Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Некоторые особенности решения краевых задач

Некоторые особенности решения краевых задач  [c.212]

Полученные уравнения (5.42), (5.44), (5.46) эквивалентны и выбор их должен определяться только простотой получения решения. Прежде чем приступить к решению уравнений, сделаем некоторые общие замечания об их свойствах. Все полученные уравнения нелинейны, так как в них искомые функции входят не в первой степени, что, как известно, чрезвычайно затрудняет получение решений. Кроме того, напомним, что согласно определению (5.39) на звуковой линии 5 = О, з < О соответствует дозвуковому, а 5 > О — сверхзвуковому потоку. Тогда легко заметить, что все основные уравнения [например (5.44) ] в дозвуковой области эллиптического типа, а в сверхзвуковой — гиперболического. Это также осложняет решение, так как методы его получения различны для эллиптических и гиперболических уравнений. Следует отметить, что задача о трансзвуковом потоке даже после упрощений остается одной из самых сложных в газовой динамике. Эти замечания касаются сложности решения краевых задач. Некоторые частные решения, имеющие практическую ценность, строятся достаточно просто. Рассмотрим два таких решения, которые позволяют выяснить особенность перехода через скорость звука в сопле Лаваля.  [c.133]


Комплексные потенциалы, описывающие напряженное (деформационное) состояние, могут иметь в некоторых точках особенности, связанные с наличием дефектов или структуры в материале. Такие особенности — концентрации напряжений (КН) — дают краевые дислокации и клиновые дисклинации. При решении краевых задач теории упругости характер особенностей необходимо знать заранее, и это нетрудно. Воспользуемся решением первой основной задачи теории упругости-тела кругового кольца [154]. Не принимая во внимание условные однозначности смещений и полагая, что внешняя нагрузка отсутствует, будем иметь некоторое решение. Йз него устремляя внешний радиус к бесконечности, а внутренний к нулю, получим комплексные потенциалы, описывающие поля напряжений краевой дислокации  [c.127]

Серии относительно универсальных наборов базисных функций Pk x) и Qk x t) в (4), (5) (и в случае некоторых более общих конструкций рядов), которые позволяют представлять решения широкого круга нелинейных уравнений с двумя независимыми переменными, были предложены в работах [15, 16]. Особенно эффективным исполь зование таких рядов может оказаться при решении краевых задач в неограниченных областях, когда обычные разностные методы сталкиваются с рядом трудностей.  [c.20]

Целью этого сообщения является изложение основных идей построения трех типов специальных рядов и описание возможных областей их приложения при решении краевых задач для некоторых классов нелинейных уравнений и систем уравнений с частными производными. Представляется, что описанные ниже конструкции рядов могут быть интересны для математиков-вычислителей, разрабатывающих численные алгоритмы решения на ЭВМ нелинейных задач математической физики, хотя бы с точки зрения применения их для создания тестовых задач, содержащих различные особенности.  [c.225]

Для обеспечения требований 2, 3, вообще говоря, желательно, чтобы коэффициенты рядов находились не путем последовательного дифференцирования (как в рядах Тэйлора), а с помощью интегрирования некоторых простых рекуррентных систем обыкновенных уравнений. Желательно, чтобы в случае нелинейной задачи начальная часть такой цепочки обыкновенных дифференциальных уравнений была нелинейной, — тогда есть надежда передать коротким отрезком ряда основные особенности нелинейной краевой задачи, — а остальные коэффициенты определялись бы из систем линейных дифференциальных уравнений достаточно простой структуры. Описанные ниже конструкции рядов отвечают в некоторой степени перечисленным требованиям, особенно характеристические ряды п. 2 для квазилинейных гиперболических уравнений, нашедшие довольно широкую сферу приложений, в частности, при решении ряда сложных пространственных задач газовой динамики.  [c.226]


Построение решения краевой задачи в виде потенциалов простого и двойного слоев эквивалентно отысканию распределения источников или диполей по границе области, обеспечивающего выполнение граничных условий, и представляет собой частный случай метода особенностей, применяемого для решения краевых задач. Согласно этому методу, подбирается система сосредоточенных особенностей и расположение ее элементов, позволяющие удовлетворить заданным граничным условиям. В качестве сосредоточенных особенностей могут использоваться различные элементарные решения исходной системы дифференциальных уравнений (в частности, и мультиполи). При этом решение краевой задачи для исход ной области можно получить зачастую в результате рассмотрения задачи для другой области с распределенными вдоль некоторых специально подобранных поверхностей (не обя-  [c.187]

Выражения для перемещения а, создаваемого сосредоточенными особенностями того или иного типа (сосредоточенная сила, двойная сила, центр расширения, центр вращения), можно рассматривать как некоторые частные решения уравнений теории упругости для безграничной среды, из которой удалена точка приложения особенности (решение должно быть в рассматриваемой области конечным и непрерывным и иметь в ней такие же производные любого порядка по всем координатам). Можно построить сколь угодно большое число новых выражений вектора и, рассматривая наложение действий этих элементарных особенностей, распределённых по некоторым линиям, поверхностям и объёмам. Эти выражения будут служить решениями уравнений теории упругости для частей упругой среды, не содержащих указанных особых геометрических мест. Комбинируя решения друг с другом, можно в некоторых случаях их использовать при решении краевой задачи для ограниченного упругого тела, когда требуется удовлетворить заданным силовым или геометрическим условиям на его поверхности. Конечно, практически можно использовать лишь наиболее простые замкнутые выражения, поэтому из всего многообразия решений, которые можно построить указанным образом, следует выбрать такие, которые соответствуют простейшим распределениям простейших точечных особенностей. Как показывают формулы (3.5) — (3.8), таковыми следует признать центр расширения и центр вращения, когда вектор перемещения выражен через градиент  [c.86]

Рассмотрим некоторые особенности поведения решения краевой задачи для крыльев степенной формы при отсутствии вязко-невязкого взаимодействия. При этом для упрощения анализа ограничимся случаем треугольного крыла т = 1), когда поле течения в пограничном слое описывается двумерной системой уравнений (5.63) при т = 1. В этой системе уравнений коэффициент при производных по г имеет вид  [c.212]

Рассмотрим некоторые особенности, связанные с обтеканием холодных треугольных пластин, когда = 0. Следует отметить, что в этом случае при решении краевой задачи (7.79), (7.81), (7.82) в переменных г и Л даже при отсутствии вдува Р (г) = О функции течения /, р и Ае оказываются зависящими от значений поперечной координаты 2 И области закритического режима обтекания [Дудин Г.Н., 1997]. Для сведения краевой задачи к автомодельному виду в закритических областях течения необходимо вместо (7.78) рассмотреть течение, в котором функция, определяющая массообмен, имеет следующий вид  [c.349]

Заметим, что особенности такого рода, как правило, могут быть устранены наложением некоторых частных решений, выражаемых в явной форме. Допустим, например, что в какой-либо точке гладкого участка границы приложена сосредоточенная сила. Тогда, прежде чем перейти к построению решения, нужно вычесть напряжения, даваемые решением Буссинеска (см. 5). Для вспомогательной задачи получится достаточно гладкое краевое условие (если участок плоский, то условия будут однородными).  [c.305]

Изложенные закономерности сопротивления термоциклическому нагружению относятся к однородным напряженным состояниям растяжения — сжатия или чистого сдвига. Они являются основой для определения малоцикловой несущей способности неоднородно напряженных элементов конструкций. Эта циклическая напряженность находится в упругопластической области, являясь при стационарном внешнем нагружении нестационарной в силу процессов перераспределения деформаций и напряжений при повторном деформировании. Анализ полей деформаций в зонах наибольшей напряженности элементов, особенно в местах концентрации, связан с решением достаточно сложных краевых задач, о чем далее будут изложены некоторые данные. Применительно к задачам концентрации напряжений и деформаций представилось возможным применить решение Нейбера [23], связывающее коэффициенты концентрации напряжений и деформаций Ке, в упругопластической стадии с коэффициентом концентрации напряжений а в упругой стадии. Анализ ряда теоретических, в том числе вычислительных, решений и опытных данных о концентрации деформаций позволил [241 усовершенствовать указанное решение путем введения в правую часть соответствующего выражения функции F (5н, а, тп), отражающей влияние уровня номинальных напряжений Он, отнесенных к пределу текучести, уровня концентрации напряжений а и показателя степени т диаграммы деформирования при степенном упрочнении. Зависимость Нейбера в результате введения этих влияний выражается следующим образом  [c.16]


Особенностью краевой задачи упругой устойчивости является возможность получения нетривиального решения лишь при некоторых определенных значениях величины нагрузки или параметра нагрузки, являющихся собственными значениями краевой задачи и имеющих смысл критических параметров, которые  [c.331]

Методы граничных элементов (МГЭ) — нетрадиционный термин, который в последнее время появился в зарубежной литературе для обозначения совокупности быстро развивающихся и успешно применяемых универсальных численных методов решения теоретических и прикладных задач. Уже само название выделяет характерную особенность МГЭ возможность решения задачи с использованием дискретизации лишь границы области (в отличие от методов конечных элементов (МКЭ) и методов конечных разностей (МКР). применение которых требует дискретизации всей области). Естественно, что реализация такой возможности в МГЭ предусматривает предварительный переход от исходной краевой задачи для дифференциальных уравнений, описывающих некоторый процесс, к соотношениям, связывающим неизвестные функции на границе области (или ее части). Эти соотношения, по существу, либо представляют собой граничные интегральные уравнения, либо выражаются некоторыми функционалами (они могут и не выписываться явно, а сразу заменяться их дискретными аналогами). В первом случае МГЭ сводятся к методам граничных интегральных уравнений (ГИУ), во втором — к вариационным методам.  [c.5]

Сравнение соответствующих решений для краевых задач о слоистых композитах со свободными кромками при наличии очень резких градиентов напряжений дало обнадеживающие результаты. Хотя некоторые локальные особенности поля напряжений исчезают, когда каждый слой моделируется по отдельности как целое, этот подход может оказаться пригодным при расчетах конструкций. Точность расчета можно существенно повысить введением двух или трех подслоев. Таким образом, данная модель допускает повышение точности расчета и определение его погрешности путем изучения сходимости решения.  [c.65]

Мы начинаем с рассмотрения спектра возмущений и устойчивости слоя со свободными плоскими изотермическими границами. Хотя эти граничные условия, предложенные Рэлеем, являются в известном смысле искусственными, они позволяют получить простое точное решение спектральной краевой задачи, из которого отчетливо видны наиболее важные особенности проблемы. Далее рассматривается физически более интересный случай твердых границ. В последующих параграфах этой главы разбираются некоторые обобщения классической задачи Бенара— Рэлея.  [c.32]

Большинство встречающихся в приложениях задач математической физики, описываемых уравнениями с частными производными, не поддаются решению аналитическими методами. В [259, 260] показано, что. различные краевые и начально краевые задачи для уравнений с частными производными допускают аналитическое решение только в областях специальной формы, в частности в тех, границы которых являются координатными линиями некоторых систем координат. Нелинейные задачи аналитически решаются только в исключительных случаях. В связи с этим большое развитие получили различны приближенные методы, в особенности основанные на применении мощных вычислительных машин. Выше были упомянуты работы по численным методам решения различных типов интегральных уравнений. В дополнение к этому отметим, что применению различных численных методов в механике твердого деформируемого тела и механике разрушения посвящены работы 62, 176, 237, 268, 307, 330, 345, 445 и др.]. Теоретическое обоснование численных методов с применением функционального анализа дано в работах [159, 173, 190, 247, 250, 3721.  [c.136]

Поставленная задача также приводит к краевым задачам для системы уравнений (7.21). Особенность этой задачи состоит в некоторых специальных решениях уравнений (7.21) с особыми точками в плоскости течения ху, которым соответствуют целые отрезки характеристик в плоскости характеристик Ет].  [c.238]

Существуют некоторые условия, при которых напряженно-деформированное состояние оболочки заведомо обладает такими свойствами, и условия выявятся ниже, а пока мы постулируем, что они выполняются. Тогда в качестве приближенного подхода к решению задач теории оболочек может быть использован метод расчленения напряженно-деформированного состояния или, просто, метод расчленения. Его идея заключается в следующем. Основное напряженное состояние и краевые эффекты по своим свойствам существенно отличаются друг от друга. Поэтому существенно различны и те дифференциальные уравнения, которыми приближенно описываются эти напряженные состояния. На этом базируется основная идея метода расчленения строить на первых этапах расчета основное напряженное состояние и краевые эффекты раздельно (пользуясь для этого различными вариантами приближенных дифференциальных уравнений) и вводить их в совместное рассмотрение только для выполнения граничных условий, так как только эта операция и обусловливает их взаимодействие. К подробностям реализации метода расчленения мы вернемся в главе 9 и особенно подробно обсудим их в части IV, а сейчас обратимся к основному напряженному состоянию и примем (пока без объяснений) следующее  [c.97]

Как правило, под такими методами подразумевают прежде всего какие-либо способы представления решений некоторого класса дифференциальных задач с начальными условиями или краевыми условиями в виде математических объектов с простой структурой в виде аналитической формулы, в виде некоторого интеграла от известной функции — квадра,туры, достаточно быстро сходящегося или носящего асимптотический характер ряда с последовательно вычисляемыми коэффициентами. В первых двух случаях, пользуясь стандартными методами численного анализа, можно при любом фиксированном наборе входных параметров получить решение с заданной степенью точности за очень малое время ЭВМ, иногда это удается сделать и в третьем случае. Часто в первых двух случаях или в случае сходящегося ряда говорят о построенных точных решениях. В последнее время под термином получено точное решение понимают и ситуацию, когда задача сведена к интегрированию системы небольшого количества обыкновенных дифференциальных уравнений при условии отсутствия особенностей (конечный промежуток интегрирования, достаточно гладкие коэффициенты и т. п.). Такого типа задачи можно практически с произвольной точностью (снова при фиксированном наборе входных параметров) решить на ЭВМ с помощью стандартных численных методов за сравнительно короткое время.  [c.14]


Подобное исследование приводит к необходимости решения краевой задачи теории упругости в сложной области, которое может быть осуществлено в точной постановке лишь для некоторых идеализированных случаев. Одной из традиционных идеализаций является предположение о неограниченности области, в которой расположены дефекты. Методы определения напряжённого состояния упругих тел вблизи внутренних концентраторов напряжений в виде систем трещин, разрезов и тонких включений изложены в монографиях Н.И. Мусхелишвили [107], Г.Я. Попова [115], Т.Н. Савина [125]. Случаи, когда дефекты расположены вблизи границы упругого тела, не могут рассматриваться в рамках упомянутой выше идеализации. В.В.Можаров-ским и В.Е. Старжинским [104] предложен метод решения плоской контактной задачи для полосы, дискретно спаянной с основанием (имеющей конечное число разрезов на границе их раздела). Система круговых отверстий, расположенных вблизи границы полуплоскости, рассмотрена в [125]. Однако алгоритмы решения задач, развитые в [104, 125] и некоторых других работах, достаточно сложны для конкретных реализаций (особенно в случае исследования смешанных задач теории упругости) и, кроме того,  [c.205]

Введение. Поведение решений теории пластичности вблизи поверхностей трения, на которых удельные силы трения при скольжении равны пределу текучести при чистом сдвиге (условие максимального трения), обладает рядом характерных особенностей, которые, с одной стороны, могут приводить к трудностям при решении краевых задач, а с другой стороны, могут быть использованы для описания физических процессов в тонких слоях вблизи поверхности трения. По-видимому, первое исследование поведения решений в окрестности поверхностей максимального трения было выполнено в [1]. В этой работе была рассмотрена плоская деформация идеальножесткопластического материала, и анализ был основан на методе характеристик. Из результатов этой работы следует, что вблизи поверхности трения сдвиговая скорость деформации (в системе координат, связанной с поверхностью трения) и эквивалентная скорость деформации стремятся к бесконечности обратно пропорционально корню квадратному из расстояния до поверхности трения. Такое поведение поля скорости может быть получено из непосредственного анализа многих аналитических решений, начиная с известной задачи Прандтля (решение этой задачи можно найти в любой книге по теории пластичности, например [2]). Такое же поведение поля скоростей имеет место в осесимметричных решениях. Одно из наиболее известных решений — течение в бесконечном сходящемся канале [3]. Однако в случае осесимметричной деформации уравнения, вообще говоря, не являются гиперболическими (за исключением теории, основанной на условии текучести Треска, и других подобных теорий), хотя изолированные характеристические поверхности могут существовать [4]. Вследствие этого подход, развитый в [1], не мог быть применен для осесимметричных и пространственных задач. В [5-8] был использован другой подход для асимптотического анализа поля скоростей вблизи поверхностей максимального трения для различных условий течения и гладких условий текучести. Во всех этих работах получено, что закон поведения эквивалентной скорости деформации такой же, за исключением некоторых частных случаев, как и при плоской деформации. В [9 аналогичный результат был получен для осесимметричного течения материала, подчиняющегося условию текучести Треска.  [c.78]

Ui = onst, то для решения дифференциальных уравнений в частных производных можпо использовать классический способ разделения переменных. Таким ь1етодом фактически и воспользовался Мн для решения упоминавшейся выше задачи о сфере, обладающей конечной проводимостью. В этом случае решение краевой задачи имеет вид бесконечного ряда и его ценность зависит от легкости вычисления необходимых функций, а также от скорости, с которой ряд сходится. Этот метод применялся в различных случаях (помимо задачи со сферой) особенно надо отметить его использование в случае дифракции на круглом диске или отверстии [5]. Следует, однако, замерить, что ли1иь некоторые из этих работ относятся к чисто скалярным задачам типа задач, встречающихся в теории звуковых волн малой амплитуды дальше будет показано, что двумерные задачи в электромагнитной теории принадлежат в основно.м к этому типу, но в других случаях векторная природа электромагнитного поля приводит к дополнительным осложнениям.  [c.514]

Тип системы уравнений определяет особенности постановкп задачи, методы и свойства решения. В случае эллиптической задачи на решение в некоторой точке области оказывают влияние краевые условия, заданные на всей границе области. Прп решении гиперболической задачи возмущения сносятся только вниз по потоку.  [c.176]

Заметим, что разработан метод определения указанных коэффициентов для общего случая эллиптических краевых задач [154, 155]. Для них получены явные интегральные представления, в которые входят исходные краевые условия и некоторые специальные решения вспомогательной однородной краевой задачи. Указанные решения зависят только от конфигурации области и характера краевых условий. Они определяются однозначно главными членами своей асимптотики и так же, как функции (8.17), имеют особенность в нерегулярной точке границы. Реализация этого метода представляется особенно эффективной тогда, когда требуется для одной и той же области решить совокупность однотипных краевых задач, поскольку потребуется лишь один раз решать вспомогательную задачу. В [162] приведены примеры, иллюстрирующие применение метода в задачах теории упругости.  [c.312]

Из-за ограничений типа нерастяжимости и несл<имаемости краевые задачи для идеальных волокнистых композитов ставятся иначе, чем при отсутствии ограничений, а их решения обладают некоторыми необычными свойствами. Для того чтобы исследовать эти свойства в возможно более простом случае, в настоящем разделе мы рассматриваем бесконечно малые плоские деформации материалов, армированных первоначально прямолинейными параллельными волокнами. Помимо всего прочего, оказывается, что поле напряжений в идеальном волокнистом материале может иметь особенности типа дельта-функции Дирака, соответствующие приложенным к отдельным волокнам  [c.291]

В настоящей монографии приведены результаты численного и экспериментального исследования термоползучести гибких пологих замкнутых, открытых и подкрепленных в вершине оболочек вращения переменной толщины, выполненных из изотропных и анизотропных материалов, обладающих неограниченной ползучестью. В главе I дан краткий анализ подходов к решению задач изгиба и устойчивости тонких оболочек в условиях ползучести. Глава II посвящена построению вариационных уравнений технической теории термоползучести и устойчивости гибких оболочек и соответствующих вариационной задаче систем дифференциальных уравнений, главных и естественных краевых условий, разработке методики решения поставленной задачи. Вариационные уравнения упрощены для случая замкнутых, открытых и подкрепленных в вершине осесимметрично нагруженных пологих оболочек вращения, показаны некоторые особенности алгоритма численного решения. Результаты решений осесимметричных задач неустаповившейся ползучести и устойчивости замкнутых, открытых и подкрепленных в вершине сферических и конических оболочек постоянной и переменной толщины приведены в главе III. Рассмотрено также влияние на напряженно-деформированное состояние и устойчивость оболочек при ползучести высоты над плоскостью, условий закрепления краев (при постоянном уровне нагрузки), уровня и вида нагрузки, дополнительного малого нагрева, подкрепления внутреннего контура кольцевым элементом. Глава IV посвящена численному исследованию возможности неосесимметричной потери устойчивости замкнутых в вершине изотропных и анизотропных сферических оболочек в условиях ползучести. Проведено сопоставление теоретических и экспериментальных дан-лых.  [c.4]


Для практических применений особенно важен случай, когда на линии искажения (всюду или на некоторых ее частях) R 2 обращается в бесконечность или имеет весьма большие абсолютные значения. К решению соответствующих задач изложенную приближенную теорию простого краевого эффекта применять нельзя. В 8.9 было оговорено, что линия искажения простого краевого эффекта должна быть неасимптотической. Этим исключается  [c.122]

Рассмотрим некоторые особенности погранслоя в телах из малосжимаемых материалов типа резины и связанные с малой сжимаемостью нарушения принципа Сен-Венана о локальном харгштере распределения напряжений. Для тонких тел из металлических и других жестких материалов решение погранслоя обычно строится при однородных статических условиях на лицевых поверхностях — это краевые задачи оболочек и пластин. Такому решению должно отвечать самоуравмовешешюе по толщине слоя напряженное состояние.  [c.76]

К настоящему времени в СССР и за рубежом усилиями многих ученых осуществлены важные исследования явлений хрупкого разрушения твердых тел как в плане решения соответствующих краевых задач механики и создания физически более обоснованных критериев разрушения, так и в области разработок методов оценки склонности конструкционных материалов к хрупкому разрушению (см., например, обзоры в работах [9, 82, 118, 145]). Необходимость в таки исследованиях обуслоЬ-лепа, с одной стороны, тем, что высокопрочные конструкционные материалы (например, жаропрочные сплавы, упрочненные стали, металлокерамические материалы, некоторые пластмассы), как правило, являются хрупкими материалами, т. е. такими, которые уже при нормальных температурах и малых скоростях нагружения разрушаются путем распространения трещины без предварительных пластических деформаций макрообъемов тела. (При низких температурах, повышенных скоростях нагружения, воздействии некоторых поверхностно-активных сред, наводороживании и в других условиях, приводящих к ограничению пластического течения конструкционного материала, его разрушение путем распространения трещины доминирует). С другой стороны, реальные условия эксплуатации конструкции всегда предусматривают наличие некоторой жидкой или газовой среды. Эта среда проникает в деформируемое тело (элемент конструкции) через его структурные несовершенства — дефекты (макро- или микротрещины, границы зерен, включений) и особенно интенсивно взаимодействует с участками тела, деформированными за предел упругости. К таким участкам относятся окрестности резких концентраторов напряжений (трещины, остроконечные полости или жесткие включения и др.). Именно в окрестности подобных дефектов среда, изменяя физико-механические свойства деформируемого материала, в первую очередь его сопротивление зарождению и развитию трещины, оказывает существенное влияние на служебные свойства (несущую способность) рабочего тела в целом.  [c.9]

В настоящей главе рассматриваются следующие статические задачи термоуп ругостж пространственная для бесконечной среды с конечным числом включений, имеющих форму параллелепипеда, при постоянной температуре одномерная для многослойного цилиндра, поверхность которого поддерживается при постоянной температуре для полого цилиндра, материал которого представляет собой композит, состоящий из двух чередующихся между собой концентрически расположенных слоев с различными-фнзико-механнческимн характеристиками, а внутренняя и внешняя поверхности поддерживаются при различных температурах двумерная для кусочно-однородного полупространства, нагреваемого действующими на некотором расстоянии от краевой поверхности источниками тепла, плотность которых периодически изменяется по координате двумерная для полубесконечной пластинки с тонким инородным пластинчатым включением, параллельным ее боковым поверхностям, нагреваемой движущимся по краевой поверхности линейным источником тепла, При этом используются метод возмущений и метод, основанный на использовании аппарата асимметричных и симметричных обобщенных функций. Для пространственной задачи построено приближенное решение, на основе которого показано, что внутри включения напряжения изменяются незначительно, касательные напряжения везде, кроме близких окрестностей вершин параллелепипеда, в которых они имеют логарифмическую особенность, незначительны по сравнению с нормальными напряжениями. Для кусочно-однородного цилиндра находятся замкнутые решения, единые для всей области их определения.  [c.233]

Среди приближенных методов решения задач математической физики особую роль играет теория возмуш,ений, позволяющая построить асимптотические разложения при малых и больших значениях тех или иных характерных параметров. Применению такого подхода к контактным задачам теории упругости для изотропной полосы и изотропного слоя был посвящен специальный параграф в монографии [7]. При этом в качестве малых и больших параметров принимались, как правило, относительные геометрические размеры штампа (отношение ширины штампа к ширине полосы (слоя) или обратная величина). Между тем, в случае анизотропного и, в частности, ортотропного материала появляется еще одна возможность. Обычно некоторые жесткости композитов, моделируемых анизотропными однородными средами, отличаются по порядку величины, и, следовательно, их отношения могут рассматриваться как малые параметры. В последние десятилетия был развит асимптотический метод, основанный на построении разложения по таким параметрам. Этот метод отражен, помимо статей [1, 3, 5], в монографиях [4] и [6]. Первое его применение к контактным задачам содержится в статье Л. И. Маневича и А. В. Павленко [5], где рассмотрено вдавливание в упругую ортотропную полосу жестких штампов при наличии сил трения. В этой работе было показано, что использование малого параметра, характеризующего отношение жесткостей ортотропной среды, позволяет свести смешанную краевую задачу плоской теории упругости к последовательно решаемым задачам теории потенциала. Статья С. Г. Коблика и Л. И. Маневича [3] посвящена контактной задаче для ортотропной полосы при наличии области контакта зон сцепления и скольжения. В этой сложной задаче предложенный метод оказался особенно эффективным бьши получены явные аналитические выражения для нормальных и касательных напряжений в обеих областях, а также для заранее неизвестной границы между этими областями. В работе Н. И. Воробьевой,  [c.55]

Подстановка этих рядов в граничные условия даёт последовательность рекуррентных соотношений, из которых определяются коэффициенты и а . Особенно просто решается задача в тех случаях, когда отображающая функция ш(С) есть полином. В этом случае система совместных уравнений, которую приходится решать, оказывается конечной. Важность этого случая для практических приложений заключается в том, что заданную область 6 можно апроксимировать с произвольной точностью областью S , отображаемой на круг при помощи полинома достаточно высокой степени п. На этом может быть построен метод приближённого решения задачи. Ограничившись здесь только этими общими замечаниями, мы займёмся изложением другого метода решения поставленных краевых задач, именно сведением их к некоторым функциональным уравнениям. Этот приём основан на приложении интегралов типа Коши.  [c.229]

Характерной особенностью краевой задачи (3.142), (3.143), (3.145), (3.147), (ЗЛ49), (3.151) является компенсационное условие взаимодействия (3.166), которое, однако, не повышает порядок производных по продольной координате, входящих в эту краевую задачу, и не индуцирует возмущений перед точкой разрыва краевых условий (задача остается параболической). Поэтому здесь можно начальные краевые условия задавать при Х4 = О (с точностью до некоторых аддитивных констант, не влияющих на решение в области IV, но существенных для области III). Выражения (3.156) для напряжения трения т и теплового потока q в переменных (3.166) принимают вид  [c.131]

В результате исследований, посвященных принципу максимума и аналогичным ему критериям классического вариационного исчисления, были разработаны общие приемы построения необходимых признаков оптимальности, по-видимому, вполне достаточные для большинства типичных экстремальных задач о программном управлении. Как правило, в настоящее время решение этого вопроса не вызывает принципиальных затруднений, во всяком случае, если речь идет о минимизации (максимизации) функционалов вида (8.2) и подобных им. При встрече с новым кругом задач этого типа обычно удается учесть дополнительные обстоятельства и составить соответствующие необходимые условия экстремума по широко известным теперь общим рецептам. Однако составление дифференциальных уравнений, выражающих необходимые условия оптимальности, является лишь первым, хотя и чрезвычайно важным этапом в решении конкретных проблем. Следующий этап состоит в интегрировании этих уравнений с учетом краевых условий, которым должно удовлетворять искомое оптимальное движение. Эта краевая задача, связанная с необходимостью привести управляемый объект в заданное состояние, остается до сих пор трудной проблемой. Дело заключается в следующем. Необходимые признаки оптимальности, выражаемые дифференциальными уравнениями Эйлера — Лагранжа для координат Х1 1) и множителей Лагранжа Я-г ( ) (или для имеющих тот л е смысл координат г) г 1) вектора -ф ( ) в случае принципа максимума), определяют внутренние свойства оптимальных движений, описывая их локальное поведение в окрестности каждой точки на данной траектории. В силу этих свойств каждое оптимальное движение развертывается во времени совершенно определенным образом, отталкиваясь от начальных условий х ( о) и ( о)-Начальные данные ( о) обычно задаются по условиям задачи. Величины ( о) ("Фг ( о)) определяют по условиям принципа максимума направление в пространстве х , в котором уходит оптимальное движение х (t) из точки X to). Трудность состоит в выборе величин (Ьо), которые обеспечивают прицеливание оптимального движения как раз в заданное конечное состояние X 1х) (или на заданное многообразие М конечных состояний и т. п.). Эффективное преодоление этой трудности, как правило, тормозится невозможностью получения явной зависимости между величинами х ( 1) и А, ( о) вследствие неинтегрирз емости в замкнутой форме дифференциальных уравнений задачи. Каждая новая серия соответствующих краевых задач, особенно, если речь идет о нелинейных объектах, требует обычно для своего разрешения подбора специальных вычислительных алгоритмов. Лишь для отдельных классов задач выведены некоторые закономерности, облегчающие их конкретное решение.  [c.192]


К работам по теории крыла конечного размаха тесно примыкают исследования взаимодействия несущих поверхностей с телами вращения (интерференция). А. А. Дородницыным (1944) было предложено решение задачи об определении несущих свойств системы, состоящей из крыла большого удлинения и тонкого длинного фюзеляжа. Крыло заменялось несущей линией (пронизывающей фюзеляж) с переменной по размаху циркуляцией и сходящими с нее свободными вихрями, а фюзеляж — соответствующими особенностями, расположенными на оси. В. Ф. Лебедев (1958) обобщил метод А. А. Дородницына на случай стреловидного крыла и крыла малого удлинения с тонким фюзеляжем. В работе А. А. Никольского (1957) предложено правило расчета подъемной силы а индуктивного сопротивления и рассмотрены некоторые задачи оптимизации системы крыло — фюзеляж в случае, когда крыло мало возмущает осесимметричный поток вокруг фюзеляжа. Вихревые линии, сходящие с крыла, при этом криволинейны и расположены вдоль линий тока исходного осесимметричного потока около изолированного фюзеляжа. А. И. Го-лубинский (1961) разработал метод решения задачи для обтекания крыла с бесконечно длинным цилиндрическим фюзеляжем. При этом для крыла использовалась теория несущей поверхности, а на поверхности фюзеляжа удовлетворялись граничные условия и путем разложения в ряды с помощью цилиндрических функций решалась соответствующая краевая задача. Расчет и опыты показали, что если диаметр фюзеляжа сравним с размахом крыла, то аэродинамическая сила, возникающая вследствйе интерференции, получается того же порядка, что и сила, действующая на изолированные консоли крыла.  [c.97]

Обобщение конкретных количественных знаний, достигаемое благодаря применению безразмерных переменных, продемонстрировано на простых примерах, относящихся к задачам теплопроводности. Это особенно ценно в тех случаях, когда уравнения, описывающие некоторый физический процесс, известны, но их аналитическое решение трудно или вовсе невозхюжно. Такое положение, как мы увидим далее, имеет место в вопросах конвективного переноса тепла. Откладывая рассмотрение специальных подробностей, относящихся к этой форме теплооб .1ена, уже здесь воспользуемся имеющимся наглядным материалом для уточнения смысла и границ делаемых обобщений. При обсуждении вопроса будем иметь в виду краевые задачи математической физики, поскольку оии только и характерны для теории теплопроводности и ко1Ц екции.  [c.57]

Особенно широко распространен способ задания дополнительных условий путем предписания значений искомых функций и их производных на некоторых границах, краях той области независимых переменных, в которой желательно определить решение. Такие задачи получили названрге краевых задач.  [c.63]

Одной из самых примечательных особенностей трёхмерной теории упругости является отсутствие единственности, наблюдаемое в реальных физических ситуациях. Поэтому соответствующие краевые задачи трёхмерной теории упругости можно считать приемлемыми математическими моделями, только если они не исключают возможность наличия нескольких различных решений, а в некоторых случаях и бесконечного их числа. Цель данного параграфа — пояснить свойство неединственности на нескольких примерах, заимствованных из повседневного физического опыта. Мы поочерёдно рассмотрим задачи с граничными условиями на напряжения, на перемещения и напряжения и на одни перемещения. В каждом из указанных случаев предполагается, что отсчётная конфигурация соответствует естественному состоянию.  [c.272]

Благодаря, главным образом, работам отечественных механиков методы теории функций комплексного переменного теперь служат мощным средством исследования двумерных бигармонн-ческих задач. При построении решения в рядах нет смысла строить ряд для бигармонической функции напряжений, особенно если отверстия имеют не круговую форму достаточно найти представления входящих в нее двух аналитических функций. Аппарат теории функций комплексного переменного даже в методе рядов дает возможность глубже учитывать и второстепенные члены в решении и строить таким образом некоторые эффективные процессы, приводящие и при весьма неблагоприятных условиях сходимости к положительным результатам. Но главным, решающим преимуществом метода Колосова является возможность сведения бигармонической задачи к краевым задачам теории аналитических функций и, следовательно, приме-  [c.240]

Главная особенность упорядоченного режима состоит в том, что с момента его наступления некоторая математическая комбинация температуры начинает изменяться во времени но закону прямой линии. Для решения многих практических задач очень важно знать тангенс угла наклона такой линии. В частности, это используется при определении теплофизических свойств материалов пестациопарпыми методами. Упорядоченный тепловой режим асимптотически подходит к равновесному термодинамическому состоянию (нри симметричном распространении тепла) или вписывается в стационарную стадию (при несимметричных краевых условиях), математическое описание которых еще более упрощается. Все эти тепловые режимы широко применяют в инженерной практике и научных исследованиях.  [c.83]


Смотреть страницы где упоминается термин Некоторые особенности решения краевых задач : [c.48]    [c.7]    [c.74]    [c.263]    [c.192]   
Смотреть главы в:

Асимптотическая теория сверхзвуковых течений вязкого газа  -> Некоторые особенности решения краевых задач



ПОИСК



I краевые

Задача краевая

Задачи краевые - Решении

Краевой решение

Краевые особенности

Некоторые задачи

Особенности решений задачи л тел

Решения некоторых задач

Решения с особенностями



© 2025 Mash-xxl.info Реклама на сайте