Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Процесс деформирования

Появились и осваиваются новые процессы деформирования и некоторые сплавы весьма высокой степени легирования и жаропрочности, считавшиеся ранее непригодными для применения в деформированном состоянии, теперь могут использоваться.  [c.457]

На молотах штампуют поковки разнообразных форм преимущественно в многоручьевых открытых штампах. Поскольку ход молота нежесткий, штамп конструируют так, чтобы при последнем ударе его половинки сомкнулись по плоскости соударения. На молоте обычно штампуют за несколько (3—5) ударов. После каждого удара баба молота уходит вверх, и в процессе деформирования наступает перерыв. Это приводит к тому, что часть поковки, деформируемая в верхнем штампе, охлаждается менее интенсивно, чем нижняя часть поковки. Поэтому на молотах верхняя полость штампа заполняется металлом лучше, чем нижняя. Течение металла облегчается также благодаря тому, что после каждого удара окалина отваливается от поверхности заготовки и выдувается сжатым воздухом из штампа.  [c.87]


Обычно под холодной штамповкой понимают штамповку без предварительного нагрева заготовки. Для металлов и сплавов, применяемых при штамповке, такой процесс деформирования соответствует условиям холодной деформации.  [c.98]

Эффективной мощностью называют мощность, расходуемую на процесс деформирования и срезания с заготовки слоя металла. При точении цилиндрической поверхности на токарно-винторезном станке эффективная мощность, кВт  [c.265]

При анализе зарождения разрушения по изложенной выше схеме обычно делается одно существенное допущение — независимость НДС от повреждения материала. Только при малом относительном объеме повреждений указанное допущение справедливо. При усталостном и хрупком разрушениях повреждение характеризуется весьма острыми микротрещинами, объединение которых (зарождение макроразрушения) происходит при относительно небольшой доле поврежденного материала. Поэтому при усталостном и хрупком разрушениях анализ НДС и накопления повреждений можно проводить независимо. Вязкое, особенно межзеренное, кавитационное разрушение обусловлено объединением большого количества растущих в процессе деформирования пор. Очевидно, что в данном случае объем повреждений может достигать значительной величины и разрыхление материала будет оказывать влияние на НДС. Следовательно, анализ вязкого разрушения материала требуется проводить посредством решения связной задачи о НДС и накоплении повреждений в элементе конструкции, что отмечено пунктирной стрелкой на рис. В.1 между блоком НДС и блоком Анализ зарождения макроразрушения .  [c.7]

Как следует из вышеизложенного, анализ зарождения и развития разрушения в элементе конструкции в значительной степени зависит от универсальности тех или иных локальных критериев разрушения. При формулировке критериев эмпирическим путем — только на основе непосредственных механических испытаний — возникает опасность неадекватной оценки разрушения конструкции при нагружении, отличном от нагружения при проведенных экспериментах. Повысить степень универсальности локальных критериев можно, опираясь на физические механизмы, протекающие на микроуровне. Одним из путей решения данного вопроса является создание физико-механических моделей разрушения материала, на основании которых могут быть даны формулировки локальных критериев разрушения в терминах механики сплошной среды на базе физических и структурных процессов деформирования и повреждения материала.  [c.9]


Представленные в настоящей и следующей главах исследования также основываются на взаимосвязи между физическими процессами деформирования и разрушения и макроскопическим поведением материала. Отличие от других работ указанного направления состоит в выборе структурного уровня рассмотрения физических механизмов и процессов — это в основном структурный уровень, промежуточный между микроскопическим и макроскопическим, т. е. мезоскопический уровень. Для анализа повреждения и разрушения поликристаллических металлов такой структурный уровень, как правило, соответствует зерну. Такой выбор позволяет, с одной стороны, уйти от излишней детализации атомных, дислокационных и других структурных процессов, с другой — сформулировать критерии разрушения в терминах механики сплошной среды.  [c.51]

Отметим, что при построении различных моделей разрушения и формулировке критериев хрупкого разрушения во многих случаях исходят в общем из априорного постулирования преобладающего значения того или иного процесса. Так, например, в работах [149, 150] предполагалось, что критическое напряжение хрупкого разрушения 5с в поликристаллических материалах с различной структурой при разных температурно-деформационных условиях нагружения определяется только одним условием — переходом зародышевых микротрещин к гриффитсов-скому (нестабильному) росту. Условия распространения микротрещины как через границы зерен, так и через любые другие барьеры, возникающие при эволюции структуры в результате пластического течения, игнорировались. При этом сделана попытка объяснить увеличение S с ростом пластической деформации гР уменьшением длины зарождающихся в процессе деформирования микротрещин за счет уменьшения эффективного диаметра зерна [149, 150]. Такая модель не позволила авторам удовлетворительно описать зависимость S eP), что привело их к выводу о существенном влиянии деформационной субструктуры на исследуемые параметры. Следует отметить, что, рассматривая в качестве контролирующего разрушения только процесс страгивания микротрещины и не учитывая условия ее распространения, практически невозможно предложить разумную концепцию влияния пластической деформации на критическое напряжение S .  [c.61]

Рассмотрим параметры L K и бек, входящие в формулу (2.8). Как указывалось выще, в процессе деформирования происходит образование фрагментированной субструктуры материала. Вполне целесообразно принять, что максимальная длина дислокационного скопления L K равна диаметру фрагмента. Поэтому, учитывая температурную зависимость геометрии скопления, характеризующуюся параметром бек, зависимость (2.8) с учетом (2.13) преобразуем следующим образом  [c.96]

Как отмечалось выше, в процессе деформирования будет иметь место как рост пор, так и непрерывное увеличение их количества. Используя выражения (2.58) и (2.47), можно получить зависимость площади пор в произвольном сечении структурного элемента от пластической деформации.  [c.119]

Зарождение пор в процессе деформирования происходит непрерывно, начиная с х = Хн, поэтому, чтобы найти суммарную площадь всех пор 5, необходимо произвести интегрирование выражения (2.69) от Хн до XI.. Подставив выражение (2.68) в (2.69),. получим  [c.119]

Полученное соотношение (3.6) описывает изменение концентрации зернограничных пор в процессе деформирования в зависимости от скорости деформации. Для построения кривой  [c.158]

При вычислении долговечности гесь процесс деформирования и повреждения материала разбивается на временные этапы Ат, на которых скорость деформирования и площадь пор предполагаются постоянными. Вводится понятие о типах пор поры одного типа — это поры, зародившиеся на одном и том же временном этапе. Очевидно, что радиусы пор одного типа одинаковы, а количество типов пор равно количеству временных этапов до момента зарождения разрушения. В процессе деформирования количество пор одного типа неизменно, а меняется только их радиус.  [c.172]

Весь процесс деформирования и повреждения материала разбивается на временные этапы Ат, на которых предполагается постоянная скорость деформирования. Как и в случае расчета при стационарном нагружении, вводится понятие о типах пор поры одного типа — это поры, зародившиеся на одном и том же временном этапе.  [c.179]

Таким образом, параметры механики- разрушения в общем представляют собой коэффициенты подобия, и преимущество ее использования как раз и состоит в том, что, определив коэффициенты подобия полей напряжений и деформаций, без рассмотрения и детального описания тонких процессов деформирования и разрушения материала у вершины трещины, можно прогнозировать развитие макроразрушения. Отказ от анализа процессов разрушения у вершины трещины привел к необходимости экспериментального получения большого количества эмпирических зависимостей, так как подобие НДС можно было обеспечить при весьма узком диапазоне изменения уровня и характера нагружения. Но это приемлемо только при оценке относительно просто нагружаемых конструкций, в случае же ответственных высоконагруженных конструкций прямое использование механики разрушения может не дать достаточно надежных результатов, что заставляет вернуться к подробному  [c.188]


Предполагается, что в процессе деформирования раскрытие трещины б мало и не оказывает влияния на НДС.  [c.207]

Поясним роль структурного элемента (зерна или блока) при анализе накопления повреждений в материале. Ранее (см. раздел 2.3) было отмечено, что одним из основным механизмов, образования микротрещин является скопление дислокаций у препятствий (барьеров), которыми в большинстве случаев являются границы зерен, блоков и фрагментов, сформировавшихся в процессе деформирования материала. Если размер обратимой упругопластической зоны меньше диаметра зерна dg, плоские скопления дислокаций не доходят до границ зерен, поэтому здесь не создается необходимая для зарождения микротрещин концентрация напряжений. С другой стороны, в теле зерна отсутствуют барьеры дислокационного происхождения, которые могут служить стопорами для скопления дислокаций. Значит,  [c.213]

В данном разделе предложена методика численного расчета субкритического и закритического вязкого роста трещины при статическом и импульсном нагружениях. Методика основана на применении МКЭ в квазистатической и динамической упруго-пластической постановке с использованием теории пластического течения и параметра нелинейной механики разрушения — интеграла Т. Она позволяет контролировать развитие трещины при вязком разрушении с учетом неоднородных полей ОН, разнородности материала конструкции по механическим свойствам, реальной геометрии конструкции и ее формоизменения в процессе деформирования. Моделирование трещины осуществляли путем дискретизации полости трещины специальными КЭ (см. подразделы 4.1.3 и 4.3.1). Также излагается предложенный экспериментально-численный метод определения параметра /i материала, отвечающего страгиванию трещины.  [c.254]

ПРОСТРАНСТВЕННО-ВРЕМЕННАЯ ИДЕАЛИЗАЦИЯ ПРОЦЕССА ДЕФОРМИРОВАНИЯ ПРИ СВАРКЕ  [c.280]

Вопрос О пространственной идеализации обусловлен тем, что в настоящее время практически могут быть решены только двумерные задачи, в которых предполагается, что поля температур, напряжений и деформаций меняются только по рассматриваемому сечению тела и однородны в направлении, перпендикулярном этому сечению. В общем случае, строго говоря, процесс деформирования при сварке может быть описан только посредством решения трехмерных краевых задач, так как температура при многопроходной сварке неравномерно распределена как по поперечному относительно шва сечению сварного элемента, так и в направлении вдоль шва.  [c.280]

Этот вопрос решается посредством принятия допущения об одновременном выполнении каждого прохода по всей длине шва. В этом случае поле температур и напряжений становится однородным вдоль шва и задача сводится к двумерной. Такое допущение, в общем, вполне приемлемо именно при определении остаточных (не временных) сварочных напряжений в связи со следующими обстоятельствами. Формирование ОСН начинается с момента приобретения разупрочненным материалом упругих свойств. Следовательно, процессы деформирования, происходящие в районе источника сварочного нагрева, не оказывают влияния на ОСН и этот район можно исключить из рассмотрения. В области за источником нагрева, где материал приобрел упругие свойства, градиент температур вдоль шва уже незначительный и НДС здесь можно считать близким к однородному.  [c.280]

Вопрос о временной идеализации процесса деформирования при сварке возникает при назначении временных интервалов между этапами решения деформационной задачи, так как определение ОСН осуществляется посредством прослеживания всей истории деформирования при сварке от этапа к этапу. Ответ на этот вопрос можно найти в самом методе решения термодеформационной задачи. Как указывалось в разделе 1.1, одно из допущений этого метода — условие простого нагружения на этапе в каждой точке рассматриваемой области, что позволяет определить размер временного интервала между этапами решения. В первом приближении можно принять, что простое нагружение реализуется, если в рассматриваемой области температура (или температурная деформация) за искомый временной интервал меняется монотонно. Тогда определение временных интервалов  [c.281]

Таким образом, проведенные исследования позволили отклонить предположения о разрушении металла коллектора в результате снижения малоцикловой прочности или коррозионного растрескивания. Необходимо подчеркнуть, что и по другим характеристикам, таким, как хрупкая прочность, сопротивление усталостным разрушениям на стадии зарождения и развития трещин на воздухе и в коррозионной среде, были подтверждены высокие показатели, при которых преждевременное разрушение коллектора не должно было бы произойти. Вместе с тем, эксперименты по замедленному деформированию (растяжение гладких образцов с малой скоростью деформирования) в коррозионной среде показали, что при составе среды, соответствующей отклонениям, имевшим место в процессе эксплуатации разрушившихся коллекторов (низкий водородный показатель pH, присутствие кислорода), может происходить значительное снижение пластичности стали, причем тем большее, чем ниже скорость деформирования. Такая закономерность соответствует зависимости критической деформации от скорости деформирования в условиях ползучести материала (см. гл. 3). Данное обстоятельство привело к необходимости изучения возможных временных процессов деформирования материала коллектора при стационарном нагружении. Выполненные эксперименты, ре-з льтаты которых будут представлены ниже, показали, что  [c.328]

Из величин, входящих в это выражение, в опытах по деформации среды достаточно просто замеряются напряжения по общей нагрузке на смесь и давление жидкости pi в порах по пьезометрическим анным. Для определения напряжений в скелете с помощью (4.4.1) в процессе деформирования помимо pi и нужно измерять изменение объемной пористости в образце.  [c.229]

Рассмотрим процесс деформирования упругого тела с энергетическом точки зрения.  [c.38]


В пятой главе излагается векторное представление процессов деформирования и законов связи напряжений с деформациями, которое оказалось весьма эффективным при описании экспериментальных исследований сложных процессов нагружения, встречающихся в практике инженерных расчетов.  [c.4]

При изучении процессов деформирования (или течения) среды под действием внешних воздействий (сил, температуры, облучения и т. д.) целесообразно относить начальное недеформиро-ванное и конечное деформированное состояния тела к различным осям координат (рис. 1.8). Пусть в начальный момент времени ta тело занимало объем Vq, ограниченный поверхностью So, матери-  [c.29]

Штамповка в закрытых штампах (рис. 3.22, б, в) характери-ауется тем, что полость штампа в процессе деформирования остается закрытой. Зазор между подвижной и неподвижной частями штампа при этом постоянный и небольшой, так что образование заусенца в нем не предусмотрено. Устройство таких штампов зависит от типа Машины, на которой штампуют. Например, нижняя половина штампа может иметь полость, а верхняя — выступ (на прессах), или наоборот (на молотах). Закрытый штамп может иметь не одну, а две взаимно перпендикулярные плоскости разъема, т. е. состоять из трех частей (рис. 3.22, в).  [c.80]

Как правило, при листовой штамповке пластические деформации получает лишь часть заготовки. Операцией листовой штамповки называется процесс пластической деформации, обеспечиваюн ий характерное изменение формы определенного участка заготовки. Различают формоизменяющие операции, в которых заготовка не должна разрушаться в процессе деформирования, и разделительные операции, в которых этап пластического деформирования обязательно завершается разрушением.  [c.103]

Кннеметическая схема кривошипного пресса простого действия аналогична схеме кривошипного пресса для объемной штамповки (см. рис. 3.28). Пресс двойного действия для штамповки средне-и крупногабаритных деталей имеет два ползуна, внутренний (к нему крепят пуансон) и наружный (приводит в действие прижим). Внутренний ползун, как у обычного кривошипного пресса, получает возвратно-поступательное движение от коленчатого вала через шатун. Наружный ползун получает движение от кулачков, закрепленных на коленчатом валу, или системы рычагов, связанных с коленчатым валом. Кинематическая схема пресса такова, что наружный ползун обгоняет внутренний, прижимает фланец заготовки к матрице и остается неподвижным в процессе деформирования заготовки пуансоном, перемещаюш,имся с внутренним ползуном. После окончания штамповки оба ползуна поднимаются.  [c.112]

Рис. 2.6. Схема взаимодействия микротрещины с изменяющейся в процессе деформирования структурой (а), а также температурные зависимости критического разрушающего напряжения Of, предела текучести От в случае совпадения (а) и несовпадения (б) минимального значения разрушающего напряжения 0mln С От Рис. 2.6. Схема взаимодействия микротрещины с изменяющейся в процессе деформирования структурой (а), а также <a href="/info/191882">температурные зависимости</a> критического разрушающего напряжения Of, <a href="/info/1680">предела текучести</a> От в случае совпадения (а) и несовпадения (б) минимального значения разрушающего напряжения 0mln С От
Указанное следствие вытекает из второго важного момента предложенной схематизации процесса хрупкого разрушения условия зарождения, страгивания и распространения трещин скола являются независимыми. Разрушение в макрообъеме в зависимости от температурно-деформационных условий нагружения может контролироваться одним из перечисленных процессов. Для случая одноосного растяжения условия зарождения, страгивания и распространения микротрещин скола можно изобразить в виде схемы (рис. 2.7), использовав параметрическое представление в координатах а — Т. Кривая 1 соответствует условию зарождения микротрещин скола, причем это условие не совпадает с условием достижения макроскопического предела текучести. Прямая 2, отвечающая напряжению а=5о, есть условие страгивания. Линия 3 определяет условия распространения микротрещин скола в изменяющейся в процессе деформирования структуре материала. Очевидно, что при условии о От параметр ap = onst, поскольку в этом случае rie сформированы  [c.65]

Предположим, что в первом варианте микротрещина зародилась в плоскости скольжения (например, по механизму Гилмана—Рожанского [25, 247]) и ориентирована параллельно сдвиговым напряжениям, т. е. подвергается только П моде деформирования. В этом случае распределение напряжений у ее вершины согласно работе [199] таково, что т (/Ос(= 1,03, где т г и Ос1 — сдвиговое и растягивающее напряжения у вершины трещины, действующие в плоскостях скольжения и спайности соответственно (Tsi = Tre e=o Ос( = (fee 10 450 где г, 6 — полярные координаты, отсчитываемые от вершины микротрещины). Поскольку в данной ситуации для ОЦК металлов Тзг/сГсг Тт.п/сГт.п = = 0,24 0,28 (тт. п и От.п — теоретическая прочность на сдвиг и на отрыв соответственно), зародившаяся микротрещина не является устойчивой к сдвиговым процессам в ее вершине [230]. С возникновением микротрещины начинается эмиссия дислокации из ее вершины и, следовательно, рост такой микротрещины в процессе деформирования будет пластический, стабильный, контролируемый деформацией. Таким образом, зародышевая микротрещина, ориентированная параллельно сдвиговым напряжениям, растет по пластическому механизму и, следовательно, притупляется, становясь трещиной, не способной инициировать хрупкое разрушение.  [c.68]

Будем рассматривать межзеренное разрушение материала, происходящее путем накопления кавитационяых повреждений. На основе имеющихся экспериментальных данных [199, 240, 256, 304—306, 334, 341, 392, 394] следует принять, что развитие указанных повреждений определяется непрерывным зарождением и ростом пор по границам зерен в процессе деформирования материала. Образование макроразрушения (разрушения в масштабе, большем либо порядка размера зерна поликристал-лического материала) обусловлено объеединением микропор. В качестве критерия объединения пор, т. е. критерия образования макроразрушения, будем использовать критерий, основан-  [c.155]

После выхода на режим эксплуатации и до момента времени т= 10 000 ч наиболее сильное изменение НДС происходило в районе корня недовальцовки. Окружные напряжения аее увеличились в этой зоне до 970 МПа (рис. 6.18) накопленная пластическая деформация (параметр Одквиста)х равняется 7,1 % На поверхности процесс деформирования происходит в условиях релаксации напряжений аее уменьшается до 560 МПа, х за этот промежуток времени увеличивается до 4,2 %.  [c.356]

Процесс деформирования любых твердых тел начинается с упругой деформации. Простота законов, устанавливгшэщих однозначную связь между силами (напряжениями) и упругими деформациями (исчезающими после снятия нафузки), способствовала тому, что теория упругости приобрела большую роль в механике твердых деформируемых тел.  [c.110]

В МДТТ основная задача — построение математических моделей процессов деформирования конструкций. Эта задача решается путем построения обоснованных определяющих уравнений связи между напряжениями и деформациями. Эти уравнения приобретают все большее значение в связи с широким применением ЭВМ и систем автоматизированного проектирования (САПР) при расчетах элементов конструкций и машин за пределом упругости. Однако не математика является главным в построении математических моделей процессов. Определяющие соотношения между напряжениями и деформациями могут быть правильно выражены на языке математики лишь на основе обобщения экспериментальных наблюдений и измерений.  [c.85]



Смотреть страницы где упоминается термин Процесс деформирования : [c.18]    [c.101]    [c.262]    [c.21]    [c.58]    [c.64]    [c.77]    [c.102]    [c.117]    [c.360]    [c.302]    [c.232]    [c.88]   
Механика слоистых вязкоупругопластичных элементов конструкций (2005) -- [ c.8 , c.27 ]

Сопротивление материалов (1962) -- [ c.30 ]



ПОИСК



Loading термическая в процессе деформирования

Бифуркация процесса деформирования стержня

ВЗАИМОСВЯЗЬ УРАВНЕНИЙ СОСТОЯНИЯ И ИХ ИСПОЛЬЗОВАНИЕ ДЛЯ ОПИСАНИЯ ПРОЦЕССА ДЕФОРМИРОВАНИЯ МАТЕРИАЛА В КОНСТРУКЦИЯХ

Вектор деформаций. Векторное представление процесса деформирования

Влияние температуры деформирования на неупругне процессы без разрушения

Влияние температуры и скорости деформации на процесс деформирования

Влияние условий деформирования на процесс обработки металлов давлением

Деформирование Характер процесса

Деформирование сварных в процессе механической обработк

Деформирование сварных соединений в процессе вылеживания и при изменении

Деформирование сварных соединений в процессе вылеживания и при изменении температуры

Динамическое деформирование п развитие процесса разрушения двумерных сечений композиционных панелей с ребрами жесткости

Закономерности и модели процессов деформирования и разрушения композиционных материалов

Изменение структуры и свойств металла в процессе термоциклического деформирования

Изотермический процесс деформирования

Интерполяционные соотношения для оценки основных параметров процесса циклического упругопласгического деформирования в зонах концентрации напряжений

Исследование процессов деформирования цилиндрических образцов с использованием деформационных и энергетических характеристик

Исследование процессов неизотермического упруговязкопластического деформирования конструкционных катериалсв

История термическая (температурная) в процессе деформирования. Thermal histories

Кинетика процесса деформирования

Критерии разработки процессов пластического деформирования композиДинамические процессы компактирования композитов

Критерий устойчивости процесса деформирования

Металлокомпозиты Результаты расчетов процессов деформирования при температурно-силовых воздействиях

Методика учета влияния изменения толщины заготовки в процессе деформирования на поле напряжений

Механизм деформирования срезаемого слоя металла и процесс стружкообразования

Механические свойства металлов и методы их определения Процессы, происходящие при нагружении и деформировании металлов

Моделирование на ЭВМ процессов деформирования и разрушения композиционных материалов при различных условиях нагружения

Моделирование процессов деформирования волокнистых металлокомпозитов (Н. А. Алфутов, Дымков)

Моделирование процессов неизотермического упругопластического деформирования

Моделирование процессов неизотермическош упругопластического деформирования в деталях энергосиловых установок Темис)

Нестабильность структуры в процессе циклического деформирования

Неупругое деформирование композитов и процессы структурного разрушения

ОСОБЕННОСТИ ПРОЦЕССА ДЕФОРМИРОВАНИЯ ПРИ НЕОДНООСНЫХ НАПРЯЖЕННЫХ СОСТОЯНИЯХ

Обработка упрочняющая деформированием - Оборудование 413Сущность процесса

Общие закономерности процессов неупругого деформирования

Описание процесса неизотермпческого малоциклового деформирования металлов на базе теории термовязкопластичности с комбинированным упрочнением

Основные положения термодинамики необратимых процессов в связи с термоупругим деформированием неравномерно нагретого тела

Основные положения термодинамики необратимых процессов в связи с термоупругим деформированием твердого тела

Особенности процесса деформирования при вырубке и пробивке

Особенности процесса деформирования при отрезке и вырезке

Пластическое деформирование металлов и сплавов Физическая сущность процесса деформирования

Поверхностное пластическое деформирование Разновидности процесса для упрочнения деталей

Применение законов термодинамики к описанию процесса деформирования упругих тел. Закон Дюамеля — Неймана и система уравнений линейной термоупругости

Прогнозирование неупругого деформирования с учетом процессов структурного разрушения

Пространственно-временная идеализация процесса деформирования при сварке

Процесс деформирования адиабатически

Процесс деформирования адиабатически изотермический

Процесс деформирования адиабатический

Процесс деформирования адиабатический изотермический

Процесс деформирования активны пассивный

Процесс деформирования активный

Процесс деформирования неустайовившийся

Процесс деформирования неустайовившийся установившийся

Процесс деформирования пассивный

Процесс пластического деформирования, равновесность, необратимость

Процессы деформирования единичных неровностей во времени. Упруговязкостные свойства фрикционного контакта

Процессы деформирования и разрушения материалов при резании

Процессы деформирования упругих тел

Процессы деформирования упругих тел обратимость

Разработка технологического процесса восстановления деталей пластическим деформированием

Релаксационные процессы при ориентационном деформировани

Силы в процессе ударного деформирования поковки

Соотношения термодинамики необратимых процессов неизотермического деформирования материала с внутренними параметрами состояния Кувыркин)

Способы сохранения теплоты заготовки в процессе деформирования

Стабилизация процесса деформирования неупругого

Сущность деформирования и режимы процесса выдавливания

Сущность процесса восстановления деталей пластическим деформированием

Термодинамика необратимых процессов деформирования

Термодинамика процесса деформирования

Технико-экономические показатели процессов изотермического деформирования и охрана труда

УСТОЙЧИВОСТЬ УПРУГО-ПЛАСТИЧЕСКИХ КОНСТРУКЦИИ Бифуркация и устойчивость процесса деформирования

Ультразвук в процессах пластического деформирования (Северденко В. П., Степаненко

Условие пластичности и основные предпосылки анализа процессов деформирования

Устойчивость процесса деформирования. Равноактивная бифуркация

Физическая сущность процесса деформирования

Функциональная связь процессов нагружения и деформирования конструкционных материалов

Характерные особенности процесса упругопластического деформирования при неизотермическом термоциклическом нагружении



© 2025 Mash-xxl.info Реклама на сайте