Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пограничный слой

Эта трудность связана с отбрасыванием вязких сил даже при очень больших числах Рейнольдса эта процедура незаконна вблизи твердой границы. Действительно, поскольку на твердой границе скорость равна нулю, в то время как градиент скорости конечен, в этой области всегда доминируют вязкие силы. Поэтому вблизи твердых границ всегда необходимо анализировать течение на основе уравнения (7-1.4), даже если число Рейнольдса велико. Эта область, примыкающая к границе, где нарушается справедливость уравнения (7-1.6), называется пограничным слоем.  [c.258]


Классическая теория течения ньютоновских жидкостей в пограничном слое хорошо развита, и лучше всего этот предмет изложен в книге Шлихтинга [4]. Мы хотим обсудить здесь очень кратко только некоторые фундаментальные понятия, относяш,иеся к двумерным пограничным слоям, для того, чтобы проанализировать возможные обобщения этой теории на неньютоновские жидкости.  [c.258]

Для двумерных пограничных слоев можно показать, анализируя порядок величин, что толщина пограничного слоя б связана с расстоянием от точки торможения х соотношением  [c.258]

Уравнения (7-1.16) и (7-1.17) снова можно считать основными уравнениями двумерного пограничного слоя для течения неньютоновской жидкости. Разумеется, их решение требует введения частных уравнений состояния.  [c.259]

Обтекание погруженных тел и пограничные слои 275  [c.275]

ОБТЕКАНИЕ ПОГРУЖЕННЫХ ТЕЛ И ПОГРАНИЧНЫЕ СЛОИ  [c.275]

Обычный анализ порядков величин для течений в пограничном слое показывает, что левая часть уравнения (7-4.16) имеет порядок О (pf/ /x), в то время как  [c.278]

Таким образом, следует ожидать, что толщина пограничного слоя 6 не зависит ни от U (и, следовательно, от 1 , ни от х  [c.278]

Перед тем как начать обсуждение исследований турбулентных течений, уместно привести феноменологическое описание наблюдаемого поведения. Наблюдаемый перепад давления при турбулентном течении разбавленных растворов полимеров в круглых трубах часто является неожиданно более низким, чем тот, который наблюдался при той же самой расходной скорости чистого растворителя, несмотря на то что вязкость раствора больше вязкости чистого растворителя. Это явление известно как явление снижения сопротивления. Аналогичное явление наблюдается и при обтекании погруженных тел, если полимер инжектируется в пограничный слой.  [c.281]

В литературе часто встречается несколько иная точка зрения, основанная на концепции утолщения пограничного слоя в жидкостях с пониженным сопротивлением. В этом подходе внимание сосредоточивается на структуре пристенной турбулентности, а не на скорости диссипации во всем ноле течения. Для обоснования такого подхода очевидна важность экспериментов по снижению лобового сопротивления в шероховатых трубах, однако опубликованные до сих пор результаты до некоторой степени противоречивы. Корреляции, основанные на этом подходе, часто появляются в литературе и представляются обычно в терминах критического касательного напряжения на стенке Ткр, ниже которого снижение сопротивления не наблюдается. Если для коэффициента трения при отсутствии эффекта снижения сопротивления использовать  [c.284]


С увеличением толщины теплового пограничного слоя при ламинарном течении жидкости у поверхности пластины интенсивность теплоотдачи уменьшается. В переходной зоне общая толщина пограничного слоя продолжает возрастать, однако значение а при этом увеличивается, потому что толщина ламинарного подслоя убывает, а в образующемся турбулентном слое тепло переносится не только теплопроводностью, но и конвекцией вместе с перемещающейся массой, т. е. более интенсивно. В результате сум-.марное термическое сопротивление теплоотдачи убывает.  [c.80]

После стабилизации толщины ламинарного подслоя в зоне развитого турбулентного режима коэффициент теплоотдачи вновь начинает убывать из-за возрастания общей толщины пограничного слоя.  [c.80]

При течении жидкости в трубе толщина пограничного слоя вначале растет симметрично по всему периметру, как на пластине (рис. 9.4, а), до тех пор, пока слои с противоположных стенок не сольются на оси трубы. Дальше движение стабилизируется и фактически гидродинамический (аналогично и тепловой) пограничный слой заполняет все сечение трубы. В зависимости от конкретных условий пограничный слой на начальном  [c.80]

Отрицательные степени при X в (10.1) и (10.2) указывают на уменьшение коэффициента теплоотдачи по длине пластины. Если заменить все безразмерные числа отношениями соответствующих размерных величин, то будут видны степени влияния и других факторов, например на участке ламинарного пограничного слоя а на участке  [c.84]

Термическое сопротивление Rk можно уменьшить различными способами, воздействуя на любую из составляющих Ru / 2- Как отмечалось в 9.2, интенсифицировать конвективный теплообмен и уменьшить можно путем увеличения скорости движения теплоносителя, турбулизации пограничного слоя и т. д. Термическое сопротивление теплопроводности Rx зависит от материала и толщины стенки. Однако прежде чем выбирать методы воздействия на процесс теплопередачи, необходимо установить вклад отдельных составляющих Ra, Ri. и Ra2 в суммарную величину Rk. Естественно, что существенное влияние на Rk будет оказывать уменьшение наибольшего из слагаемых. В широко используемом в технике процессе передачи теплоты от капельной жидкости к газу через металлическую стенку наибольшее термическое сопротивление имеет место в процессе теплоотдачи от газа к стенке Ra2, а остальные термические сопротивления Ra.[ и Rx пренебрежимо малы по сравнению с ним (см. пример 12.2).  [c.100]

Для определения влияния любого размерного фактора на коэффициент теплоотдачи необходимо выразить все безразмерные числа через входящие в них размерные величины и получить зависимость а от всех размерных величин в явном виде. Но скорость входит только в одно безразмерное число Re, поэтому степень ее влияния на а равна степени влияния Re на Nu. Для продольного обтекания пластины — при ламинарном течении в пограничном слое и — при турбулентном.  [c.212]

Первый закон термодинамики 14, 44 Побочные энергоресурсы 206 Поверхность нагрева 149 Пограничный слой гидродинамический 79  [c.222]

Из рассмотрения уравнения (7-1.13) очевидно, что изменение давления поперек пограничного слоя пренебрежимо мало по сравнению с силами, действующими в направлении течения х. Следовательно, в проекции уравнения движения на ось х распределение давления может бытк взято равным полученному из  [c.258]

По-видимому, заслуживает упоминания тот факт, что Аста-рита [6] привел качественные аргументы, согласно которым размер области вблизи точки торможения, в которой приближения пограничного слоя перестают действовать, является для ненью-топовских жидкостей величиной, возможно, намного большей, чем для ньютоновских жидкостей.  [c.259]

В этом разделе обсудим задачи обтекания погруженных тел непью-тоновскими жидкостями. Обсуждение подразделяется на две части вначале рассмотрим течения с низкими числами Рейнольдса, т. е. течения, в которых инерционные силы не доминируют над внутренними напряжениями затем проведем анализ пограничного слоя, который представляет интерес в задачах обтекания с высоким числом Рейнольдса и для которого кинематика вне пограничного слоя и области следа определяются уравнениями Эйлера (7-1.6).  [c.275]


Заметим, что в любом случае толщина упругого пограничного слоя мала, поскольку предполагается, что оценки (7-4.14) остаются справедливыми, и, следовательно, подтверждается оценка dS idx 7 pU dUldx).  [c.279]

Исследования течений в пограничном слое неньютоновских жидкостей довольно обширно представлены в научной литературе. Однако все они явно или неявно относятся к вязкому пограничному слою. Сривастава и Маити [19] исследовали течение в пограничном слое жидкости второго порядка. Выбор такого уравнения состояния был, по-видимому, нодсказан приближением для низких чисел Вейссенберга, т. е. приближением вязкого пограничного слоя. Главный результат их работы состоит в доказательстве того, что точка отрыва смещается в направлении передней критической точки при росте числа We.  [c.279]

Как уже отмечалось, части1(ы жидкости, непосредственно соприкасающиеся с поверхностью, адсорбируются ( прилипают ) к ней. Соприкасаясь с неподвижным слоем, тормозятся и более удаленные от поверхности слои жидкости. Зона потока, и которой наблюдается уменыпение скорости (ш <№), ), вызванное вязким взаимодействием жидкости с поверхностью, называется гидродинамическим пограничным с л о-ем. 3.4 пределами пограничного слоя течет невозмущенный поток. Четкой границы между ними нет, так как скорость W по мере удаления от поверхности постепенно (асимптотически) возрастает до Шж. Практически за толщину гидродинамического пограничного слоя условно принимают расстояние от поверхности до точки, в которой скорость W отличается от скорости невозмущенного потока ау незначительно (обычно на 1 %).  [c.79]

Рис, 9.2. Образование пограничного слоя (и) и распределение местного (локального) кочф-фициента теплоотдачи (б) при продольном обтекании тонкой пластины  [c.79]

Аналогичным обр ом осуществляется и тепловое взаимодействие потока с пластиной. Частицы жидкости, прилипшие к поверхности, имеют температуру, равную температуре поверхности 1с. Соприкасающиеся с этими частип.ами движу циеся слои жидкости охлаждаются, отдавая им свою теплоту. От соприкосновения с этими слоями охлаждаются следующие более удаленные от поверхности слои потока—так формируется тепловой пограничный слой, в пределах которого температура меняется от t на поверхности до в невозмущенном потоке. По аналогии с гидродинамическим пограничным слоем толщина теплового по1 раничного слоя бт принимается равной расстоянию от поверхности до точки, в которой избыточная температура жидкости отличается от избыточной температуры невозмущенного потока Ож = ж — (г на малую величину (обычно на 1 %).  [c.79]

При ламинарном течении тен ловой поток от охлаждаюп1енся в пограничном слое жидкости переносится к поверхности пластины только за счет теплопро-  [c.79]

Для получения высоких коэффициентов теплоотдачи к газам стараются каким-либо способом уменьшить толщину пограничного слоя. Проще всего для этого увеличить скорость течения газа. Интенсификация теплоотдачи происходит и при резкой искусственной турбулиза-ции пограничного слоя струями, направленными по нормали к поверхности (рис. 9.3). С помощью системы из множества струй можно обеспечить высокие значения а от достаточно протяженной поверхности. Так, в воздушных струях с относительно невысокими скоростями истечения (м) 60 м/с) удается достигать значений при а = 200 300 Вт/(м К). При обычном продольном обтекании протяженных поверхностей толщина пограничного слоя на них велика, а коэффициенты теплоотдачи к воздуху при таких скоростях обычно ниже 100 Вт/(м - К).  [c.80]

Локальный коэффициент теплоотдачи от трубы к теку[цей в ней жидкости изменяется лишь на начальном участке (рис. 9.4,6), а на участке стабилизированного течения air = onst, поскольку толщина пограничного слоя (6т=г) постоянна. С увеличением скорости течения теплоносителя в трубе аст возрастает из-за уменьшения толщины ламинарного подслоя, а с увеличением диаметра тру-  [c.81]

Безразмерные комплексы обычно не являются точным отношением каких-то сил, а лишь качественно характеризуют их соотношение. В данном случае сила вязкого трения между соседними с.лоями движущейся в пограничном слое жидкости, действуюихая на единичную площадку, параллельную плоскости у —О, равна по закону Ньютона F = i (dw/dy). Заменяя производную отношением конечных разностей (dw/dy) получим цЯ р,Шж/бг, где 6г —толщина гидродинамического пограничного слоя. Принимая во внимание, что йг- /, получаем выражение  [c.82]

При малых числах Re преобладают силы вязкости и режим течения жидкости ламинарной (отдельные струи потока не перемешиваются, двигаясь параллельно друг другу, и всякие случайные завихрения быстро затухают под действием сил вязкости). При турбулентном течении в потоке преобладают силы инерции, поэтому завихрения интенсивно развиваются. При продольном обтекании пластины (см. рис. 9,2) ламинарное течение в пограничном слое нарушается на расстоянии Хкр от лобовой точки, на котором Re p = ЮжХкр/v 5 10 .  [c.82]

При Re >ReKp режим течения жидкости в пограничном слое турбулентный и расчетная зависимость для локального коэффициента теплоотдачи имеет вид  [c.84]


Смотреть страницы где упоминается термин Пограничный слой : [c.257]    [c.259]    [c.259]    [c.278]    [c.278]    [c.278]    [c.280]    [c.285]    [c.305]    [c.306]    [c.79]    [c.79]    [c.80]    [c.81]    [c.83]    [c.83]    [c.84]    [c.299]   
Смотреть главы в:

Теплотехника  -> Пограничный слой

Теоретическая физика. Т.4. Гидродинамика  -> Пограничный слой

Краткий курс технической гидромеханики  -> Пограничный слой

Техническая термодинамика и теплопередача  -> Пограничный слой

Основы теории теплообмена Изд.2  -> Пограничный слой

Основы теории теплообмена Изд4  -> Пограничный слой

Практическая аэродинамика  -> Пограничный слой

Механика Изд.3  -> Пограничный слой

Теоретическая гидродинамика  -> Пограничный слой

Основы теплопередачи в авиационной и ракетно-космической технике  -> Пограничный слой

Основные свойства жидкостей и газов  -> Пограничный слой

Механика сплошных сред Изд.2  -> Пограничный слой


Основы гидромеханики неньютоновских жидкостей (1978) -- [ c.257 , c.275 ]

Физические основы механики (1971) -- [ c.547 ]

Прикладная газовая динамика. Ч.1 (1991) -- [ c.276 , c.279 ]

Прикладная газовая динамика. Ч.2 (1991) -- [ c.12 , c.300 ]

Прочность пространственных элементов конструкций (1980) -- [ c.158 ]

Гидравлика. Кн.2 (1991) -- [ c.138 ]

Техническая термодинамика. Теплопередача (1988) -- [ c.253 ]

Техническая термодинамика и теплопередача (1986) -- [ c.341 ]

Механика композиционных материалов Том 2 (1978) -- [ c.53 ]

Справочник машиностроителя Том 2 (1955) -- [ c.517 ]

Гидрогазодинамика Учебное пособие для вузов (1984) -- [ c.151 ]

Гидродинамика при малых числах Рейнольдса (1976) -- [ c.58 ]

Лекции по гидроаэромеханике (1978) -- [ c.0 ]

Аэродинамика (2002) -- [ c.91 , c.92 , c.93 , c.94 , c.95 , c.96 , c.97 , c.98 , c.99 , c.100 , c.101 ]

Гидродинамика (1947) -- [ c.865 ]

Теоретическая гидродинамика (1964) -- [ c.34 , c.35 , c.561 ]

Гидравлика (1984) -- [ c.132 ]

Курс теоретической механики Часть2 Изд3 (1966) -- [ c.328 ]

Физическая теория газовой динамики (1968) -- [ c.74 ]

Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.2 ]

Акустика неоднородной движущейся среды Изд.2 (1981) -- [ c.128 ]

Вычислительная гидродинамика (0) -- [ c.398 , c.441 , c.450 , c.451 , c.506 ]

Теория пластичности Изд.3 (1969) -- [ c.222 ]

Вычислительная гидродинамика (0) -- [ c.398 , c.441 , c.450 , c.451 , c.506 ]

Основы теплопередачи в авиационной и ракетно-космической технике (1992) -- [ c.108 ]

Теплотехника (1985) -- [ c.225 ]

Аэродинамика решеток турбомашин (1987) -- [ c.198 , c.199 ]

Вычислительная гидродинамика (1980) -- [ c.398 , c.441 , c.450 , c.451 , c.506 , c.517 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте