Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вариационная задача

Вариационные принципы Законы сохранения Вариационные задачи Вязкие течения  [c.1]

Иначе дело обстоит с решением вариационных задач газовой динамики и с точными решениями уравнений Навье—Стокса. Эти результаты своеобразно и тесно переплетены с численными и экспериментальными исследованиями. Решение краевых задач при оптимизации формы тел в сверхзвуковом потоке газа первоначально проводилось численно, итерационным путем. Обращение в нуль одной из рассчитываемых функций подсказало путь аналитического решения и открыло путь к исследованию необходимых условий минимума и к получению новых решений. При использовании этих результатов для практики в потоках внутри сопел рассчитывался пограничный слой, а результирующая сила тяги была проверена на специальной опытной установке. Расхождение между расчетной силой тяги и ее экспериментальной величиной не превысило 0,1%.  [c.5]


Рассматриваемые здесь вариационные задачи заключаются в определении формы тел, обладающих минимальным волновым сопротивлением в плоскопараллельном или осесимметричном сверхзвуковом потоке газа, и контуров сопел, реализующих максимальную силу тяги при некоторых ограничениях. Силы, действующие на тела при течениях невязкого газа, определяются давлением на стенки. Величина давления находится из рещения граничных задач для нелинейных уравнений газовой динамики. Такие задачи в настоящее время решаются численно. Нахождение решения вариационных задач со связями в виде уравнений с частными производными приводит к сложным численным процессам. О таком прямом подходе к оптимизации формы тел будет сказано в послесловии к этой главе. Здесь будет рассмотрен подход, который в плоскопараллельном и осесимметричном случаях допускает точную одномерную постановку ряда вариационных задач и их простое решение.  [c.45]

Такой подход был предложен Никольским [1]. В его работе предлагается постановка вариационной задачи для функций на контрольном контуре, состоящем из двух характеристик уравнений газовой динамики разных семейств. В этом случае функционал, выражающий сопротивление тела и некоторые дополнительные условия, выписывается явно. После определения функций на контрольном контуре остается решить задачу Гурса с известными функциями на характеристиках. Никольский [1] решил вариационную задачу об оптимальной форме тела вращения на основе линеаризованных уравнений газовой динамики, однако, основная идея этой работы применима и к точным уравнениям.  [c.45]

В большинстве случаев вариационные задачи механики оказываются вырожденными. Это приводит к тому, что их решение частично или полностью совпадает с границами области допустимых функций. Метод решения таких задач был разработан и опубликован в ряде статей Охоцимским. Первой из них была работа [2].  [c.45]

Глава 3. Вариационные задачи газовой динамики  [c.46]

Вариационные задачи для безударных течений  [c.63]

Формула (2.2) позволяет поставить, например, следующую вариационную задачу. Для заданных величин Ха, R xa), хь, R(xь) найти непрерывную функцию Д(а ), реализующую минимум функционала х при связи (2.3). Рещение этой задачи дает оптимальный профиль аЬ при фиксированном положении его концевых точек.  [c.64]

Именно такой подход будет использован здесь для решения вариационных задач газовой динамики в точной постановке.  [c.65]

Предположения tp ip) = ударных волн в области аЬс, второе допускает возникновение ударных волн в этой области. Обе задачи имеют определенный смысл. Сформулируем их и рассмотрим каждую в отдельности.  [c.69]


В связи с вариационными задачами 1 и 2 следует заметить, что величина подъемной силы С не может задаваться совершенно произвольно, а должна быть заключена в некоторых пределах. Это следует из того, что интегралы, входящие в выражение (2.8), ограничены при конечных пределах.  [c.70]

Необходимо отметить, что сформулированные вариационные задачи являются вырожденными. Действительно, функции Ф], Ф2, Ф3, Ф4, Ф3  [c.70]

Для решения вариационной задачи 1 воспользуемся методом множителей Лагранжа. Составим сумму  [c.71]

Величины Аз и А4 являются постоянными, а Аг(у) и Х у) — переменными множителями Лагранжа. При постановке частных вариационных задач некоторые из условий задачи 1 могут не использоваться. Например, в задаче о плоском профиле может не задаваться подъемная сила (. В этом случае в сумме (2.20) достаточно положить равным нулю соответствующий множитель Лагранжа.  [c.71]

Законы сохранения (дивергентные формы уравнений) широко применяются в методе интегральных соотношений, при построении консервативных разностных схем и при постановке вариационных задач газовой динамики. Примерами являются публикации [1-4]. Теорема Нетер и ее обобшение [5] позволяют находить законы сохранения для систем дифференциальных уравнений второго порядка. Для применения этих теорем необходимо изучить групповые свойства исходных уравнений [6] и использовать вариационный принцип, из которого эти уравнения следуют. Для вырожденных функционалов, порождающих уравнения первого порядка, теряется взаимно однозначное соответствие между группами, допускаемыми уравнениями, и законами сохранения некоторым группам могут соответствовать дивергентные уравнения, состоящие из нулей [5]. Теорема Нётер использована, например, Ибрагимовым [7] для получения полной системы законов сохранения безвихревых течений газа, описываемых уравнением второго порядка для потенциала скоростей.  [c.17]

При решении вариационных задач газовой динамики необходимо знать предельные (определяемые граничными условиями) свойства сверхзвуковых течений. Исследование таких свойств для осесимметричных течений разреженияпроведено в ft3f, а для течений сжатия — в [14].  [c.46]

Отсутствие азимутальной составляющей вектора скорости в рассмотренных вариационных задачах при осевой симметрии является ограничением, которое может, например, снизить силу тяти оптимального сопла. В работах [19, 20] на примере присутствия потенциальной закрутки потока вокруг оси симметрии выведены необходимые условия экстремума и продемонстрировано увеличение силы тяги. Дальнейшие исследования в этом направлении проведены Гудерлеем, Табаком, Брей-тером и Бхутани [21]. Систематическое сравнение оптимальных сопел этого типа выполнено Тилляевой [22].  [c.47]

Совершенно иной подход к постановке вариационных задач газовой динамики предложил в 1950 г. Никольский [1]. Решая вариационную задачу для осесиммефичных течений в линейной постановке, Никольский вводит конфольный контур из характеристик первого и второго семейств, проходящих, соответственно, через переднюю и заднюю точки искомого контура. При этом характеристика первого семейства полностью известна, а вариационная задача ставится для функций на характеристике второго семейства. Сама вариационная задача оказывается одномерной, а исследуемый функционал относится к хорошо изученному типу. После определения искомых функций на характеристике второго семейства течение около искомого контура находится решением задачи Гурса. Искомый контур является линией тока найденного течения. Таким образом, подход Никольского избавляет от необходимости предварительного решения задачи обтекания произвольного контура и приводит лишь к необходимости решения конкретной задачи Гурса.  [c.65]

Гудерлей и Хантш в работе [3] изучали вариационную задачу об оптимальном сопле Лаваля в плоском и осесимметричном случаях для равновесных изэнтропических течений реального газа. Решение бьшо сведено к краевой задаче для дифференциальных уравнений, аналогичных уравнениям (2.15), (2.28)-(2.30) при С = 0-  [c.74]



Смотреть страницы где упоминается термин Вариационная задача : [c.6]    [c.46]    [c.50]    [c.65]    [c.45]    [c.43]   
Смотреть главы в:

Аналитические исследования динамики газа и жидкости  -> Вариационная задача

Аналитические исследования динамики газа и жидкости  -> Вариационная задача


Вариационные принципы теории упругости и теории оболочек (1978) -- [ c.13 , c.16 ]



ПОИСК



Задача вариационная (задача

Ряд вариационный



© 2025 Mash-xxl.info Реклама на сайте