Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Металлы 13, 63, 71, 75 (см. также

Особенно важен в практических условиях концентрационный кислородный элемент, т. е. элемент, в котором отдельные участки электролита отличаются между собой по концентрации растворенного в них кислорода. Причина образования коррозионного элемента неравномерной аэрации заключается в том, что потенциал кислородного электрода зависит от концентрации кислорода в растворе. С повышением концентрации кислорода потенциал кислородного электрода становится более положительным. Неравновесный электродный потенциал металлов также сильно  [c.28]


Состав и свойства продуктов коррозии металлов также влияют иа скорость коррозионного процесса. Железо во влажной  [c.179]

Равномерная коррозия включает общеизвестные ржавление железа или потускнение серебра. Помутнение никеля и высокотемпературное окисление металлов также являются примерами равномерной коррозии.  [c.26]

Положительное влияние вакуума на качество сварных соединений выражается в том, что значительно ускоряются и облегчаются процессы выхода газов и диссоциации оксидов не только в поверхностных, но и из внутренних слоев металла. Удаление кислорода и азота из сварочной ванны при электронно-лучевой сварке происходит тем полнее, чем больше упругость диссоциации оксидов и нитридов. Так, при сварке меди, кобальта, никеля в камере с разрежением 6,5-10 Па обеспечивается диссоциация оксидов этих металлов. Также диссоциируют нитриды алюминия, ниобия, хрома, магния, молибдена и некоторых других металлов с высокой упругостью диссоциации нитридов.  [c.401]

При быстром охлаждении при закалке или в процессе сварки в металле также фиксируется неравновесная концентрация вакансий. Равновесная концентрация вакансий С р зависит от рода металла и увеличивается с температурой. При охлаждении С р уменьшается в результате аннигиляции вакансий на стоках, которыми служат внешние поверхности, границы зерен (субзерен) и дислокации. При ускоренном охлаждении С р не успевает установиться, поэтому в металле фиксируется часть числа вакансий, соответствующего более высоким температурам. На рис. 13.16 приведены расчетные значения неравновесной концентрации вакансий С в железе для условий ускоренного охлаждения при сварке (считается, что стоками служат только дислокации).  [c.510]

Согласно (141.4) измерение коэффициента отражения по интенсивности металла также можно использовать для определения оптических постоянных металла.  [c.493]

Другой метод получения голограммы. эталонной поверхности представляется более перспективным—.это метод получения синтезированных голограмм. Здесь не требуется. эталонного оптического. элемента. Его заменяет математический расчет. Синтезированные голограммы вначале рассчитывают с помощью специальных математических методов, требующих применения ЭВМ, в результате которого получают математическую модель дифракционной решетки, которая способна оптически восстановить световую волну соответствующей. эталонной поверхности. Затем изготовляют такую дифракционную решетку либо с помощью специального оптического прибора, управляемого ЭВМ, который по расчетным точкам засвечивает фотопластинку узким сфокусированным лучом, либо механическим способом наносят риски на поверхность стекла, покрытого пленкой металла, также по расчетным траекториям. Как следует из сказанного выше, синтезированные голограммы могут воспроизвести оптические волны любой математически идеальной поверхности, и в. этом их большое преимущество перед первым методом.  [c.101]


Дефосфорация металла также идет успешно при наведении основного шлака. Удаление фосфора из металла возможно только тогда, когда он будет связан в шлаке. В реакции участвуют (СаО) и (FeO) в шлаке.  [c.271]

Как показано на фиг. 9, магнитные превращения в металле также могут оказывать влияние на электрическое сопротивление, однако мы не будем здесь подробно касаться вопроса о магнитных металлах и сплавах.  [c.169]

Этот результат замечателен тем, что коэффициент Холла оказывается независящим от каких-либо параметров, за исключением концентрации носителей тока. Очевиден способ проверки для этого необходимо провести измерения ЭДС Холла Еу в зависимости от магнитного поля. Проведенные весьма тщательные измерения на особо чистых веществах при низких температурах показали, что найденные из эксперимента величины п для щелочных (одновалентных) металлов близки к 1 (электрон на атом) благородных металлов (также одновалентных) к 1,3 1,5 двухвалентных Be и Mg -0,2- --0,4, трехвалентных А1 и In —0,3.  [c.44]

Объяснение закономерностей расщепления линий. Исследуем прежде всего главную серию (рис. 67). Очевидно, что переходы с близко расположенных друг к другу уровней р на один и тот же уровень s дают две близко расположенные линии излучения, т. с. дублет. Расщепление различных уровней р различно следовательно, расщепление различных дублетов главной серии щелочных металлов также различно, что и наблюдается в эксперименте.  [c.205]

При охлаждении жидкого металла образуются кристаллические агрегаты. Такой процесс перехода называется кристаллизацией металлов. Охлаждение жидкого металла сопровождается потерей теплоты, уменьшением кинетической энергии атомов и их средней скорости в результате каждый атом занимает меньший объем, и объем металла также сокраш,ается. Этот процесс сопровождается увеличением сил связей между атомами и при температуре кристаллизации (теоретически температура кристаллизации равна температуре плавления) отдельные атомы теряют свободу к перемеш,ению. Возникают устойчивые группы атомов, имеющие строение с определенной симметрией. Эти группы являются центрами, к которым в процессе затвердевания присоединяются соседние атомы. Процесс кристаллизации металла сопровождается выделением определенного количества энергии (скрытой теплоты кристаллизации).  [c.44]

Чистоту этих металлов также можно проверить по термоэлектродвижущей силе.  [c.399]

Часто вид разрушения устанавливают по величине пластической деформации, предшествующей разрушению хрупкому разрушению не предшествует пластическая деформация. Вязкое разрушение связывают со значительной пластической деформацией. Однако при таком подходе нередки несоответствия энергетических затрат собственно на разрушение с величиной пластической деформации. Возможны случаи, когда хрупкое разрушение (сколом) происходит после значительной пластической деформации, в то же время разрушение пластичных металлов, также претерпевших большую деформацию, часто не требует больших затрат энергии. Высокопрочные современные материалы, разрушаясь вязко, не обнаруживают высоких пластических свойств.  [c.189]

Как и стали и алюминиевые сплавы, многие другие металлы также подвергаются язвенной коррозии при воздействии ионов хлора [44]. К ним относится- даже весьма коррозионностойкий титан [45]. Склонность к язвенной коррозии обычно увеличивается в щелях, и тогда развивается щелевая коррозия [46]. Это наблюдается и на медных сплавах [47].  [c.71]

Хотя для защиты чаще используют лакокрасочные покрытия, нельзя исключать защиту другими способами, например металлизацию цинком или алюминием с герметизирующими лакокрасочными покрытиями или без них, нанесение специальных систем полимерных покрытий. Напыление керамических материалов или окислов металлов также имеет определенное значение для решения некоторых проблем защиты.  [c.94]

В хлоридных, сероводородных, щелочных, аммиачных и некоторых других средах коррозионные потери металла также не всегда характеризуют его работоспособность — при определенных условиях эксплуатации в таких средах возможно растрескивание металла. Коррозионное растрескивание рассматриваемого типа явление очень сложное. Имеющаяся по этим вопросам количественная информация отрывочна, разрозненна и часто противоречива, Далек от полной ясности даже перечень факторов, определяющих интенсивность этого опасного явления. В некоторых случаях основным является уровень напряжений, в других — присутствие окислительных примесей в среде, в третьих — наличие ватерлинии, в четвертых — состояние металла. Хотя сейчас еще невозможно дать систематизированные рекомендации по условиям безопасного применения материалов в таких средах, сочтено все же полезным привести критически составленные сводки наиболее надежных данных о склонности материалов к коррозионному  [c.81]


По принятой методике моделирования термохимических явлений характер изменения температуры поверхности натуры и модели различный. Кроме того, экстремальные значения температуры на поверхности металла также отличаются. Следовательно, возможно, что условия появления первых трещин в модели и натуре будут не идентичны, хотя и близки.  [c.202]

Применение в гидравлических агрегатах пары трения металл по металлу также связано с определенными трудностями. Так, например, при взаимодействии бронзовой направляющей втулки и стального цилиндра гидродомкрата возможно появление сопутствующего износа — схватывания 1-го рода, т. е. интенсивного разрушения поверхностей деталей при трении. Выражается это в пластической деформации поверхностных слоев, возникновений  [c.40]

Травление стальных изделий производится также фосфорной кислотой, которая травит мягче , оставляя на поверхности тонкую пленку пассивирующих фосфатов, что уменьшает коррозию изделий. Кроме травления в кислых ваннах, применяют и другие виды травления для высоколегированных сталей, содержащих никель, хром и другие добавки. Их травят в парах хлористого водорода, а также в расплавах солей. Травление во влажном хлористом водороде производится при температуре около 500° С. При этом находящаяся в атмосфере хлористого водорода окалина превращается в хлорид металла, улетучивающийся при высокой температуре процесса, и металлическая поверхность становится чистой. В результате такой обработки часть металла также протравливается, поэтому оборудование должно быть изготовлено из кислотоупорных материалов. Травление в расплавах производят с помощью расплавленного едкого натра при 500—550°С добавлением окислителей (селитры и др.).  [c.50]

Скорость коррозии металлов также зависит от температуры электролита. В нейтральных электролитах в условиях свободного контакта с воздухом скорость коррозии металла увеличивается с повышением температуры до 80°С. При дальнейшем росте температуры, вследствие уменьшения растворимости кислорода в среде, скорость коррозии резко снижается. Если кислород из замкнутой системы удаляться не может, то увеличение скорости коррозии наблюдается при повышении температуры до 150°С и выше [11].  [c.10]

По, псвгрхностнал коррозия металлов также является местной коррозией, но характер ее разрушения отличен от рассмот-  [c.158]

Известны полиморфные превращения F e Fe , Соа Соц, Ti Tip, Sria Snp, Мп Мпр Mn.j, Мпб- Металлы Са, Li, Na, s, Sr, Те, Zr, V и большое число редкоземельных металлов также имеют модификации. Полиморфное превращение протекаег в том случае, если при данной температуре может существовать металл с иной кристаллической решеткой и меньшим уровнем свободной энергии.  [c.40]

Скорость охлаждения горячеобработанного металла также существенно влияет на его структуру.  [c.88]

Угол наклона dr /d Ig j кривой, описываемой этим уравнением, невелик для небольших значений /. Наклон увеличивается по мере приближения / к / ор + /V и достигает значения р при / > 3> /г + /кор- Перенапряжение выделения водорода для некорродирующего металла также можно выразить с помощью тафелев-ского уравнения, оно имеет вид il = Р Ig (/ + /V)//o и справедливо для всех значений / (см. рис. 4.5). Значения вычисленные с помощью измеренных значений т], также следуют соотношению Тафеля, но с наклоном обратного знака. Наиболее медленной стадией разряда ионов водорода на платине или палладии, видимо, является рекомбинация адсорбированных атомов водорода. Справедливость этого допущения подтверждается тем, что найденное значение а = 2. Для железа а 0,5 и, соответственно, р = = 0,1. Вероятно, медленная стадия реакции выделения водорода на железе протекает по схеме  [c.57]

Создание гальванической пары из мартенситной нержавеющей стали и электроотрица[тельного металла также может приводить к разрушениям в результате выделения водорода на катодной поверхности стали. Подобные явления наблюдали при лабораторных испытаниях [52]. Как указывалось в разд. 7.4, на практике отмечали случаи разрушения судовых винтов из мартенситной нержавеющей стали. Эти винты самопроизвольно растрескивались вскоре после того, как их приводили в контакт с алюминием в условиях прибрежной атмосферы. Аналогичным образом вели себя винты из упрочненной мартенситной нержавеющей стали, находившиеся в контакте со стальным корпусом корабля они разрушались вскоре после начала эксплуатации. Некоторые марки аустенитных нержавеющих сталей 18-8, подвергнутые  [c.319]

В металле свободные электроны определяют не только электрические и другие свойства, но и кристаллическую структуру. Наличие свободных электронов обусловливает ненаправленный и ненасыщенный характер металлической связи. Большинство металлов кристаллизуется в структурах, отвечающих плотнейшей шаровой упаковке атомов с максимальными координационными числами, равными 12 (ГЦК- и ГПУ-решетки). Ряд металлов также кристаллизуется в виде простых ОЦК-структур с координационным числом 8. Рдин и тот же элемент в зависимости от внешних условий может кристаллизоваться в виде различных структур (явление полиморфизма). Например, Li и Na при низких температурах образуют плотноупакованную гексагональную решетку, а при комнатных — кубическую объемно-центрированную. Практически многие металлы обладают свойством полиморфизма.  [c.84]

Независимо от частоты питающего тока принцип работы всех индукционных тигельных печей основан на индуктировании электромагнитной энергии в нагреваемом металле (токи Фуко) и превращении се в тепловую. При плавке в металлических или огнеупорных тиглях, изготовленных из электропроводных материалов, тепловая энергия передается к нагреваемому металлу также стенками тигля. Индукционные тигельные печи применяют для плавки алюминиевых, магниевых, медных, никелевых жаропрочных сплавов, а также сталей и чугунов.  [c.244]


Третья ст адия - стадия деформационного упрочнения. На этой ст адии в пластичных металлах и сплавах наблюдается интенсивное повышение плотности дислокаций и формируется дислокационная ячеистая структура, а при определенном критическом напряжении предложенном И.А. Одингом и Ю.П. Либеровым, на поверхности металла появляются субмикротрещины размером порядка 1 - 3 мкм. Внутри металла также образуется дефектная структура в областях с критической плотностью дислокаций. Завершается эта стадия при достижении максимальной нагрузки и начала шейкообразования.  [c.16]

Малорастворимые продукты коррозии уменьшают размер пор, что снижает роль пористости покрытия в наводороживании металла основы. Окисные пленки, образующиеся на основном металле, также оказьшают влияние на стойкость покрытий в наводороживающих средах. Дополнительная обработка стали с покрытием в пассивирующих растворах повышает их защитную способность.  [c.72]

Тип элементарной ячейки. Большинство металлов кристаллизуется в объемноцентрированную кубическую (ОЦК), гранецентрированную кубическую (ГЦК) и плот-ноупакованную гексагональную кристаллические решетки (ГПУ) (рис. 10). Наиболее плотную упаковку атомов имеют кристаллические решетки двух последних типов распространена у металлов также тетрагональная решетка (рис. 10, г).  [c.20]

Несмотря на широкое развитие промышленности синтетических веществ, металлы по-прежнему остаются основным конструкционным материалом, незаменимым в ряде важнейших отраслей промышленности и сельского хозяйства. Более того, объем производства металлов неуклонно растет и соответственно неуклонно увеличивается мировой металлический фонд. В СССР производство стали за последние полвека выросло более чем в 30 раз. Металлофонд страны превысил 1 млрд, т (главным образом за счет черных металлов). С увеличением массы применяемого металла растут и потери его от коррозии, причем, как показывают статистические данные, потери растут намного быстрее, чем объем металлофонда.,В первую очередь это объясняется изменением самой структуры метйллофонда. Раньше основное количество металла направлялось в транспорт (рельсы, мосты, подвижной состав и т. д.). С годами все возрастающая доля металлофонда приходится на т кие отрасли промышленности, как химическая, нефтехимическая, целлюлозно-бумажная, нефте-и газодобывающая, цветная и черная металлургия, атомная энергетика и другие, в которых условия эксплуатации металлов несравненно жестче, чем на транспорте. Здесь металл работает при повышенных температурах и давлениях, в потоках жидкости, в контакте с агрессивными средами. Кроме того, и в почвах, и в атмосфере коррозия металлов также становится все более интенсивной вследствие загрязнения воздуха и вод промышленными отходами, стимулирующими разрушение Для нашедших сейчас широкое применение  [c.6]

Структура выявляется без растворения тонко распределенных включений, таких как графит и сульфид никеля. Смешивая раствор, нужно соблюдать особую осторожность, так как при этом образуются ядовитые пары (синильная кислота). Необходимо включить тягу. Для литого монель-металла Кемпбелл [12] рекомендует уже приведенные выше реактивы Марика 9 и 10, гл. XV. А уже указанный раствор Грарда служит для травления поверхности зерен катаного и отожженного монель-металла. Также пригодны другие реактивы, например описанный реакт ш 196 (гл. XI) Норбери [13] выявляет структуру сплава никеля с медью химическим полированием на пергаменте с персульфатом аммония и добавкой гидрата окиси аммония. Раствор для травления, состоящий из 99 мл этилового спирта, 2 мл соляной кислоты и 5 г хлорного железа, называют реактивом Карапелла. Он служит для травления монель-металла, но его также применяют для никеля. Продолжительность травления колеблется от 2 до 3 с при легком втирании реактива или погружении образца в раствор.  [c.215]

При выборе покрытия и метода его получения для узла изделия, подвергаемого деформации во время обработки и эксплуатации, необходимо принимать во внимание такие факторы, как внутреннее напряжение, пластичность и хрупкость металлических покрытий (и иногда сплавов). Электроосаждаемые покрытия хромом и никелем могут выдержать только незначительную деформацию, не образуя трещин и не отслаиваясь. Чрезмерное утолщение слоев сплава при погружении в расплавленный металл также приводит к хрупкости покрытия и разрушению под действием деформации. Твердость, пластичность и антифрикционные свойства металлических покрытий имеют важное значение при дальнейшей обработке. Мягкое покрытие (так же, как свинец и в меньшей степени алюминий) деформируется под действием нагрузки, что обусловливает эффективное уничтожение некоторых трещин, но вызывает локализованное утоньшение покрытия или даже коррозию основного слоя. Нанесение цинкового или алюминиевого покрытия на сталь обеспечивает ей антифрикционные свойства, поскольку указанные покрытия имеют высокие коэффициенты скольжения 0,45— 0,55 для цинка и 0,7 для алюминия.  [c.128]

Электрохимическое поведение никеля в активном состоянии во многом сходно с поведением железа. В сернокислых растворах растворение этого металла также осуществляется через последовательные электрохимические стадии с участием хемосорбированных ОН -ионов [ 9, 30-33 ] и сульфат-ионов [34,35]. В тех же условиях галогенид-ионы, присутствующие даже в небольших количествах, тормозят процесс, что можно связать с адсорбционным вытеснением ими иойов ОН [ 36), Скорость, анодного растворения активного никеля при постоянных потенциалах в кислых растворах электролитов на основе неводных растворителей - диметилсульфоксида [37], диметилформамида [38] J метилового спирта [39] - возрастает с ростом содержания добавок воды в растворе. Электрохимические свойства активного никелевого анода изменяются с изменением кристаллографической ориентации граней монокристалла [40].  [c.9]

Реальные металлы состоят из большого числа зерен (кристаллов неправильной формы). Границы между зернами могут быть местами скопления дислокаций граница между зернами состоит из слоя атомов, принадлежащих кристаллическим решеткам различных зерен. Характерно, чем больше разй№ в ориентировке соседних зерен, тем больше несовершенств на границе между ними. Атомы примесей в металлах, также располагаются преимущественно по границам зерен.  [c.12]

При коррозионной усталости трещины возникают по месту небольших язв, формирующихся у неметаллических включений на стойких полосах скольжения. Эти язвы появляются в результате локальной коррозии и со временем углубляются, некоторые из них перерождаются в трещины. По мере периодического нагружения углеродистых и низколегированных сталей в коррозионных средах происходит сдвиг значения электродного потен-вдала металла в отрицательную сторону [72]. Такое явление частично, на наш взгляд, обусловлено включением в общую поверхность металла также и поверхностей трещин, стенки которых имеют более отрицательное значение потенциала, поскольку активированы отрывом в момент механических скачков трещины.  [c.53]

Определение электрохимической коррозии металлов также не указывает на отличительные особенности этого процесса. Электрохимическая коррозия металла — это процесс взаимодействия металла с коррозионной средой (раствором электролита), при котором иоинзация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте, а их скорости зависят от электродного потенциала.  [c.11]


На 1ГПЗ в 1955 г. наряду с методом горячей раскатки освоен еще более прогрессивный метод горячей калибровки колец, заключающийся в том, что изготовленная на горизонтальноковочной машине поковка с предварительными размерами калибруется в закрытом штампе на прессе. При этом значительно улучшается качество поверхностей и повышается точность заготовки, что позволяет уменьшить припуски на механическую обработку. Расход металла также существенно снижается так, например, вес раскатанной заготовки наружного кольца подшипника типа 7815 составляет 1,7 кг, а калиброванной заготовки всего 1,4 кг.  [c.398]

В выражении (1) передаточная функция W(р) определяет вынужденные колебания динамической системы станка от различ-ных внешних воздействий на ЭУС станка. При анализе W(р) оказывается, что некоторые процессы, сопровождаюш ие резание металла, также обусловлены вынужденными колебаниями. Например, взаимодействие микронеровностей при трении стружки и поверхности резания о рабочие поверхности инструмента, перераспределение полей напряжений в материале заготовки и другие процессы, которые приводят к распространению волн упругих деформаций по элементам системы СПИД.  [c.51]

Глубина проникания углерода при цементации, углерода и азота при цианировании, азита при азотировании и других элементов при иных видах термохимической обработки определяются с большой точностью по микроструктуре соответствующего образца. Глубина термохимической обработки измеряется слоем, в котором произошло насыщение тем или иным элементом. Так, при цементации глубина обработки определяется заэвтектоидной, эвтектоид-ной и переходной зонами, а для закалённого после цементации образца — зонами от мартенсита с карбидами до феррито-мартенсито-вой. При цианировании глубина обработки измеряется по микроструктуре в закалённом состоянии и определяется мартенситовым и троосто-мартенситовым слоем. За толщину азотированного слоя принимают толщину всей тёмнотравящейся зоны до заметного перехода к структуре сердцевины. Измерение слоя производится при помощи микрометрического окуляра или микрометрического винта предметного столика микроскопа Кроме того, изображение может быть спроектировано на мато-Вие стекло микроскопа и там промерено. Толщина слоя покрытия, нанесённого на металл, также может быть промерена на микроскопе.  [c.152]


Смотреть страницы где упоминается термин Металлы 13, 63, 71, 75 (см. также : [c.19]    [c.64]    [c.72]    [c.54]    [c.60]    [c.395]    [c.572]    [c.339]    [c.205]    [c.254]   
Сопротивление материалов (1959) -- [ c.0 ]



ПОИСК



167 - См. также Автоколебания кристаллизаторов жидкого металла 284 - Элементы кристаллизатора

Алитирование 563, 564, 572 Методы, характеристики 364см. также Обработка химикотермическая металлов для

Алитирование 563, 564, 572 Методы, характеристики 364см. также Обработка химикотермическая металлов для защиты от окисления

Инструменты см также по для электроискровой обработки металлов

Линейное расширение твёрдых тел 1 451-см. также отдельные металлы с подрубрикой Линейное расширение, например

Литье с направленной кристаллизацией См. также Дефекты отливок при литье затвердевания новых порций металла

МЕТАЛЛЫ также под названием отдельных металлов

Металлы см также Тепловые явления

Металлы см также Технология

Модуль Юнга также под названием отдельных металлов

Пилы металлургических цехов - Классификация, назначение 797 - См. также Диски пильные, Резание металлов пилами

Резание металлов - Скорость-, Фрезерование - Скорость резания, а также под

Резание металлов - Скорость-, Фрезерование - Скорость резания, а также под наименованием отдельных инструментов

Резание металлов - Скорость-, Фрезерование - Скорость резания, а также под например, Резцы - Скорость резания

Резание см также металлов и сплавов электроконтактное

Сварка 5 - 271-см. также под названием отдельных металлов с подрубрикой Сварка, например, Сталь малоуглеродистая-Сварка

См. также Теплопроводность металлов

Твердость металлов —см. также Числа твердости металлов

Технологический процесс также под названием отдельных металлов с подрубрикой - Полирование электролитическое, например, Сталь - Полирование электролитическое

Усадка линейная 6 - 247-см. также Металлы- Линейная усадка

Цветные металлы 224—276 —см. также

Электроосаждение металлов на титан и его сплавы, а также на хром, молибден, вольфрам и нержавеющую сталь

факторы См. также Деформация металлов при продольной



© 2025 Mash-xxl.info Реклама на сайте