Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расчет Систем линейных — Уравнения дифференциальные

В первом разделе рассмотрена общая процедура решения задач статики, динамики и теплопроводности с помощью МКЭ, даны методы, формулы и библиотека подпрограмм вычисления соответствующих матриц и векторов простых типовых конечных элементов прямолинейных стержней постоянного поперечного сечения (рис. 1.2), прямоугольных в плане оболочек (рис.. 3), тонких треугольных, четырехугольных и прямоугольных в плане пластин (рис. 1.4), круговых колец треугольного, четырехугольного и прямоугольного поперечного сечения (рис. 1.5), четырех-, пяти- и шестигранных объемных элементов (рис. 1.6). Изложены методы и алгоритмы расчета приведена библиотека подпрограмм решения систем линейных алгебраических уравнений, нелинейных функциональных уравнений, обыкновенных дифференциальных уравнений.  [c.11]


В Советском Союзе разработаны и успешно применяются для расчетов и исследований следующие аналоговые машины МН-7 МН-8 МН-11 МН-14 — решение нелинейных дифференци-альных уравнений МПТ-9, ИПТ-5, ЭМУ-3, ЛМУ-1 — решение линейных дифференциальных уравнений ЭИ-12 и УСМ-1 — решение дифференциальных уравнений в частных производных МЛ-2 — решение систем линейных алгебраических уравнений. Выпускаются также многочисленные специализированные АВМ.  [c.208]

Используя очевидные условия сопряжения звуковых полей на границах частичных областей, условия сопряжения колебательных скоростей на поверхностях пластин, дифференциальные уравнения колебаний пластин, а также свойства полноты и ортогональности волновых функций, зависящих от координаты у, стандартным способом можно получить бесконечную систему линейных алгебраических уравнений второго рода, являющуюся исходной для определения неизвестных в выражениях (6.4). Опуская подробности получения этой системы, обратимся к результатам расчета, полученным на ее основе. Расчеты выполнены для следующих параметров  [c.215]

Остановимся на общей структуре пособия. В первой главе рассматривается часто встречающаяся в инженерной практике задача расчета средних температур по моделям с сосредоточенными параметрами. Здесь же изложены методы решения систем линейных и нелинейных алгебраических уравнений и обыкновенных дифференциальных уравнений, дано описание соответствующего стандартного программного обеспечения. Подробно разобраны примеры программ расчета стационарных и нестационарных температур для системы, состоящей из твердых тел и движущихся жидкостей. Изучение первой главы необходимо для понимания материала следующих.  [c.4]

Расчет 380 --Систем линейных — Уравнения дифференциальные 350 --систем многомассовых — Силы сопротивления 383  [c.629]

Уравнения движения ВУС, применяемые для расчетов, имеют операторную (частотную) или дифференциальную (временную) формы. Рассмотрим общую модель (рис. 6.5.26, г) в предположении, что взаимодействующие подсистемы (1 н 2) - линейны и внешние силы 02(0 приведены с помощью систем операторов динамических податливостей к контактирующим точкам XI и Х2- Запишем уравнения движения этих точек  [c.383]

Задача расчета выходных характеристик лазерных устройств, т. е. лазеров и усилителей (а также и различного рода преобразователей и отдельных элементов лазерных систем), сводится к необходимости решения системы линейных или нелинейных дифференциальных уравнений (чаще всего в частных производных, в большинстве случаев нестационарных) при заданных граничных и начальных условиях. Тип исходных уравнений, степень их сложности и число взаимосвязанных уравнений в системе зависят от типа лазера, режима работы, учета различных, одновременно протекаюш,их явлений. Это определяет и математическую сложность задачи, возможный выбор метода численного решения, расчетной схемы.  [c.37]


Нелинейная задача теплопроводности (8.201)-(8.204) может быть реализована как приведенным выше ступенчатым методом, так и методом теории возмущений (методом малого параметра) [185], на основании которого определяемую температурную функцию представляют в виде ряда этих функций, члены которого содержат малый параметр с возрастающей от члена к члену степенью. Если такой ряд подставить в уравнение тенлонроводности и краевые условия, продифференцировать и приравнять выражения при одинаковых степенях малого параметра, то получим ряд систем линейных дифференциальных уравнений для нахождения нулевого, первого, второго и последующих приближений. Как показывают расчеты, при этом методе достаточно сделать два приближения, чтобы получить практически достоверный результат.  [c.320]

Основная сложность при решении уравнений заключается в том, что задачи статики стержней относятся к двухточечным краевым задачам, когда решение должно удовлетворять определенным условиям в начале и в конце интервала интегрирования, в отличие от одноточечных краевых задач — задач Коши, когда все условия, которым должно удовлетворять решение, известны в начале интервала интегрирования. Поэтому хорошо разработанные методы решения систем дифференциальных линейных (и нелинейных) уравнений для одноточечных задач использовать для решения двухточечных задач в общем случае нельзя. В настоящее время имеется ряд методов численного решения линейных двухточечных задач (имея в виду стержни), которые получили распространение в расчетной практике метод начальных параметров, метод прогонки [2], метод конечных элементов [15]. Точное аналитическое решение линейных уравнений равновесия стержня, например (1.112) — (1.115), возможно только для случая, когда элементы матрицы Ах— постоянные числа [этот случай будет рассмотрен в 5.2, где изложены теория и методы расчета винтовых стержней (цилиндрических пружин)]. Для уравнений с переменными коэффициентами возможны только численные или приближенные методы решения.  [c.61]

В этом параграфе будут показаны приемы расчета колебаний на примерах некоторых типовых задач, которые сводятся к решению линейного дифференциального уравнения второго порядка с медленно меняющимися коэффициентами. Отметим, что на полученные при этом результаты опирается анализ более сложных систем, рассматриваемых в дальнейшем.  [c.164]

Поэтому там, где это можно, для упрощения расчета сложных систем отдельные элементы их упрощают, считая их дискретными , наделяя их только одним из отмеченных свойств. Крупные, массивные детали наделяются только инерционными свойствами, т. е. считаются твердыми телами, обладающими только массой и моментом инерции (в электросхемах — индуктивностью). Легко деформируемым деталям с небольшой массой приписывают только упругие свойства (соответственно емкостные). Считают, что абстрагированные линейные силы трения (внешнего или внутреннего в материале) могут возникать между плоскостями без массы и упругости, имеющими лишь относительную скорость перемещения. Дискретные системы имеют конечное число степеней свободы, ограниченный спектр собственных частот и описываются обыкновенными дифференциальными уравнениями.  [c.22]

Излагается аналитический метод расчета воздушно-жидкост-яой амортизации шасси самолетов безударного действия. Метод основан на существующих аналитических методах интегрирования некоторых линейных дифференциальных уравнений второго порядка с переменными коэффициентами, к которым оказалось возможным привести исходную нелинейную систему уравнений, описывающую движение самолета при посадке.  [c.315]

Решения линейных дифференциальных уравнений типа (20) общеизвестны [3, 23]. Для упрощения расчета разветвленную систему превращают в цепочную, используя метод приведения масс [16, 23].  [c.339]

Устойчивость несущего винта с учетом аэроупругости может быть оценена путем численного решения нелинейных уравнений движения для определения переходного процесса. Недостаток такого подхода заключается в том, что для определения Переходного процесса требуется существенно больший объем вычислений, чем для получения периодического решения (которое, кстати говоря, должно быть определено как исходное состояние для переходного процесса), и в том, что по переходному процессу не так просто получить количественную информацию о полной динамике системы. Альтернативным подходом является расчет устойчивости с учетом аэроупругости при помощи методов теории линейных систем (см. разд. 8.6). Линейные дифференциальные уравнения описывают возмущенное движение несущего винта и вертолета относительно балансировочного положения. Затем устойчивость оценивается непосредственно по собственным значениям. При этом подходе основная трудность заключается в получении уравнений движения, описывающих систему, что является условием применения эффективного аппарата теории линейных систем. В случае рассмотрения всего вертолета при расчете устойчивости с учетом аэроупругости одновременно определяются динамические характеристики вертолета как жесткого тела, что также важно для характеристик устойчивости и управляемости.  [c.692]


Рассмотренные методы решения обыкновенных дифференциальных уравнений, блоки аппроксимации линейных и нелинейных функциональных и временных зависимостей составляют стандартное математическое и техническое обеспечение АВМ. К специальному математическому и техническому обеспечению аналоговых вычислительных машин относятся методы и устройства моделирования краевых задач, линейных и нелинейных алгебраических уравнений, задач расчета производных и функций чувствительности, дискретных, нестационарных и стохастических систем, уравнений в частных производных, задач оптимизации и геометрических задач. Специальное математическое и техническое обеспечение требуется при встраивании АВМ в экспериментальные установки и испытательные стенды для имитации реальных процессов, регистрации и обработки результатов испытания. Предметом специального рассмотрения может служить теория и практика аналого-цифровых вычислительных комплексов. Некоторые составляющие специального математического и технического обеспечения АВМ изложены ниже.  [c.92]

При решении прямых задач рассматриваются целые системы скважин, расположенные определенным образом на площади месторождения. Если дифференциальное уравнение, описывающее процессы, происходящие в пласте, является линейным (или линеаризованным), решение прямых задач для систем скважин получают путем суперпозиции решений для отдельных скважин. Если же дифференциальные уравнения нелинейные, то тогда прибегают к специальным приближенным методам для расчета поля давления [73, 105, 149]. Однако и в этих случаях используют решения, описывающие работы единичной скважины.  [c.271]

Основным методом исследования, применяемым в данной работе, является метод многолистной фазовой поверхности и фазового пространства. Этот метод, разработанный академиком Андроновым А. А. и его учениками и последователями [Л. 1, 2, 4, 6—8, 11—14, 21 и 22], позволяет весьма эффективно исследовать поведение релейных систем как при переходных процессах, так и в установившихся режимах. Обычно исследование методом фазового пространства считается качественным исследованием поведения системы, позволяющим определить только характер, типы движений. Мы считаем, что этот метод, особенно в случаях, когда задача может быть сведена к плоской фазовой картине, является методом количественного исследования, т. е. методом инженерного расчета, часто приводящим к цели быстрее других методов. Это особенно ярко проявляется в тех случаях, когда для построения фазовой траектории могут быть использованы шаблоны. Изменяемость структуры линейной части релейной системы не приводит к каким бы то ни было дополнительным трудностям в применяемом методе. Более того, для рассматриваемого класса систем вообще не требуется разделения на линейную часть и релейный элемент линейной части вообще может не быть, вместо нее имеется непрерывная часть , описываемая нелинейными дифференциальными уравнениями.  [c.6]

Такая аналогия распространяется на дифференциальные уравнения и на их интегралы, в частности, на использование принципа суперпозиции решений, который можно использовать только в случае линейной задачи. Можно надеяться, что подходы, используемые для расчета нелинейных систем в теории автоматического управления окажутся полезными и в механике жидкости.  [c.41]

Практическое применение изложенных в предыдущих главах результатов теории гамильтоновых систем требует эффективных способов получения нормальной формы функции Гамильтона. Линейную нормализацию можно осуществлять при помощи алгоритма, изложенного во второй главе. Задача нелинейной нормализации более сложна и весьма громоздка. Для автономных систем она сводится к проведению некоторых алгебраических операций над алгебраическими и тригонометрическими полиномами. Если в изучаемой задаче требуется получить нормальную форму гамильтониана с точностью до членов не выше четвертого поряд ка, то можно воспользоваться расчетными формулами, приведенными в предыдущих главах. Трудности нормализации неизмеримо возрастают при увеличении числа степеней свободы изучаемой динамической системы, а также когда функция Гамильтона явно содержит время. В последнем случае без расчетов на ЭВМ уже нельзя обойтись, так как при нахождении производящей функции нормализующего преобразования неизбежно приходится решать задачу нахождения периодического решения некоторой системы дифференциальных уравнений.  [c.106]

В данной главе рассматриваются свободные и вынужденные установившиеся гармонические колебания стержневых систем. Как и в статике, точные дифференциальные уравнения гармонических колебаний стержней являются нелинейными. Упрощая задачи динамики, нелинейные уравнения линеаризуют. Точность решений линейных уравнений удовлетворяют требованиям инженерных расчетов при //г > 10, поэтому они используются в инженерной практике. Линейные дифференциальные уравнения содержат частные производные по координате х и времени t. Методом Фурье разделения переменных уравнения с частными производными сводятся к уравнениям с обычными производными, описывающими перемещения стержня в амплитудном состоянии. Принцип Д Аламбера, используемый при выводе дифференциальных уравнений, позволяет рассматривать задачи динамики как задачи статики. Поэтому ниже применены предложенные правила знаков для амплитудных значений граничных параметров и нагрузки в 1.2, 1.4.  [c.91]


Переход к изучению нелинейных систем автоматического регулирования сопровождается усложнением математического аппарата, так как анализ и расчет таких систем приходится вести по нелинейным дифференциальным уравнениям. При этом не может быть применен принцип суперпозиции и, следовательно, отклик системы на произвольное входное воздействие не находится в виде суммы откликов на последовательность скачков или импульсов. Переходный процесс, вызванный в нелинейной системе ступенчатым воздействием, по форме кривой получается различным при изменении величины скачка. Вследствие отмеченных особенностей процессов в нелинейных системах для описания таких систем не могут быть использованы независимые от вида и значения входного воздействия передаточные функции, которые оказались столь эффективными при исследовании линейных моделей систем.  [c.145]

Однако в общем случае эта система представляет собой систему трансцендентных уравнений, решение которой невозможно даже при условии, что входящие в нее интегралы могут быть вычислены. Поэтому построим заменяющую (эквивалентную) систему дифференциальных уравнений, решение которой при гармонической форме внешнего возмущения с точностью до амплитуды первой гармоники будет соответствовать решению системы (2.73). Последнее осуществим путем замены нелинейной системы подрессоривания соответствующим образом выбранной эквивалентной линейной системой. Линеаризацию проведем с таким расчетом, чтобы эквивалентная линейная система подрессоривания при заданных условиях движения машины по гармоническому профилю обеспечивала колебания корпуса, по первой гармонике соответствующие колебаниям корпуса с реальной нелинейной системой подрессоривания.  [c.53]

Конечно, есть и в этом методе свои трудности, которые состоят прежде всего в том, что необходимо заранее задаваться аппроксимирующими функциями (ф, 11 , /). В качестве первого приближения эти функции можно выбирать в виде линейных соотношений. В поисках более точного решения задачи требуются другие формы задания функций ф, т) , 1, определяемые из условия равновесия на поверхности или внутри объема тела. Например, для получения уточненных решений могут быть использованы степенные или тригонометрические функции, как это было показано на примере расчета траверсы гидравлического пресса и др. Отметим также, что при выборе указанных функций нужно стремиться к тому, чтобы не получалась сложная система дифференциальных уравнений. Так, например, при расчете станины станка 7540 система уравнений (9Я) оказалась весьма простой благодаря элементарному определению функций ф, т] , I. При другом выборе этих функций можно получить более точные результаты, решив сложную систему дифференциальных уравнений. Из анализа табл. 1 основных типов корпусных деталей машин видно, что большинство из них представляет собой коробчатые пустотелые конструкции с различными перегородками, выступами, окнами, а также рамные или стержневые системы. Все они могут быть успешно рассчитаны при помощи уравнений (23) с некоторыми обобщениями, упрощениями и схематизацией.  [c.126]

В данной книге нашли отражение вопросы теории и практического применения аналитического варианта МГЭ применительно к одномерным плоским и пространственным расчетным схемам линейных систем стержней и пластин. Для расчета подобных систем предложен вариант МГЭ, основанный на новой схеме преобразования интегральных соотношений метода начальных параметров в систему линейных алгебраических уравнений. Отличительной особенностью метода является единообразный подход к алгоритму задач статики, дднамики и устойчивости, что создает широкие возможности для машинной реализации алгоритма. Показано, что решения этих трех типов задач отличаются только лишь фундаментальными функциями, а матричная форма разрешаюш,их уравнений позволяет совместить разные задачи. Несмотря на уклон в задачи строительной механики и теории тонких пластин, разработанный аналитический вариант МГЭ с небольшими изменениями может быть приспособлен для решения задач электротехники, теплотехники, физики, гидрогазодинамики, аэроупругости и других наук, где соответствуюш,ие процессы можно описать дифференциальными уравнениями.  [c.8]

В основу маши1шых методов не могут быть положены существующие не.машинные методики анализа и расчета схем в связи с их неуниверсальностью и малой точностью. Математической моделью схемы при применении ЦВМ должна быть система дифференциальных уравнений (1.8 а) или (1.86), преобразуемая в частных случаях в систему нелинейных алгебраических уравнений (1.9) либо в систему линейных алгебраических уравнений с комплексными коэффициентами.  [c.32]

При расчете сложных трубопроводов составляется баланс расходов в узловых точках (равенство притоков и оттоков жидкости) и баланс напоров на кольцевых участках (равенство нулю алгебраической суммы потерь напора для каждого кольца). Для ламинарного режима течения задача сведется к системе линейных алгебраических уравнений. Для турбулентного режима течения задача становится значительно сложнее необходимо решать систему трансцендентных уравнений, которая не имеет общего алгоритма решения. Во многих случаях задачу расчета сложной системы трубопроводов при установившемся режиме течения в турбулентной области проще решать методом установления, используя уравнение Бернулли для не-установившегося течения. В этом случае расчет сводится к задаче Коши для системы обыкновенных дифференциальных уравнений (см. раздел 15.2), которая алгоритмически ясна и имеет несколько стандартных программ для решения. Гидравлический расчет трубопроводов, особенно сложных, обычно проводится с помощью ЭВМ. Более подробно обсуждаемый вопрос целесообразно изучать на практических занятиях путем решения задач.  [c.137]

В теории ребристых оболочек широко применяется также метод непосредственного интегрирования уравнений ребристой оболочки обычно с помощью двой- " ных и одинарнйх тригонометрических рядов. Так как коэффициенты уравнений в местах присоединения ребер терпят разрыв, переменные не разделяются. Использование двойных рядов приводит к бесконечной системе алгебраических урав- яений, а одинарных в направлении, нормальном к осям ребер, к бесконечной системе обыкновенных дифференциальных уравнений. При использовании разложения в окружном направлении для оболочек со шпангоутами или в продольном направлении для оболочек со стрингерами переменные разделяются, поэтому здесь дело обстоит проще. Получается система обыкновенных дифференциаль- ных уравнений восьмого порядка со слагаемыми в виде дельта-функций. Перенося эти слагаемые в правую часть, можно представить частное решение с помо- -щью формулы Кошн в виде интегралов с переменным верхним пределом. Процесс дальнейшего решения становится рекуррентным и сводится к последова- I тельному решению систем восьми алгебраических уравнений. Число таких решений равно числу ребер плюс одно решение. Указанный метод использовал Н. И. Карпов [40] при расчете круговой цилиндрической оболочки с продольны- ми ребрами, а также П. А. Жилии [24] при анализе осесимметричной задачи для круговой цилиндрической оболочки со шпангоутами. При использовании формулы Коши необходимо знать систему нормальных фундаментальных функций (ядро Коши). Метод определения ядра Коши для линейных дифференциальных уравнений е переменными коэффйциеитами развит в книге И. А. Биргера [4]. Он осно- г -ван на решении так называемых нормальных интегральных уравнений (аналоги уравнений Вольтерра). В указанной книге дан также ряд приложений теории нормальных интегральных уравнений.  [c.324]


Обобщим рассмотренные методы анализа чувствительности на другие динамические параметры-функционалы. Предварительно отметим, что как прямой, так и вариационный методы анализа чувствительности справедливы при расчете коэффициентов влияния таких динамических параметров, как длительность задержек фронтов и длительность фронтов. Действительно, эти параметры определяются либо как интервал времени, когда выходной сигнал достигает некоторых заданных уровней, либо как разность интервалов времени, когда выходной сигнал достигает некоторых двух других, но опять-таки заданных уровней. При анализе чувствительности вариационным методом количество систем линейных дифференциальных уравнений, которые необходимо интегрировать в обратном времени, возрастает пропорционально количеству динамических параметров. Причем отрезки интегрирования для каждой из систем разные. Это связано с тем, что начальные условия K ti)=0 для каждого выходного параметра задаются в различные моменты времени. В то же время порядок системы линейных дифференциальных уравнений относительно чувствительности переменных состояния к изменениям управляемых параметров, которую необходимо интегрировать в прямом методе анализа, остается прежним при анализе чувствительности перечисленных параметров. В этом случае изменяется лищь отрезок интегрирования.  [c.148]

Точное решение задачи о свободных колебаниях в нелинейных диссипативных системах в подавляющем большинстве случаев наталкивается на весьма большие и очень часто неразрешимые трудности. Поэтому (как и в случае консервативных систем) приходится искать методы приближенного расчета, которые с заданной степенью точности позволили бы найти количественные соотношения, определяющие движения в исследуемой системе при заданных начальных условиях. Из ряда возможных приближенных методов рассмотрим в первую очередь метод поэтапного рассмотрения. Мы уже указывали, что этот метод заключается в том, что в соответствии со свойствами системы все движение в ней заранее разбивается на ряд этапов, каждый из которых соответствует такой области изменения переменных, где исследуемая система с достаточной точностью описывается или линейным дифференциальным уравнением, или нелинейным, но заведомо интегрируемым уравнением. Записав решения для всех выбранных этапов, мы для заданных начальных условий находим уравнение движения для первого этапа, начинающегося с заданных начальных значений. Значения переменных 1, х, у = х) конца первого этапа считаем начальными условиями для следующего этапа. Повторяя эту операцию продолжения решения от этапа к этапу со сшиванием поэтапных решений на основе условия непрерывности переменных х и у = х, мы можем получить значения исследуемых величин в любой момент времени. Если разбиение всего движения системы на этапы основано на замене общей нелинейной характеристики ломаной линией с большим или меньшим числом прямолинейных участков, то подобный путь обычно называется кусочно-линейным методом. В этом случае на каждом этапе система описывается линейным дифференциальным уравнением. Условие сшивания решений на смежных этапах — непрерывность х я у = х — необходимо и достаточно для системы с одной степенью свободы при наличии в ней двух резервуаров энергии и двух форм запасенной энергии (потенциальной и кинетической, электрической и магнитной). Существование двух видов резервуаров энергии является также необходимым условием для возможности осуществления в системе свободных колебательных движений, хотя для диссипативных систем оно недостаточно. При большом затухании система и с двумя резервуарами энергии может оказаться неколебательной — апериодической.  [c.60]

Схемотехническое проектирование радиотехнических (RF) схем отличается рядом особенностей математических моделей и используемых методов, прежде всего в области СВЧ-диапазона. Для анализа линейных схем обычно применяют методы расчета полюсов и нулей передаточных характеристик. Моделирование стационарных режимов нелинейных схем чаще всего выполняют с помощью метода гармонического баланса, основанного на разложении неизвестного рещения в ряд Фурье, подстановкой разложёния в систему дифференциальных уравнений с группированием членов с одинаковыми частотами тригонометрических функций, в результате получаются системы нелинейных алгебраических уравнений, подлежащие решению. Сокращение времени в случае слабо нелинейных схем достигается при моделировании СВЧ-устройств с помощью рядов Вольтерра. Анализ во временной области для ряда типов схем выполняют с помощью программ типа Spi e путем интегрирования систем обыкновенных дифференциальных уравнений.  [c.136]

В рассмотренных случаях задача сведена к системе обыкновенных линейных дифференциальных уравнений с постоянными коэффициен-там . J o лeдниe вычисляются из зависимостей, которые содержат 1Ч>, р, р и X, определяемые из расчетов циркуляции. После подстановки численных значений-коэффициентов в систему уравнений мы имеем возможность осуществить расчет устойчивости, применив один из известных. методов. В частности, если порядок системы невелик, можно воспользоваться неравенствами Гурвица.  [c.44]

Динамические характеристики измерительных устройств и преобразовательных Элементов отражают их динамические свойства, проявляющиеся при воздействия на рассматриваемую систему изменяющегося во времени сигнала. Для преобразователей, которые можно рассматривать как линейные стационарные системы непрерывного действия с сосредоточенными параметрами, основными динамическими характеристиками являются дифференциальное уравнение, импульсная н переходная характеристики, передаточная функция, амплитудно-частотная и фазочастотная характеристики [16, 37, 381. (Подробнее о динамических характеристиках см-гл. V). Аналогичные динамические характеристики используют для описания дискретных линейных систем. Указанные динамические характеристики взаимосвязаны, и при аналитическом задании одной из них все остальные могут быть нандепы-Знание полных динамических характеристик позволяет по заданному входному сигналу X (() находить выходной сигнал г/ (О, что важно для исследования реакции преобразователя, расчета преобразователен, используемых при сглаживанни, фильтрации, коррекции сигналов и т. п., а также для определения их динамических погрешностей. Из уравнений (1) и (5) гл. V следует, что связь между выходны и входным сигналами линейного преобразователя при нулевых начальных условиях может быть представлена в виде  [c.112]

Рассмотрим в качестве примера панель, схема которой изображена на рис. 1.7, в предположении, что жесткость на растяжение-сжатие EjFj каждого /-го ребра изменяется по длине панели произвольным образом. Как отмечалось в разд. 1.3, расчет такой панели сводится к решению системы линейных дифференциальных уравнений с переменными коэффициентами. Точно решить такую систему в общем виде нельзя. Поэтому ниже дадим численный метод решения, основанный на замене системы дифференциальных уравнений системой уравнений в конечных разностях. Решение этой последней системы можно без труда получить, ориентируясь на численный расчет с использованием вычислительной машины. Основная функция машины заключается при этом в перемножении известных матриц, что мож1но сделать с помошью стандартной программы.  [c.57]

Как было юложено в гл. 1 и гл. 2, задача расчета напряжен-но-деформировацного состояния многослойных анизотропных оболочек вращения сведена к решению нормальной с№темы линейных дифференциальных уравнений и-го порядка (и - четное число). Запишем систему в матричной форме  [c.115]

В дальнейшем (обзор работ дан в [14]) этот метод был обобщен для некоторых систем базисных функций Sk, в частности при Sk (f) = для случая квазилинейных гиперболических систем уравнений, и хорошо зарекомендовал себя при решении ря да сложных пространственных задач газовой динамики. Оказалось, что коэффициенты go gi определяются геометрией поверхности (7) (в том числе и для многомерного слу чая), коэффициент д2 — из нелинейного уравнения первого порядка, а последующие коэффициенты — из линейных дифференциальных уравнений. Применение специаль ных независимых переменных позволило для большой серии пространственных задач газовой динамики проинтегрировать в квадратурах системы уравнений для gk и полу чить их явные представления. Решение конкретных задач показало быструю сходимость зядов (6) и возможность их применения для описания зон течения газа с большими гра диентами газодинамических величин, в частности, в зонах сильных волн разрежения, расчет которых с высокой точностью обычными численными методами весьма труден.  [c.20]


В этой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. В предыдущих главах было показано, что корректный расчет таких оболочек и пластин в большинстве случаев требует привлечения неклассических дифференциальных уравнений повышенного порядка. Там же (см. параграфы 4.1, 4.4, 5.2, 6.2) отмечалась важная особенность таких уравнений — существование быстропеременных решений экспоненциального типа, имеющих ярко выраженный характер погранслоев и существенных лишь в малых окрестностях краевых закреплений, точек приложения сосредоточенных сил, мест резкого изменения геометрии конструкции и т.д. Стандартные схемы численного интегрирования краевых задач на таком классе дифференциальных уравнений малоэффективны — попытки их применения встречают принципиальные трудности, характер и формы проявления которых подробно обсуждались в параграфе 4.1 (см. также [136]). Добавим к этому замечание о закономерном характере данного явления — существование решений экспоненциального типа с чрезвычайно большим (по сравнению с длиной промежутка интегрирования) показателем изменяемости в неклассических математических моделях деформирования тонкостенных слоистых систем, дифференциальными уравнениями которых учитываются поперечные сдвиговые деформации, обжатие нормали и другие второстепенные" факторы, естественно и необходимо. Такие решения описывают краевые эффекты напряженного состояния, связанные с учетом этих факторов, и существуют не только у неклассических уравнений, установленных в настоящей монографии, но и в других вариантах неклассических уравнений повышенного порядка, что уже было показано (см. параграф 4.1) на конкретном примере. Болес того, подобные явления наблюдаются не только в теории оболочек, но и в других математических моделях механики и физики. Известным классическим примером такого рода может служить течение Навье—Стокса — при малой вязкости жидкости, как впервые было показано Л. Прандтлем (см., например, [330]), вблизи обтекаемого тела возникает зона пограничного слоя. Такие задачи согласно известной [56, 70 и др.] классификации относятся к классу сингулярно возмущенных, т.е. содержащих малый параметр и претерпевающих понижение порядка, если положить параметр равным нулю. Проблема сингулярных возмущений привлекала внимание многих авторов [56, 70, 173, 190 и др.]. Последние десятилетия отмечены значительными достижениями в ее разработке — в создании и обосновании методов асимптотического интегрирования для различных  [c.195]

Значительно подробнее разработаны численные методы решения задач приспособляемости с помощью, аппарата математического программирования (главным образом, линейного). Для их использования необходимо получение соответствующих дискретных математических моделей, что дбстигается заменой дифференциальных уравнений системой алгебраических уравнений и наложением ограничений на переменные в конечном числе узловых точек. Такой подход реализуется проще всего при расчете стержневых систем (фермы, рамы), при условии что ограничения на величины внутренних усилий имеют вид линейных неравенств, а выражения для определения пластической диссипации соответственно линейны относительно неизвестных скоростей (приращений) деформации. При выполнении расчетов используются различные варианты прямого и двойственного симплекс-методов [70, 71, 74, 95, 152 и др.], методы определения чебышевской точки системы линейных неравенств [37] и другие вычислительные схемы и алгоритмы.  [c.38]

Для определения функций д (и) и Мх (и) практически пригодны два способа способ замены ступицы сложной конфигурации ступенчатой ступицей, примерно равновеликой ей по площади осевого сечения (штриховой контур на рис. 4.4), и способ использования электронной аналогии уравнения (4.3а). Первый способ для ступицы, имеющей 1 ступеней, сводится к решению системы из / линейных дифференциальных уравнений с постоянными коэффидиеятамч (уравнения совместности деформаций для каждого участка) при совместных граничных условиях. Эти условия выражают равенство на концах участков крутящих моментов и их первых производных, пропорциональных интенсивности нагрузки в соединении. Рекомендовать данный способ при ручном методе расчета можно лишь при небольшом количестве участков (два-три). Большее количество требует применения ЭВМ. Второй, более простой способ — определение продольной концентрации нагрузки для соединения со ступицей произвольной конфигурации с помощью использования электронных вычислительных машин непрерывного действия (ЭВМНД) [7]. С этой целью уравнение (4.3а) для машинного решения преобразуется в систему двух дифференциальных уравнений первого порядка  [c.144]

При использовании ручных расчетных методов решение систем нелинейных дифференциальных уравнений высокого порядка, каковыми являются математические модели реальных схем, практически невозможно, если не прибегать к многочисленным упрощениям ММС. Наиболее известные приемы упрощений—раздельный анализ схем на постоянном и переменном токе, раздельный анализ процессов в схеме на разных стадиях переходного процесса или в разных частотных диапазонах, причем анализу переходных процессов или частотных характеристик должна предшествовать линеаризация ММС. Обычно этих приемов недостаточно, поэтому приходится пренебрегать частью реактивностей, сводя их количество, остающееся в эквивалентной схеме, до одной-двух. Тогда ММС становится системой не более двух линейных уравнений и может быть решена в общем виде. Это решение в итоге даст приближенные явные зависимости выходных параметров от внутренних и внешних параметров. Невысокая точность ручных расчетных методов очевидна. Кроме того, сколько-нибудь обоснованное упрощение эквивалентных схем обычно возможно только для простых схем, причем приемы упрощений будут специфичными для каждой конкретной схемы или, в лучшем случае, группы схем. Следовательно, ручные расчетные методы не являются универсальными. Однако на первоначальных стадиях проектирования еще не требуется высокой точности расчетов. Поэтому ручные расчетные методы с необходимостью используются в процессе проектирования для получения некоторых вариантов схем, исходных для дальнейшей отработки экспериментальными методами (см. рис. 2, блоки 1 б, 2 б, 1 в). Знание этих методов и приемов полезно и при решении неалгоритмизированной задачи синтеза.  [c.31]

Метод гармонической линеаризации особенно удобно применять при исследовании нелинейных систем, описываемых дифференциальными уравнениями высокого порядка. Для расчета переходных процессов может служить метод припасовывания, основанный на решении линейных дифференциальных уравнений в пределах линейных участков характеристик элементов. При переходе от одного участка к другому сменяются решаемые уравнения, причем значения переменных и их производных, полученные в конце предыдущего решения, являются начальными условиями для последующего решения. Необходимый объем вычислений оказьгеается большим, и метод становится особенно трудоемким, если нелиней-  [c.146]

О Брайен, Хаймен и Каплан [1950], а также Эдди [1949] определяют устойчивость исходя из роста или затухания ошибок округления. Лаке и Рихтмайер [1956] дают более общее определение устойчивости, устанавливая границу, до которой может возрастать любая компонента начальных данных в процессе численного расчета. Фундаментальную роль здесь играет теорема Лакса. Она устанавливает, что для системы линейных уравнений наличие устойчивости является необходимым и достаточным условием сходимости конечно-разностной схемы, аппроксимирующей систему дифференциальных уравнений.  [c.27]


Смотреть страницы где упоминается термин Расчет Систем линейных — Уравнения дифференциальные : [c.85]    [c.115]    [c.220]    [c.363]    [c.194]    [c.133]    [c.156]   
Справочник машиностроителя Том 3 Изд.3 (1963) -- [ c.350 ]



ПОИСК



Дифференциальные Расчет

Дифференциальные линейные

Дифференциальные системы

Дифференциальные уравнения в линейные

Линейные уравнения

Линейные уравнения — Системы

Линейные уравнения — Системы дифференциальные 215 — Система

Система дифференциальных уравнений

Система линейная

Система линейная дифференциальных уравнений

Система линейных уравнени

Системы Расчет



© 2025 Mash-xxl.info Реклама на сайте