциальные уравнения второго порядка теплопроводности и термоупругости неоднородных тел, дифференциальные уравнения оболочек, пластин, стержней переменной толщины (диаметра), дифференциальные уравнения теплопроводности или условие теплообмена третьего рода с переменными коэффициентами теплоотдачи приходим к дифференциальным уравнениям или граничным условиям, содержащим коэффициентами ступенчатые функции, дельта-функцию Дирака и ее производную [52]. При получении дифференциальных ура,внений термоупругости для тел одномерной кусочно-однородной структуры наряду с вышеописанным методом эффективным является метод [67, 128], основанный на постановке обобщенной задачи сопряжения для соответствующих дифференциальных уравнений с постоянными коэффициентами. Здесь за исход-  [c.7]


Приведем некоторые методы решения дифференциальных уравнений теплопроводности и термоупругости кусочно-однородных тел.  [c.86]

Определение тепловых перемещений и напряжений в теле путем непосредственного интегрирования соответствующих дифференциальных уравнений и удовлетворения неоднородных граничных условий, вообще говоря, является сложной задачей. Поэтому большой интерес представляют вариационные принципы термоупругости, рассматриваемые в 2.4, с помощью которых могут быть разработаны приближенные методы решения задач термоупругости, аналогичные известным вариационным методам изотермической теории упругости [23]  [c.37]

Определение тепловых напряжений и перемещений в теле непосредственным интегрированием соответствующих дифференциальных уравнений при произвольных граничных условиях является сложной задачей. Поэтому большой интерес представляют вариационные принципы термоупругости ( 2.4), с помощью которых могут быть разработаны приближенные методы решения задач термоупругости, аналогичные известным вариационным методам решения задач изотермической теории упругости [34] методы, основанные на обобщенном на случай задачи термоупругости вариационном уравнении Лагранжа и выражениях, аппроксимирующих возможные перемещения, и методы, основанные на обобщенном на случай задачи термоупругости принципе минимума энергии деформации и выражениях, аппроксимирующих возможные напряжения.  [c.38]

Термоупругость описывает широкий круг явлений, являясь обобщением классической теории упругости и теории теплопроводности. В настоящее время термоупругость является вполне законченной областью записаны основные зависимости и дифференциальные уравнения, предложено несколько методов решения уравнений термоупругости, доказаны основные энергетические и вариационные теоремы, решено несколько задач по распространению термоупругих волн.  [c.757]

Таким образом, рассматриваемая неоднородная задача теории термоупругости свелась к краевой задаче для обыкновенного линейного дифференциального уравнения второго порядка с переменными коэффициентами. В общем случае ее решение проще всего получить численными методами с по-  [c.447]

В настояш,ее время термопругость вполне оформилась как научная дисциплина. Четко сформулированы ее исходные предположения, выведены основные соотношения и дифференциальные уравнения. Разработан ряд методов решения дифференциальных уравнений термоупругости, получены основные энергетические и вариационные теоремы. Обш,ие теоремы и методы термоупругости в качестве частных случаев содержат, естественно, теоремы и методы теории упругости и теории теплопроводности.  [c.7]

Дальнейшим методом, применяемым при решении дифференциальных уравнений термоупругости, является метод разделения уравнений, основанный на сведении системы уравнений (4) и (5) к системе четырех несвязанных уравнений. В каждое уравнение входит только Одна неизвестная функция. Этот метод, по-видимому, впервые был применен Гильбертом к дифференциальным уравнениям оптики. Некоторую его разновидность в опера торном виде, данном Моисилом ), применил к квазистатическим уравнениям термоупругости Ионеску-Казимир 2). Другой способ решения динамических уравнений термоупругости предложил  [c.760]

Интересный метод решения дифференциальных уравнений термоупругости предложил Зорский ). Этот метод сводится к преобразованию системы дифференциальных уравнений (4) и (5) в систему трех интегродифференциальных уравнений для перемещений щ. Продемонстрируем его для простоты по отношению к неограниченному пространству в предположении однородности начальных условий. Напишем уравнение теплопроводности  [c.761]

В настоящей главе изучаются квазистатические температурные напряжения в кусочно-однородных телах. Здесь рассматривается квазистатическая задача термоупругости для составной полосы-пластинки, нагреваемой путем конвективного теплообмена с внешней средой, температура которой является функцией времени, С использованием интегрального преобразования Лапласа нестационарная задача теплопроводности для рассматриваемой системы приведена к решению обыкновенного частично вырожденного дифференциального уравнения с кусочно-постоянными коэффициентами, построенного методом И. Ф Образцова— -Г Г. Онанова [117]. Затем в замкнутом виде находятся выражения соответствующих найденному температурному полю температурных напряжений, исследуется влияние теплоотдачи, способов закрепления краев на характер распределения температурных напряжений в стеклянной полосе-пластинке с подкрепленным коваровым стержнем краем.  [c.259]


Для функций fn r), /п(г), fno r), fnoix) получаются обыкновенные дифференциальные уравнения, решения которых находятся методом вариации постоянных. После определения термоупругих потенциалов перемещений для втулки и подкрепляющего цилиндра с помощью известных формул [6], вычисляем соответствующие термоупругим потенциалам перемещений напряжения и перемещения для втулки, а также а , и 17 , 17 для подкрепляюще-  [c.200]

Стационарная задача о термоупругом равновесии полого цилиндра (в случае осевой симметрии) изучалась сперва П. М. Огибаловым (1954), а затем Ю. Н. Шевченко (1958), который учитывал изменение модуля упругости материала вдоль оси цилиндра. А. Н. Подгорный (1965) учел влияние торцов цилиндра, а также центробежных сил задача решена приближенно с использованием вариационного принципа Лаграннш. П. И. Ермаков (1961) и В. А. Шачнев (1962) рассматривали стационарную задачу термоупругости для сплошного цилиндра конечной длины при осесимметричной его деформации в первой из этих работ условия на торцах выполнялись приближенно, согласно методу Бидермана, а во второй — решение задачи сведено к решению интегро-дифференциального уравнения. Стационарная задача термоупругости для бесконечного цилиндра с несколькими полостями сформулирована А. С. Космодамианским (1962) — как температурное поле, так и термоупругое состояние определяются методом Бубнова — Галеркина.  [c.21]


Смотреть главы в:

Теория упругости  -> Дифференциальные уравнения термоупругости и методы их решения



ПОИСК



Метод дифференциальный

Метод решения уравнений

Методы Уравнения дифференциальные

Решение дифференциального уравнения

Решения метод

Термоупругие уравнения

Термоупругости уравнения

Термоупругость

Уравнение метода сил



© 2025 Mash-xxl.info Реклама на сайте