Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Возможные деформации

Учитывая специфические свойства железокремнистых сплавов, особое внимание следует обращать на конструкцию отливок. Детали должны иметь стенки равномерной толщины, с плавными переходами (острые углы должны отсутствовать) конструкции должны обеспечивать возможность деформации отливок под действием внутренних напряжений.  [c.241]

В отличие от твердых частиц, при обтекании капель и пузырьков возможны деформация их формы, внутреннее движение в нпх и, как крайнее проявление этих процессов,— дробление или разруше-ипе капель и пузырьков.  [c.254]


При холодном склепывании деталей, нуждающихся в сохранении точных размеров (например, при клепании венцов зубчатых колес к дискам, вид т), следует учитывать возможность деформации Стенок под действием усилий склепывания (в особенности при заклепках с потайными головками). Участки материала, деформируемые при расклепывании, нужно отделять от точных поверхностей зазором (х, вид у).  [c.207]

При разъемах корпуса облегчается монтаж валов, такие корпуса допускают регулирование зазоров в подшипнике сближением крышки и корпуса. Разъемные корпуса имеют основное применение в машиностроении, особенно в тяжелом. ti>ik корпуса и крышки выполняют параллельным основанию или перпендикулярным нагрузке. Стык надо выполнять таким, чтобы давление распределялось по нему равномерно. Иначе при затяжке крепежных винтов возможна деформация крышки, ведущая к искажению рабочей поверхности. Во избежание боковых смещений крышки относительно корпуса плоскость разъема выполняют ступенчатой или предусматривают центрирующие штифты.  [c.373]

Для пластичных материалов возможна деформация в холодном состоянии (холодная сварка), при увеличении свариваемых сечений и повышении прочности свариваемого материала (сталь) для уменьшения усилий деформирования и повышения пластичности материала его предварительно подогревают (кузнечная сварка).  [c.26]

В зависимости от назначения механизма и машины ограничивают величины возможных отклонений формы и расположения поверхностей допусками, предусмотренными соответствующими стандартами. Чем меньше допуск на обработку, тем сложнее технология и больше затраты на изготовление. В этих случаях применяют более точные и дорогостоящие оборудование и технологическую оснастку, средства контроля, более детально проводят технологическую подготовку производства, используют квалифицированную рабочую силу. Поэтому конструктор должен обоснованно выбирать конструкцию сложных кинематических пар, которые необходимы для обеспечения заданных показателей работоспособности механизма, машины или устройства. Конструкция сложных кинематических пар наряду с повышением жесткости и точности должна обеспечивать непринужденную сборку узлов и сборочных единиц и позволять механизму сохранять заданное число степеней свободы при возможных деформациях стойки, валов, осей и других деталей под действием внешних нагрузок.  [c.44]

В частном случае замкнутая кинематическая цепь механизма с одной степенью свободы (№ = ) и одним контуром без избыточных связей (д=0) должна иметь такой набор кинематических пар, чтобы сумма их подвижностей была равна семи для пространственного механизма и четырем — для плоского механизма. Последующие присоединяемые группы звеньев, образующие после присоединения замкнутый контур, должны иметь в своем составе набор кинематических пар, сумма подвижностей которого равна шести для пространственного механизма и трем — для плоского механизма. Учитывая, что в реальных механизмах возможны деформации стойки или других звеньев, любой механизм с оптимальной структурой рассматривается как пространственный.  [c.52]


Температурное тушение — это в основном внутримолекулярный процесс. При повышении температуры увеличивается колебательная энергия молекулы, что ведет к ослаблению внутримолекулярных связей и облегчению возможностей деформаций молекул. Это может приводить к уменьшению расстояния между возбужденным и невозбужденным электронными уровнями, увеличению вероятности диссоциации молекул. В целом при повышении температуры увеличивается вероятность безызлучательной дезактивации. Повышение температуры флуоресцирующих веществ обычно уменьшает выход свечения. Зависимость относительного квантового выхода родамина Б в глицерине от температуры (за единицу принят выход при комнатной температуре = 20°С) приведена на рис. 34.9, а.  [c.257]

Решение. Основные зависимости теории расчета тонкостенных стержней замкнутого профиля, в основу которой положены гипотезы о недеформируемо- сти контура и о возможности деформаций сдвига в срединной поверхности (в отличие от гипотезы об отсутствии сдвигов для тонкостенных стержней открытого профиля), приведены к виду, для которого записаны расчетные формулы, аналогичные применяемым в теории открытых тонкостенных стержней. Это удалось осуществить путем введения понятия обобщенной секториальной координаты ш, через которую выражаются все основные геометрические характеристики, необходимые для расчетов стержня при стесненном кручении.  [c.239]

Условию устойчивости решетки соответствует положительность выражений (8.52), (8.53), иначе оказывается возможной деформация, вызывающая понижение энергии за счет перехода к другому взаимному расположению атомов, т. е. к другой решетке.  [c.206]

Re > 1 сферичность всплывающего газового пузырька, очевидно, определяется условием We 1. Строгий анализ чисто вязкостных течений [3, 59] приводит к неожиданному выводу оказывается и при Re 1 возможная деформация всплывающего газового пузырька обусловливается только соотношением инерционных сил и сил поверхностного натяжения, т.е. числом Вебера. Дело в том, что при чисто вязкостном обтекании газового пузырька полное нормальное напряжение на его границе одинаково во всех точках поверхности раздела, т.е. оно не деформирует пузырь, а лишь компенсирует избыточное давление в пузырьке, обусловленное кривизной поверхности раздела. (Подробнее об этом будет идти речь в 5.5.)  [c.203]

Выскажем следующее утверждение (принцип возможных перемещений) для напряжений, удовлетворяющих уравнениям равновесия, работа внутренних напряжений на возможных деформациях (работа внутренних сил) равна работе внешних сил на соответствующих  [c.189]

Для увеличения жесткости деталей при конструировании механизма рекомендуется а) заменять, где это возможно, деформацию изгиба растяжением и сжатием б) уменьшать плечи изгибающих и скручивающих сил и линейные размеры деталей, испытывающих напряжения изгиба и кручения в) для деталей, работающих на изгиб, применять такие формы сечений, которые имеют наибольшие моменты инерции / и сопротивления W г) для деталей, работающих на кручение, применять замкнутые (кольцевые) сечения, имеющие наибольшие моменты инерции и сопротивления при кручении д) уменьшать длину деталей, работающих на сжатие (продольный изгиб) и ж) выбирать для деталей материалы с высоким значением модуля упругости (Е или G). При этом необходимо учитывать, что для различных марок стали характеристики прочности (сг , а , a i, и т. п.) имеют разное значение при почти одинаковых значениях модулей упругости (Е или G).  [c.156]

Показанные на рис. V.6 лопасти с пером, сваренным из листов нержавеющей прокатанной стали Д-50, эксплуатируются на опытном агрегате Волжской ГЭС с 1963 г. Будучи пустотелыми, они имеют меньшую массу и в то же время достаточно прочны, так как в них основную нагрузку при изгибе несут наружные слои. Такие лопасти не требуют наружной механической обработки, но это создает трудности, так как требует повышенной точности при изготовлении. Заготовки пера получают на мощных прессах в специальных штампах и после сварки термически обрабатывают. При этом надо предотвратить возможные деформации. Недостаточно изучены спектры колебаний таких лопастей, которые могут иметь низкие составляющие частоты, поэтому при конструировании следует обращать особое внимание на обеспечение достаточной жесткости лопасти.  [c.140]


Очаг разрушения лопатки расположен со стороны ее спинки и в нем отсутствуют какие-либо признаки механического повреждения материала или наличия дефектов материала. Все это свидетельствовало о естественном зарождении и развитии усталостной трещины в материале лопатки после ее повреждения. Механическое повреждение в результате возможной деформации отсутствовавшей части пера лопатки вызвало нарушение геометрии путем изгиба лопатки и привело к изменению ее резонансных характеристик, что и определило быстрое зарождение и распространение усталостной трещины.  [c.608]

Класс контролируемых деформаций несжимаемых материалов, армированных растяжимыми волокнами, гораздо уже. Ниже приводится список всех известных таких деформаций он, может быть, вообще включает все возможные деформации данного класса. В этом списке деформации характеризуются следующим образом координаты точек после деформации (обозначенные строчными буквами) записаны как функции координат точек до деформации (обозначенных прописными буквами)  [c.350]

Защита технологического оборудования. Как показала практика, эффективная защита технологического оборудования возможна лишь в том случае, если соблюдены все требования, предъявляемые к металлическому оборудованию ОСТ 26-291-81, ГОСТ 12.3.016—79, ГОСТ 24444—80, СНиП П-18-75, СНиП III-23-76, ОСТ 36-101-83, а при защите гуммированием— ОСТ 26-01-1475-82. В основном эти требования сводятся к следующему. Аппараты, емкости, газоходы, воздуховоды и их опорные конструкции выполняются только прочными и жесткими. Конструкция оборудования должна исключить возможность деформации или вибрации, которые обязательно приведут к нарушению покрытия. Сварка аппаратов производится только встык, все внутренние швы должны быть сплошными, плотными, гладко зачищенными заподлицо с защищаемой поверхностью. Все элементы жесткости корпуса аппаратов или емкостей выносят наружу конструкция аппаратов должна обеспечить доступ ко всем участкам поверхностей, подлежащих защите и ремонту покрытия. В соответствии с ГОСТ 12.3.016—79 и СНиП III-23-76 технологическое оборудование (замкнутые аппараты и емкости разных размеров, заготовки технологических аппаратов, элементы газоходов, укрупняемые в процессе монтажа), внутренние поверхности которого подлежат защите от коррозии, должно иметь съемные  [c.87]

Для исключения ошибок, связанных с возможной деформацией шарика, методом Бринелля испытывают материалы с твердостью, не превышающей 450 НВ.  [c.307]

В конструкции, подготовленной к рассверловке заклепочных отверстий, сборочные болты должны плотно стягивать детали между собой и исключать возможность деформаций и смещения их при рассверловке или прочистке отверстий. Сборочные болты, как правило, ставят через три отверстия в четвертое для всех типов конструкций, но не реже чем через 500 м.ч. Диаметр сборочных болтов выбирают в зависимости от диаметра отверстия и толщины собираемого пакета. Он не должен отличаться от диаметра отвер-сия более чем на 2—4 мм. Плотность пригонки собранных деталей замеряется щупом, который при толщине 0,3 мм не должен проходить между соприкасающимися поверхностями на глубину более 20 мм.  [c.588]

При выборе размера припуска необходимо также учитывать возможные деформации детали при механической и особенно термической обработке.  [c.261]

Оправки для крепления инструмента бывают разной конструкции в зависимости от типа зуборезного станка и инструмента. Однако независимо от конструкции оправок их желательно проектировать более короткими для уменьшения вибраций при резании. Эго особенно относится к оправкам, предназначенным для крепления червячных фрез. Кольца для крепления фрез должны быть калеными, шлифованными и параллельными между собой для исключения возможности деформации оправок. Некоторые типы оправок для крепления деталей приведены на фиг. 165. Все оправки изготовляются по размеру диаметра в минимально необходимом количестве, а центрирование деталей, у которых не совпадают размеры посадочных отверстий с диаметрами оправок, производится за счет втулок и шайб, надеваемых на оправку. Зуборезные станки для нарезки зубчатых колес диаметром более 3000 мм имеют суппорты для работы червячной и дисковой фрезой при нарезке цилиндрических и червячных колес, пальцевой фрезой для нарезки наружного и внутреннего зацепления, дисковой фрезой для нарезки внутреннего зацепления и т. д.  [c.432]

Зажимные элементы должны обеспечить надёжное закрепление детали после её установки с постоянным усилием, исключающим возможность деформации или, наоборот, изменяющим форму детали в соответствии с её рабочим положением в собранном механизме кроме того, зажимы должны быть быстро действующими и легкодоступными для управления. Поэтому наибольшее распространение получили пружинные зажимы.  [c.209]

Горячая газовая и дуговая Нижнее Обеспечивает прочность, плотность и обрабатываемость соединения и почти однородный состав наплавленного и основного металла Значительная трудоёмкость процесса (особенно при дуговой сварке), возможность деформации при нагревании, высокая стоимость Ответственные детали сложной конфигурации  [c.424]

Проба на проковку. Содержание углерода, серы и частично фосфора определяется возможностью деформации проб при проковке и изгибе. Чем более хрупок материал, тем больше он содержит углерода, серы (Красноломкость) и фосфора (хладноломкость).  [c.245]

Для предупреждения возможных деформаций при зажатии зубчатые колёса крепятся в патронах с помощью пневматических или пружинных зажимов, позволяющих регулировать силу зажатия.  [c.239]

При построении процессов механической обработки и при проектировании технологической оснастки необходимо предусматривать возможность деформации детали под влиянием остаточных внутренних напряжений и усилий, возникающих при зажиме заготовки и снятии стружки.  [c.221]

В пенагруженвых соединениях (стыки крышек, ненесущих частей корпусов и др.) сила затяжки болтов (или шпилек) определяется условием плотного соединения стыков и нерасхождсния их при возможных деформациях системы и ослаблении затяжки в результате происходящего с течением времени сминания витков резьбы и опорных поверхностей гайки и головки болта. Такие соединения в большинстве случаев не рассчитывают. Материал, диаметр и шаг болтов выбирают на основе существующей практики, а силу затяжки устанавливают такой, чтобы создать в болте напряжения, равные 0,5—0,6оо,2.  [c.419]


Следует устранять возможность деформации частей конструкции при затяжке (рис. 410,1). Шпильки и болты, проходящие через полые детали, нужно заключать в жесткие колонки (конструкция 2). В отдельных случаях можно ограничиться подкреплением стягиваемых стенок ребрами т (конструкция 3), расположенными в непосредственной бл 1зости к крепежной детали.  [c.564]

Последний член представляет собой виртуальную работу внутренних сил, которую проще подсчитать с помощью объемного интеграла от бискалярного произведения тензора напряжений (от действительного нагружения) на тензор возможной деформации, где, очевидно  [c.70]

При выполнении пункта 1 плана, т. е. при составлении уравнения сов-местиостн деформаций следует помнить, что эти уравнения связывают любые возможные деформации элементов системы.  [c.52]

Если элемент, в котором может происходить ползучесть, связан с упругими элементами, которые стесняют его возможные деформации, происходит перераспределение напряжений в элементах системы. Собственно для решения задач о перераспределении напряжений нужны теории ползучести, описанные в 18.4. Если щеремещепия точек системы удерживаются постоянными, то реакции закреплений будут со временем изменяться этот процесс называется релаксацией реакций. Релаксацией напряжений называется процесс падения со временем напряжения в элемен-  [c.625]

По мере перехода от зоны ЗК с максимальным растягивающим напряжением к ее центра.яьному отверстию, где она располагается на валу редуктора, напряжения от контакта зубьев уменьшаются из-за их перераспределения между соседними зубьями и ограниченным перемещением или возможной деформацией самих зубьев. При этом динамические напряжения от вращения ЗК возрастают и нарастает максимальный уровень коэффициента интенсивности напряжения, если рассматриваемая траектория изменения напряжений вдоль радиуса колеса совпадает с траекторией возрастающей длины усталостной трещины. По мере продвижения усталостной трещины от периферии ЗК к ее оси происходит нарастание асимметрии цикла нагружения при уменьшении амплитуды переменных напряжений. Возникает естественный вопрос о длительности процесса зарождения и последующего роста трещины на основе анализа вида повреждающего цикла нафужепия, который определяет продвижение трещины в ЗК за один цикл запуска и остановки двигателя.  [c.680]

Формула (12.5) является хорошей иллюстрацией общей особенности технической теории стержней, состоящей в том, что путем использования гипотез, характеризующих деформацию стержня, оказывается возможным деформацию в любой точке поперечного сечения связать с деформацией оси. Последняя описывается некоторыми параметрами, являющимися функцией одной лишь координаты 2. В формуле (12.5) таким параметром является кривизна оси балки /Рх — Ку возникающая вследствие ее изгибд.  [c.106]

В качестве четвертого типа явления потери устойчивости первоначальной формы равновесия рассмотрим потерю устойчивости в форме исчерпания несущей способности. Пусть имеется растягиваемый прямолинейный стержень (четвертая строка таблицы 18.1), выполненный из материала, подчиняющегося закону Гука во всем диапазоне возможных деформаций и обладающего бесконечной прочностью. Пусть испытательная машина имеет такую конструкцию, при которой достигается равномерное удлинение стержня А. Можно отметить два характерных состояния стержня. Одно наблюдается в диапазоне О Д < А, а второе при А А . При увеличении А в пределах О А < А происхо-,цит постепенный рост силы Р, регистрируемой силоизмерительным прибором машины. В этом диапазоне система находится в устойчивом равновесии. При достижении перемещением величины А, система находится в неустойчивом равновесии — силоизмерительный прибор регистрирует неограниченное снижение величины силы Р. Таким образом, несуи ая способность стержня исчерпывается.  [c.292]

При конструировании машины и ее элементов эти возможные деформации доводятся до определенных величин, не влияющих на выполнение машиной ее служебного назначения. Однако многие сопряжения деталей и другие параметры сборочных единиц вследствие этих деформаций меняют свое численное зачение и, очевидно, в большей или меньшей степени отличаются от значений, определяемых при сборке машины. Одним из видов таких изменений параметров являются остаточные деформации.  [c.421]

Созданы и другие teнд >I и приспособления для испытаний гидроаппаратуры, рукавов высокого давления и гидроцилиндров. При сборке станков выполняется большое число контрольных операций по выверке положения монтируемой сборочной единицы относительно базовых поверхностей и других ранее установленных сборочных единиц. Наиболее ответственными работами является подготовка и выверка основных деталей. Необходимо учитывать возможную деформацию деталей под действием собственной массы и массы монтируемых сборочных единиц. Шабрение или шлифование таких деталей следует производить с учетом деформаций, определяемых по специальным диаграммам. При монтаже учитываются требования, предъявляемые к жесткости стыков. Должен быть установлен порядок закрепления деталей, проверена плоскостность сопрягаемых поверхностей, точность и легкость перемещений в подвижных сборочных единицах.  [c.243]

Своеобразный способ крепления осей показан на рис. 514,/,П оси устанавливают лысками на торцы щек и притягивают к щекам болтами. Способ праменим в тех случаях, когда не требуется точная фиксация положения осей относительно щек и когда расстояние между щеками невелико (при больших расстояниях возможны деформации системы при колебаниях температуры).  [c.261]

При нежестких деталях надо предусматривать соответствующие технологические приемы их обработки, устанавливать дополнительные распорки или домкраты, повышающие жесткость. Крепление следует производить только против опор. Это исключает возможность деформации детали. Перед чистовой обработкой крупных и точных деталей рекомендуется их откреплять, производить дополнительную выверку и только после этого проводить дальнейшую чистовую обработку.  [c.203]

При обработке в патроне деталей, склонных к деформациям, в технологии необходимо предусматривать специальные приемы, гарантирующие качество их обработки. К таким деталям относятся крупные бронзовые втулки, разрезные стальные кольца и др. Так, при обработке крупных бронзовых втулок предусматривается такая последовательность операций токарная (предварительная) — подрезка торца, расточка отверстия, проточка поверху до кулачков с припуском, надрезка втулки изнутри и снаружи на длину фрезерная — разрезка непроточенного припуска, находящегося в первой операции под кулачками, до надрезов (для возможности деформации ободранной втулки) естественное старение в течение  [c.308]

На деформацию(изменение размеров) детали при закалке оказывают влияние следующие факторы температура закалки, скорость охлаждения при закалке, глубина закалки, микроструктура стали в исходном состоянии (до закалки) и температура отпуска. Чем выше температура закалки и больше скоррсть охлаждения, тем больше возможная деформация.  [c.481]

На термообрабатываемых деталях размер а выбирается в зависимости от величины возможной деформации, зависящей от материала, длины и ко1 фигурации детали.  [c.387]


Смотреть страницы где упоминается термин Возможные деформации : [c.53]    [c.173]    [c.139]    [c.218]    [c.34]    [c.320]    [c.195]    [c.723]    [c.565]   
Метод конечных элементов в задачах строительной механики летательных аппаратов (1985) -- [ c.35 ]



ПОИСК



Анализ возможностей математической модели сопротивления деформации

Вариации возможные кинематически перемещений и деформаций

Возможная интерпретация суммированного износа машины как ее суммированной деформации

Возможные деформации (Virtnelle

Гидроэкструзия и возможность ее применения для деформации хрупких материалов

Деформация кинематически возможна

Деформация кинематически возможна вокруг сферической полости

Компоненты деформации 20 - Преобразование осей к другим 21, 22 - Упрощение выражений, возможные при малых удлинениях, углах сдвига и ушах поворота

МЕХАНИЗМАХ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ И РАЗРУШЕНИЯ Величины энергии дефекта упаковки и их возможная корреляция с типом связи в решетке и с полиморфизмом

О возможности нарастания пластических деформаций в результате циклических температурных воздействий

Поле деформаций статически возможное

Принцип возможных изменений минимума полной энергии 139141 — Потенциал деформации

Принцип возможных изменений напряженного состояния тела 141—143 Дополнительная работа деформации

Принцип возможных перемещений и принцип минимальной дополнительной работы для материалов с нелинейной связью между напряжениями и деформациями или напряжениями и скоростями деформаций

Скорости деформации кинематически возможные

Скорость деформации возможная

Упрощения выражений для компонентов деформации, возможные при малых удлинениях, углах сдвига и углах поворота

Условия в бесконечности при движении тела как твердого при определении перемещений по деформациям, возможны

Энергия деформации оболочки н применение принципа возможных перемещений



© 2025 Mash-xxl.info Реклама на сайте