Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ОБЩАЯ ТЕОРИЯ УПРУГОСТИ ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ

Основная задача теории оболочек как частного раздела общей теории упругости состоит в установлении напряженно-деформированного состояния, возникающего в оболочке под действием заданной системы нагрузок.  [c.37]

Закон Гука. До сих пор напряженное и деформированное состояния твердого тела рассматривались независимо. Теперь мы рассмотрим соотношения между напряжением и деформацией для определенного класса тел, которые мы будем называть упругими телами. Для того чтобы вывести такое соотношение, нужно проанализировать структуру твердого тела и затем, применяя аппарат статистической механики, определить механические свойства тела, исходя из природы атомов (или других составных элементов подобно цепочкам молекул, объединяющих их). Попытки осуществить подобную задачу ) делались в течение последних ста лет до этих пор теория основывалась на эмпирических соотношениях, подобных, например, закону Гука, которым устанавливается, что если растягивать тонкий стержень или проволоку, имеющих длину в недеформированном состоянии, то сила, необходимая для растяжения стержня до длины I, прямо пропорциональна удлинению l — l . Прежде чем приступить к обсуждению общей теории упругости, покажем, как, применяя законы термодинамики к очень простой системе, получить соотношение между напряжением и деформацией в форме закона Гука.  [c.32]


Таким образом, задачу теории пластичности можно рассматривать как задачу теории упругости, но для неоднородного упругого тела, так как параметры упругости в каждой точке тела в общем случае зависят от характеристик напряженно-деформированного состояния.  [c.316]

Для решения задач устойчивости, как мы уже выяснили, уравнения равновесия должны составляться для деформированного состояния упругого тела. Соответственно, применяя вариационное уравнение, в нем необходимо удерживать квадратичные члены в формулах для деформаций, как это было сделано для общей теории в 12.2 и для задачи об устойчивости стержня в 12.3. В задачах изгиба пластин достаточно удерживать те квадратичные члены, которые зависят от прогиба w, производные от перемещений мы сохраним лишь в первой степени. Повторяя вывод 12.4, мы найдем, что формулы (12.4.3) сохранят силу и в этом случае, но компоненты деформации срединной поверхности нужно будет вычислять по формулам  [c.411]

Но необходимо подчеркнуть, что теорема о выпуклости области устойчивости (как и остальные теоремы П. Ф. Папковича о границах областей устойчивости) доказывается только для линейной задачи устойчивости. Эта теорема верна, если докритическое напряженно-деформированное состояние упругой системы определено по линейной теории и при расчете на устойчивость докритические перемещения системы не учитываются. В противном случае граница области устойчивости может иметь участки, обращенные выпуклостью в сторону области устойчивости [23]. Более того, в общем случае, когда для описания докритического состояния упругой системы необходимо использовать нелинейную теорию, области устойчивости могут иметь самые причудливые очертания.  [c.34]

В общем случае в результате сложных геометрических форм конструктивных элементов и специфических сочетаний режимов механического и теплового нагрул<[ений напряженное и деформированное состояния опасных зон оказываются многокомпонентными. Однако в поверхностных объемах детали реализуется преимущественно плоское напряженное состояние (корпус паровой турбины, элементы трубопроводов и др.). Поэтому для характеристики закономерностей разрушения можно использовать данные, получаемые при испытаниях в условиях сравнительно простых напряженных состояний. На рис. 2.52 приведены кривые усталости, построенные на основании расчета (через условные упругие напряжения) в приведенных деформациях [в соответствии с теориями наибольших деформаций (У), наибольших касательных напряжений (2), энергии формоизменения (5)] и в интенсивностях деформаций (4).  [c.115]


Теории пластичности устанавливают связь между пластическими деформациями и напряжениями. Так же, как и в теории упругости, эта связь не зависит от времени, т.е. при неизменном напряженном состоянии деформированное состояние не меняется и наоборот. Однако в отличие от упругости конечное упругопластическое деформированное состояние тела зависит от предшествующей истории изменения напряженного состояния (истории нагружения). Задача построения общей теории пластичности не решена вследствие сложности процесса пластического деформирования реального материала. Предложен ряд различных теорий, основанных на физических, структурных и модельных представлениях [8, 18, 22, 28, 37].  [c.88]

Полная аналогия уравнений задач о плоском напряженном и плоском деформированном состояниях позволяет при построении общих решений объединить их в одну плоскую задачу теории упругости,  [c.40]

В пятой главе описаны слоистые упругие трансверсально изотропные пластинки, имеющие симметричное относительно срединной плоскости строение пакета слоев. Выбор срединной плоскости в качестве плоскости приведения позволил отделить уравнения плоской задачи теории упругости от уравнений изгиба пластинки, которые и явились предметом исследования. Найден широкий класс решений этих уравнений, что позволило, в частности, решить задачу изгиба круговой пластинки, несущей поперечную нагрузку. В качестве примера рассмотрена задача осесимметричного деформирования круговой пластинки. Выполненное исследование, включающее в себя вычисление разрушающей, интенсивности нагрузки, определение механизма возникновения разрушения и определение зоны его инициирования, выявило принципиальную необходимость учета влияния поперечных сдвиговых деформаций на расчетные характеристики напряженно-деформированного состояния для пластин с существенно различными жесткостями слоев. Решена задача устойчивости пластинки, нагруженной силами, действующими в ее плоскости. Составлены общие уравнения устойчивости и подробно исследован тот случай, когда тензор докритических усилий круговой. Для этого случая найден широкий класс решений уравнений устойчивости. В качестве примера дано решение задачи устойчивости круговой пластинки, нагруженной равномерно распределенным по контуру сжимающим радиальным усилием. Эта же задача решена еще и на основе других неклассических уравнений, приведенных в третьей главе, а также на основе уравнений трехмерной теории устойчивости. Выполнен параметрический анализ полученных решений, что позволило указать границы применимости рассматриваемых уточненных теорий, оценить характер и степень влияния поперечных сдвиговых деформаций и обжатия нормали на критические интенсивности сжимающего усилия. Полученные результаты приводят к выводу о пригодности разработанных в настоящей моно-  [c.13]

В ЭТОЙ главе кратко изложены основные соотношения теории многократного наложения больших упругих и вязкоупругих деформаций и общая постановка краевых задач этой теории. В теории многократного наложения больших деформаций напряженно-деформированное состояние может быть описано не только в координатах начального и конечного (текущего) состояний, но и в координатах одного из нескольких промежуточных состояний. Это особенно важно при рассмотрении задач с последовательно изменяющимися границами и граничными усилиями.  [c.23]

В общем случае искомыми величинами в задачах теории упругости являются функции перемещений, компоненты напряженного и деформированного состояний среды. Следовательно, в каждой точке тела подлежат определению 15 величин три компоненты  [c.196]

В сборник моих статей по прочности и колебаниям элементов конструкций включены двадцать шесть работ они посвящены изучению деформированного и напряженного состояния стержневых систем (рамы, рельсы, мосты), тонких упругих пластин и оболочек, анализу изгиба и кручения призматических стержней, плоской задаче теории упругости и общим проблемам прочности Кроме того, приведены статьи о колебаниях стержневых систем и об ударе по упругой балке.  [c.9]


Важнейшие этапы развития теории упругости исторически отмечаются обнародованием Навье в 1821 г. общих уравнений равновесия для пространственных тел и предложенными в 1822— 1827 гг. Коши определениями напряженно-деформированного состояния посредством компонентов напряжений и деформаций.  [c.14]

В общем виде здесь будут исследоваться только однородные напряженные или деформированные состояния. В этой главе мы будем интересоваться в первую очередь влиянием температуры на упругие свойства тел позже будут рассмотрены влияние температуры на пластичность, вязкость или скорость изменения деформаций со временем. Так же как и в термодинамической теории идеальных газов, удобно выделить специальные виды процессов деформирования и нагружения твердого тела и описать, например, те из них, при которых изменения температуры вследствие нагревания или охлаждения тела происходят при поддерживаемой на заданном уровне деформации или напряжении. Удобно также различать изотермические и адиабатические изменения состояния как специальные виды процессов нагружения. При изотермическом изменении состояния температура поддерживается постоянной.  [c.15]

Монография состоит из трех частей. В первой, содержащей три главы, даются общие основы теории упругости, обсуждаются деформированное и напряженное состояния и связь между этими состояниями и температурой. Излагаются термодинамические основы деформаций и выводятся общие дифференциальные уравнения термоупругости для анизотропной среды.  [c.8]

Для определения напряженного и деформированного состояния твердого тела, нагруженного за пределами упругости, необходимы уравнения пластического состояния, связывающие напряжения и деформации. Полностью задача о построении таких уравнений в общем случае не решена из-за сложности процесса пластического деформирования, хотя предложено много различных теорий [66—69, 132, 141, 142, 155, 224]. Рассмотрим основные уравнения пластического состояния, широко применяемые в расчетах элементов конструкций о учетом пластических деформаций.  [c.87]

Основные уравнения теории упругости для общего случая (см. гл. 3) соответствующим образом упрощаются для плоской задачи, причем различие между плоским деформированным состоянием и плоским напряженным состоянием становится заметным только в физическом законе >.  [c.191]

В более общей и удобной для практической реализации форме разработана расчетная схема, изложенная в работе [40]. Эта схема учитывает деформацию кольцевых элементов и деформацию ребер, причем для кольцевых элементов используются уравнения осесимметричной, а для ребер — плоской задачи теории упругости. Таким образом, сохраняется допущение об осесимметричном характере напряженно-деформированного состояния детали.  [c.199]

Когда толщина П. более 1/5 остальных размеров, П. наз. толстой. Напряженно-деформированное состояние толстой П. определяется на основании общих ур-ний пространственной задачи теории упругости [3].  [c.35]

Последние две главы, восьмая и девятая, посвящены исследованию упругого равновесия анизотропных тел вращения, которые деформируются под действием внешних усилий, но при этом остаются телами вращения. Такого рода деформации возможны лишь для частных случаев анизотропии и для частных случаев распределения нагрузки. Можно различить два вида напряженно-деформированного состояния, при котором тело вращения переходит в тело вращения 1) кручение и 2) осесимметричная деформация. В данной главе мы выводим общие уравнения теории кручения тел вращения и даем решения нескольких задач, представляющих практический интерес.  [c.345]

Большое значение для анализа напряженного и деформированного состояния подкрепленных и гладких оболочек типа фюзеляжа имеют работы В. 3. Власова по стесненному кручению тонкостенных конструкций открытого профиля и технической теории оболочек. На основании полученных им общих закономерностей были решены задачи расчета на прочность фюзеляжа с большим вырезом, приближенного учета влияния упругости элементов силового набора и др. Из работ ЦАГИ здесь следует отметить исследования Г. Н. Рудых.  [c.300]

Рассматриваемая цилиндровая втулка двухтактного дизеля с противоположно движущимися поршнями (ПДП), часть которой представлена на рис. 10.1, имеет вертикальные ребра со стороны охлаждения. В районе камеры сгорания наблюдается изменение диаметра цилиндра с 300 до 230 мм. С помощью опорного фланца втулка фиксируется в блоке. В районе радиусного перехода в теле втулки имеются сверления для форсунок и клапана пускового воздуха. Полость охлаждения образуется между втулкой и надетой на нее рубашкой. Как видно, сложная нерегулярная конфигурация конструкции исключает возможность использования для анализа ее напряженно-деформированного состояния осесимметричную постановку задачи. Кроме того, условия формирования потока рабочего тела в камере сгорания приводят к значительной неравномерности распределения температур по внутренней поверхности втулки как в осевом направлении, так и по ее периметру. Указанное обстоятельство существенно усложняет расчеты. Таким образом, определение напряженно-деформированного состояния исследуемой цилиндровой втулки в общем случае сводится к решению методом конечных элементов трехмерной задачи теории упругости.  [c.188]


Ниже рассматривается задача, которая с качественной точки зрения подобна исследованной в предыдущем параграфе и заключается в кручении двух сжатых постоянной нормальной силой упругих тел вокруг оси, совпадающей с их общей нормалью, под действием переменного скручивающего момента. Нетрудно представить возникающую при этом физическую картину контактного взаимодействия. Нормальное сжатие приводит к формированию области контакта и распределения нормальных давлений, определяемых теорией Герца. Действие скручивающего момента обусловливает поворот на малый угол [3 вокруг оси 2 одного тела относительно другого. Усилия трения, действующие по поверхности контакта, препятствуют скольжению. Каждое тело с точки зрения вычисления его упругих деформаций рассматривается как упругое полупространство. Под действием пары скручивающих моментов Мг в каждом теле реализуется напряженное состояние, соответствующее чистому кручению, когда все нормальные компоненты напряжений равны нулю (см. 3.9). В случае контакта шаров напряженно-деформированное состояние является осесимметричным т е и Тге — ненулевые компоненты напряжений, а ив — единственная отличная от нуля компонента перемещения.  [c.265]

В рамках теории упругости наследственные модели деформируемых тел рассматривались в механике по предложению Л.Больцмана с конца XIX века [50]. Их основу составляет идея Больцмана о том, что уравнения состояния твердых тел, определяющие связь между локальными напряжениями и деформациями, должны выражаться соотношениями, учитывающими, например, историю деформирования в окрестностях данной точки упругой (наследственно-упругой) среды. В общем такая связь в линейном случае может быть представлена с помощью введения некоторого интегрального оператора в виде [51] (также см. ссылку на монографии [64]вЧ.1)  [c.152]

Эта очевидная для одноосного растяжения закономерность может быть обобщена на общий случай напряженного и деформированного состояния, если выполняются условия, сформулированные А. А. Ильюшиным в теореме о разгрузке. Теорема о разгрузке формулируется следующим образом для вычисления напряжений ац, деформаций гц и перемещений щ в процессе разгрузки достаточно решить задачу линейной теории упругости при внешних нагрузках, равнь1х разностям их значений в момент начала разгрузки и текущих значений.  [c.271]

Основные работы, посвященные решению задач о наращивании методами теории упругости, приведены в [5241. На основе теории упругоползучего тела в работе [494] исследовано напряженно-деформированное состояние в однородных телах при их наращивании. В более общей постановке эта задача рассматривалась в [171]. Установлению определяющих соотношений и исследованию краевых задач вязкопластических течений "твердых тел посвящены работы [208, 209]. Уравнениям деформирования не вполне упругих и вязкопластических тел посвящены работы [217—220]. Задача термоползучести для неоднородно-стареющего тела исследована в [94, 95]. Плоская задача вязкоупругости для неоднородной среды, а также влияние старения материала на напряженно-деформированное состояние около отверстий исследовались в [429, 430, 474].  [c.27]

При определении коэффициента внешнего трения необходимо исходить из напряженного состояния в зонах фактического касания. В общем случае вследствие распределения вершин микронеровностей по высоте микроиеров-ности в зависимости от глубины внедрения могут деформировать материал поверхности менее жесткого тела упруго, упругоиластнчески или пластически. Границы между каждым из Ердов деформирования определяют, решая соответствующие контактные задачи теорий упругости и пластичности. Однако в ряде случаев (например, при трении резин, а также металлов при небольших контурных давлениях) в зонах касания возникают упругие деформации. Как показывает анализ, при внедрениях, соответствующих пластическим деформациям, в зонах касания поверхностей с наиболее распространенными Б инженерной практике параметрами шероховатостей основные силовые взаимодействия приходятся ia микронеровности, деформирующие материал поверхностного слоя менее жесткого тела пластически. Поэтому в настоящее время принято оценивать взаимодействие твердых тел при упругих и пластических деформациях в зонах касания. Теория взаимодействия твердых тел ири упругопластических деформациях пока ещё не разработана.  [c.192]

Остановимся кратко на содержании главы. В разд. 2,2 на основе принципа виртуальных перемещений Лагранжа выведены основные соотношения подкрепленной ребрами криволинейной панели. В разд. 22.3 выделено элементарное решение Сопротивления материалов. Преобразование исходных уравнений для плоской панели к системе разрешающих уравнений содержится в разд. 2.4. Далее в разд. 2.5 изучено напряженно-деформированное состояние симметрично подкрепленной панели. Рассмотрена панель как конечной, так и бесконечной длины. Решение представлено в виде быстросходящихся рядов, даны результаты численных расчетов и программы расчета. В разд. 2.6 изучается эффект подкрепления панели на торце дополнительным ребром, работающим только иа изгиб. В разд. 2.7, как и в разд. 2.5, рассмотрена симметрично подкрепленная панель, но при кососимметрнчиом загруженин ребер парой сил. Решение отличается от полученного в разд. 2.5, так как требуется учитывать изгиб панели в ее плоскости. Решение доведено до числа. В разд. 2.8 рассмотрены панели с двумя ребрами разной жесткости для случа.я, когда поперечное перемещение панелн равно нулю или отлично от нуля. В разд. 2.9 на примере бесконечной пластины с полубесконечным ребром дается оценка погрешности решения путем введения гипотезы отсутствия поперечной деформации пластины. Эта оценка выполнена, путем срав неиня решения на основе упомянутой гипотезы с точным решением, полученным иа основе уравнений плоской теории упругости. Результаты этого раздела опубликованы Э. И. Грнголюком и В. М. Толкачевым [5]. В этой работе дана также общая постановка задач включения на основе гипотезы отсутствия поперечной деформации, рассмотрены задачи для пластины и ребра конечных размеров, для полубесконечной пластины с полубесконечным ребром, а также задача для защемленной по боковым сторонам полубесконечной полосы, нагруженной на торце постоянной распределенной нормальной нагрузкой.  [c.68]

Рассмотрим теперь плоскую задачу теории упругости. В этом случае необходимо ввести приведенные упругие характеристики (6 независимых приведенных упругих постоянных в общем случае вместо 21-й в трехмерном случае). Эти характеристики будут различными в зависимости от того, рассматривается ли бесконечная слоистая труба (плоское деформированное состояние) или составное тонкое кольцо (обобщенное плоское напряженное состояние) см. приложение V. Чтобы сохранить в прежнем виде эффективные характеристики плоского случая, необходимо переобозначить координаты, а именно полагаем  [c.170]

В дальнейшем Томсон провел общее исследование термических изменений, происходящих в упругих телах при их деформировании. При рассмотрении энергии тела он дал первое логическое доказательство существования так называемой потенциальной функции, представляющей собой энергию деформации и зависящей лишь от деформации измеренной относительно некоторого условно начального состояния, но но от способа, каким она достигается ). Эта работа является одним из самых важных дополнений, внесенных Уилльямом Томсоном в теорию упругости.  [c.318]


В общем случае изучение механических процессов в начально-деформированных телах необходимо проводить в рамках нелинейной теории упругости. Однако, множество процессов, происходящих в начально-деформированных телах, можно рассматривать в рамках линеаризованной теории наложения малых деформаций (возмущений) на конечные деформации (начальное состояние) в предположении, что возмущения малы. Традиционно [30, 41, 42] различают три состояния тела естественное (ненапряженное) состояние (ЕС), начально-деформированное состояние (НДС) и актуальное (возмущенное по отношению к НДС) состояние. При этом особое значение приобретает выбор системы координат, которая может быть связана либо с естественной конфигурацией (система координат Лагранжа или материальная система координат), либо с актуальной конфигурацией (система координат Эйлера) [30, 41, 42]. Линеаризованные уравнения движения существенным образом зависят как от выбора системы координат, так и от выбора определяющих соотношений, поскольку имеет место возможность определения напряженного состояния различными тензорами (Коши, Пиола, Кирхгофа и т.д.) и множественность их представления через меры деформации (Коши-Грина, Фингера, Альманзи) или градиент места. Более детально с особенностями постановки задач для преднапряженных тел можно ознакомиться в монографиях А. И. Лурье [41], А. Лява [42] и А. Н. Гузя [30].  [c.290]

Общая теория такой несимметричной упругости была разработана братьями Коссера ) в 1910 г. В классической теории упругости материальная частица совпадает с точкой, а деформированное состояние описывается перемещением точки. В отличие от этой модели братья Коссера ставят в соответствие каждой частице деформированной среды ортогональный трехгранник. Таким образом частицы получают ориентирование (полярная среда). Каждая частица среды Коссера является малым абсолютно твердым телом. Деформация такой среды описывается не только вектором перемещения и, но также вектором поворота о, т. е. величиной, являющейся функцией положения х и времени t. При таких предположениях в теле возникают не только напряжения Oij, но и моментные напряжения образующие, вообще говоря, несимметричные тензоры.  [c.798]

Вначале вычислим вторую вариацию для общей трехмерной задачи теории упругости. Пусть — прямоугольные декартовы координаты, — возмущения компонентов вектора смещения, — компоненты тензора упругих постоянных, 5 — компоненты тензора напряжений для невозмущенного состояния (/, к, I, т=, 2, 3). Допустим, что можно пренебречь перемещениями, связанными с переходом из педеформирован-ного состояния в невозмущенное деформированное состояние. Допустим также, что при переходе к возмущенному состоянию внещние силы не варьируются ( мертвые силы, см. [4]). Для вариации получаем формулу [4]  [c.63]

В теории упругости доказывается, что в самом общем случае напряжённого состояния через любую точку деформированного тела можно провести три взаимно перпендикулярные площадки, по которым нормапьные напряжения достигают наибольших и наименьших значений, а касательные напряжения равны нулю (раздел Теория упругости>>). Эти площадки называются главными площадками напряжения, действующие по этим площадкам, — главными напряжениями, а их направления—главными направлениями, или главными осями.  [c.24]

В седьмой главе разработанные методы решения динамических контактных аадач теории упругости с одчостороннимн ограничениями для тел с трещинами использованы при решении задачи о взаимодействии плоской волны растяжения-сжатия с трещиной конечной длины в плоскости. Приведены уравнения, необходимые для математической постановки задачи. Эти уравнения являются следствием общих уравнений, полученных в предьщущих главах. Исследована зависимость точности решения от аппроксимации по пространственным координатам и по времени, а также от количества членов ряда Фурье разложения компонент напряжен-но-деформированиого состояния. Приведены также численные результаты и исследованы количественные и качественные эффекты, вызванные контактным взаимодействием берегов трещины.  [c.7]

Уравнения (1.4)—(1.6) в нелинейной теории упругости остаются в силе. За это, однако, приходится расплачиваться тем, что напряжения О в общем случае должны определяться по отношению к деформированной, а не к исходной поверхности, как мы делали выше. В нелинейной теории называют механическими напряжениями, чтобы отличить их от так называемых термодинамических напряжений tik, определяемых в координатах недеформированного тела. Строго говоря, в выражения (1.8) и (1.9) входят именно термодинамические напряжения. Поэтому, для того чтобы замкнуть уравнения движения уравнениями состояния, необходимо использовать связь между и В линейном случае, однако, = вследствие чего в настоящей главе мы не будем делать различий между этими величинами. Более подробно о нелинейной теории упругости говоригся в гл. 11, посвященной нелинейной акустике твердых тел.  [c.193]

ШИ относительных перемещений точек при деформации можно пренебречь. Остальные гипотезы, к-рыми пользуется С. м., здесь устранены первоначально в развитии теории упругости они или подтверждаются вполне, или частью, с известным приближением, или отвергаются в связи с анализом отдельных деформаций. Элементарные теории растяжения, кручения круглых брусков, чистого изгиба вполне согласуются с теорией упругости. Изгиб в присутствии срезывающих сил, как оказывается, подчиняется закону прямой линии гипотеза Навье), но не закону плоскости (гипотеза Бернулли). Касательные напряжения при изгибе распределяются по закону параболы, но только в тех сечениях, которые имеют незначительную толщину при большой высоте (узкие прямоугольники). В других сечениях закон распределения касательных напряжений совершенно иной. Для балок переменного сечения, к к-рым в элементарной теории прилагают закон прямой линии и параболы, теория -упругости дает другие решения в этих решениях значения напряжений и деформаций гораздо выше, чем по элементарной теории следует. Общепринятый способ расчета пластин по Баху как обыкновенных балок не оправдывается теорией упругости. Ф-лы С. м. для кручения некруглых стержней не соответствуют таковым в теории упругости. Теория изгиба кривых стержней решительно не совпадает с элементарной теорией Баха-Баумана, но результаты расчета по строгой теории и на основании гипотезы плоских сечений достаточно близки. Поставлена и разрешена для ряда случаев задача о распределении местных напряжений (в местах приложения нагрузки или изменения сечения), к-рая совершенно недоступна теории С. м. Вопрос об устойчивости деформированного состояния, элементарную форму которого представляет в С.м. продольный изгиб, получил в теории упругости общее решение Бриана (Bryan), Тимошенко и Динника. Помимо многочисленных форм устойчивости стержня, сжатого сосредоточенной силой, изучены также явления устойчивости стержней переменного сечения под действием равномерно распределенных сил и другие явления устойчивости балок при изгибе, равномерно сжатой трубы, кольца, оболочек, длинного стержня при скручивании и пр. Теория упругого удара— долевого, поперечного—занимает большое место в теории упругости и включает все большее и большее чис-чо технически важных случаев. Теория колебаний получила настолько прочное положение в теории упругости и в практи-тсе, что методы расчета на ко.чебания проникают область С. м., конечно в элементарном виде. Изучены распространение волны в неограниченной упругой среде (решение Пуассона и Кирхгофа), движение волны по поверхности изотропной среды (решение Релея), волны в всесторонне ограниченных упругих системах с одной, конечно многими и бесконечно многими степенями свободы. В связи с этим находятся решения, относящиеся к колебаниям струн, мембран и оболочек, различной формы стержней, пружин и пластин.  [c.208]

Отправным пунктом в построении теории пластического упрочнения является распространение зависимости, изобрал енной на рис. 3, на случай общего напряженного состояния. Если считать, что линии разгрузки 4 и вторичного нагружения 3 совпадают, что во многих случаях подтверждается результатами экспериментов, то изображаемые этими линиями процессы деформированкя можно рассматривать как обратимые. Таким образом, после нагружения при возраставшем от О до а напряжении с и соответствующем деформировании грунта по линии 1 совокупность возможных напряженных состояний, изображаемая на рис. 3 осью а, делится иа две области о < Он и ст > сГн. При изменении напряжений в пределах первой области будет совершаться обратимое (упругое) деформирование материала. При увеличении напряжений во второй области происходит деформирование по линии 2, т, е, с приоб ретением пластических (необратимых) деформаций. Следовательно, напряжение а после реализации процесса нагрул ения по линии 1 можно рассматривать как предел упругости.  [c.29]


Конкретный вид зависимости коэффициентов интенсивности напряжений от приложенных нагрузок, геометрических характеристик тела и трещины определяется из регпепия соответствующих задач теории упругости. Оказывается, что в случае плоского папряжепного плп плоского деформированного состояния коэффициенты интенсивности напряжений для конкретного нагружения тела заданной геометрии с прямолинейной трещиной данной длины могут быть определены из общих формул для трех основных типов нагружения.  [c.65]

Применение общих теорем Лагранжа и Кастильяно к системам, для которых связь между внешними силами и перемещениями точек их приложения нелинейна, будь это вследствие того, что рассматриваются пластические деформации, или, как в примере предыдущего параграфа, вследствие того, что уравнения статики должны составляться для деформированного состояния, все равно наталкивается, на значите.1 ьные трудности. В нашем курсе мы ограничимся линейными упругими системами, то есть системами, элементы которых подчиняются закону Гука, сочленения осуществлены без трения и малость деформаций позволяет составлять уравнения статики для недеформированного состояния. При этих условиях, как мы выяснили в 32, перемещения и силы связаны линейными соотношениями. Легко видеть, что это относится в той же мере к изгибу и кручению, так как вёзде в этих задачах мы имеем дело с линейными функциями от сил. Исключение представляет случай продольно-поперечного изгиба там выражение для поперечного изгиба зависит от продольной силы сложным образом, через трансцендентные функции. Легко понять, в чем тут дело. При составлении дифференциального уравнения продольно-поперечного изгиба мы принимаем момент от продольной силы равным произведению силы на прогиб, то есть определяем статический фактор с учетом происшедшей деформации.  [c.336]

На основании общих физических представлений о поведении материала под нагрузкой его сопротивление деформированию определяется мгновенными условиями нагружения (температурой, скоростью деформации и другими ее производными в момент регистрации), а также структурой материала, сформированной в процессе предшествующего деформирования, который в п-мерном пространстве характеризуется траекторией точки, проекции радиуса-вектора которой — составляющие тензора напряжений (или деформаций) и время (начальная температура является параметром, характеризующим исходное состояние материала, и изменяется в соответствии с адиабатическим характером процесса деформирования). Специфической особенностью процессов импульсного нагружения является сложный характер нагружения (составляющие тензора напряжений меняются непропорционально единому параметру) и влияние времени. Невозможность экспериментального исследования материала при различных процессах нагружения (траекториях точки указанного выше л-мерного пространства) вынуждает исследователей использовать упрощенные модели механического поведения материала. Это обусловило развитие исследований по разработке теорий пластичности, учитывающих температурновременные эффекты [49, 213, 218] наряду с изучением физических процессов скоростной пластической деформации [5, 82, 175, 309]. Так, для первоначально изотропного материала исходя из гипотезы изотропного упрочнения связь тензоров напряжений и деформаций полностью определяется связью их инвариантов соответственно Ei, Ег, Ез и Ii, h, h- С учетом упругого характера связи средних напряжений и объемной деформации для металлических материалов (а следовательно, независимость от истории нагружения первых инвариантов тензоров напряжений и деформаций Ei, А) процесс нагружения определяется связью четырех оставшихся инвариантов и величины среднего давления. В классической теории пластичности  [c.11]

Нелинейность вязко-упругих систем, по крайней мере в рамках большинства предлагавшихся до сих пор моделей, является аналитической и допускает линеаризацию. Поэтому задачи устойчивости для вязко-упру-гих систем оказываются проще, чем для систем упруго-пластических, и теория продвинута здесь несколько дальше. Процесс деформирования вязко-упругих систем развертывается во времени. Существенное значение приобретает тип возмущений и последовательность их действия во вре- мени, а также продолжительность интервала времени, на протяжении которого исследуется устойчивость. В расчетах вязко-упругих систем часто используется понятие критического времени под которым понимается продолжительность времени от начала нагружения до достижения критического состояния в некотором смысле. В общем случае время г оказывается функцией параметров внешних сил и типа возмущений.  [c.348]


Смотреть страницы где упоминается термин ОБЩАЯ ТЕОРИЯ УПРУГОСТИ ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ : [c.228]    [c.324]    [c.54]    [c.88]    [c.50]    [c.23]    [c.535]   
Смотреть главы в:

Теория упругости  -> ОБЩАЯ ТЕОРИЯ УПРУГОСТИ ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ



ПОИСК



Состояние деформированное

Состояние теории

Состояние упругое

Теория упругости

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте