Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задача теории упругости смешанная

Приближенная теория расчета толстых плит переменной толщины h = h(x, у) построена В. 3. Власовым на основе метода начальных функций в задачах теории упругости с введением следующих упрощающих гипотез для основных неизвестных смешанного метода [8].  [c.204]

Помимо двух основных рассмотренных методов решения задач теории упругости в напряжениях и в перемещениях часто используется смешанная форма решения, когда разрешающие уравнения составляются частично относительно перемещений, а частично относительно напряжений. Такой прием рассмотрим ниже в задаче расчета оболочек (см. гл. 7).  [c.46]


Если выбрать аппроксимирующие функции, зависящие от всех трех переменных х, у, г а в температурной задаче зависящие и от температуры), а в качестве неизвестных принять постоянные коэффициенты, то для их нахождения получим систему алгебраических уравнений. Приведение задач теории упругости к системе алгебраических уравнений носит название собственно вариационного метода, приведение к системе дифференциальных уравнений — смешанного вариационного метода [18], [19], [50].  [c.74]

Смешанная задача теории упругости, как это уже отмечалось выше, характеризуется заданием на контуре частично условий в напряжениях и частично в перемещениях. В этом случае расчет разбивается на несколько этапов  [c.113]

Остановимся теперь на некоторой разновидности смешанных (контактных) задач теории упругости. Как уже отмечалось, при их формулировке предполагается, что разбиение поверхности на участки, где выполняются разные краевые условия, заранее известно. Однако возможен и более общий случай. Вообще говоря, контактная задача (в физическом смысле) ставится как задача о воздействии жесткого тела на упругое. Как правило, начальный контакт происходит в одной точке и лишь при дальнейшем сближении контактирующих тел образуется площадка контакта, которая, вообще говоря, увеличивается в размерах. При этом, естественно, вводится имеющее физический смысл ограничение напряжения вдоль контура, ограничивающего  [c.248]

Изложим метод построения точных аналитических решений пространственных динамических задач теории упругости для клина при смешанных ) граничных условиях [47], который включает в себя как интегральные преобразования, так и выделение особенностей изображений искомых функций в окрестности ребра.  [c.502]

Если S = Su, следовательно, на всей поверхности тела заданы перемещения, соответствующая задача называется первой основной задачей теории упругости. Если S = St и на всей поверхности заданы усилия Т , мы будем говорить о второй основной задаче. Сформулированная выше постановка относится к смешанной задаче.  [c.245]

Прямая задача при статических граничных условиях в литературе (в терминологии Н. И. Мусхелишвили) называется первой основной задачей теории упругости. Прямая задача при кинематических граничных условиях в той же терминологии называется второй основной задачей теории упругости. Наконец, прямая задача при смешанных граничных условиях называется смешанной задачей теории упругости.  [c.614]


Усадочные напряжения около стержня и влияние поперечной усадки. Задача определения остаточных напряжений, возникающих в процессе полимеризации или отливки материала около жесткого стержня, легко решается описываемым методом. На фиг. 11.15 приведены картины полос интерференции в модели из уретанового каучука, содержаш,ей внутри стержень сложной формы. Здесь получается смешанная граничная задача теории упругости. На внешней границе заданы нормальные и касательные напряжения, которые обраш,аются в нуль соответственно при Л = О и Ле = 0. На внутреннем контуре заданы перемеш,е-ния Ur = аг VI щ = О, где а — коэффициент усадки. Эта задача, вероятно, не очень важна для суш ествуюш их конструкций твердотопливных зарядов и связана с определением остаточных напряжений, возникающих около стержня при отливке нескрепленных зарядов.  [c.342]

Построение математически обоснованной теории многослойных анизотропных оболочек в рамках принятой в п. 1,1 системы независимых кинематических и статических гипотез требует применения смешанного вариационного принципа [ 1.29]. Смешанный вариационный принцип открывает естественный путь сведения трехмерных задач теории упругости к двухмерным задачам  [c.15]

Рассмотрим смешанную задачу теории упругости  [c.267]

Особое внимание уделено получению основных уравнений, соотношений и вариационных формулировок задач статики и термоупругости многослойных оболочек с использованием варианта теории, учитывающего деформации поперечных сдвигов. В качестве кинематических гипотез выступают предположения о несжимаемости стеики оболочки в поперечном направлении и линейном распределении по толщине многослойного пакета касательных перемещений. Распределения касательных поперечных напряжений выбираются в наиболее простом виде независимо от кинематических гипотез. Приведение трехмерной задачи теории упругости к двумерной осуществляется с использованием смешанной вариационной формулировки. Все преобразования выполнены с учетом переменности метрики по толщине оболочки. Показана идентичность полученных уравнений равновесия с интегральными уравнениями трехмерной теории упругости.  [c.66]

Как видно из изложенного выше, сингулярные интегральные уравнения антиплоских задач теории упругости для многосвязных областей с отверстиями и разрезами строятся аналогично, как и в плоских задачах (см. параграф 2 главы V). В частности, легко могут быть получены интегральные уравнения второй основной задачи, когда на всех контурах известны смещения, а также смешанной задачи, когда на одних контурах (замкнутых или разомкнутых) заданы напряжения, а на других — смеш.ения.  [c.213]

Черепанов Г. П., Решение одной линейной краевой задачи Римана и ее приложение к некоторым смешанным задачам теории упругости, ПММ 26, вып. 5, 1962.  [c.635]

Таким образом, давление Pi x, у) под произвольным фиксированным штампом может быть определено из решения следующей задачи теории упругости для полупространства со смешанными граничными условиями  [c.41]

Длугач М. И. Метод сеток в смешанной плоской задаче теории упругости. Киев, Наукова думка , 1964.  [c.196]

Опишем теперь иной подход к решению смешанной задачи теории упругости [63]. Воспольэуемея представлениями для  [c.396]

К решению динамических задач теории упругости метод Винера— Хопфа (см. I гл. I, и. 4) впервые был применен при исследовании стационарной задачи дифракции на полубесконеч-ном разрезе со свободными краями, а также при изучении напряженного состояния, возникающего при мгновенном образовании полубескоиечной трещины. В этих задачах имеют место смешанные граничные условия, заданные на двух полубесконечных интервалах, при одном граничном условии, сквозном по всему бесконечному интервалу. Ниже на примере решения плоской задачи о вдавливании гладкого штампа [59] проиллюстрируем применение этого метода в динамической теории упругости. Для простоты ограничимся случаем полубесконечного штампа.  [c.483]


Перлин П. И. О свойствах бесконечных систем уравнений в задачах теории упругости для двусвязных тел. — В кн. Исследования по механике и прикладной математике. Тр. МФТИ, 5. — М. Оборопгиз, 1960. Поручиков В. Б. Решение динамических задач теории упругости для угловых областей со смешанными условиями. — ПММ, 1978, т. 42, вып. 5.  [c.675]

Куирадзе В. Д. К решению терхмерной смешанной граничной задачи теории упругости. — В кн. Механика сплошной среды и родственные проблемы анализа. — М. Наука, 1972.  [c.680]

Контактной задачей для полуплоскости называется смешанная задача теории упругости, когда одна часть границы свободна от усилий или на ней действуют заданные усилия, тогда как на другой части границы осуществляется контакт с упругим или жестким телом, вдавливаемым в полуплоскость. Здесь мы рассмотрим простейшую контактную задачу на участке х [—а, а в полуплоскость вдавливаетеся жесткий штамп без трения таким образом, на участке контакта u (x, 0) = g(x), а,2 = 0 всюду, Озг равно нулю вне участка контакта, на участке контакта (Т22 = = —q(x). Полагая а(х) = g (х) и подставляя в (10.9.4), получим  [c.353]

Содержание этого параграфа связано с приемом, который применяется для решения смешанных задач теории упругости для полуплоскости. Рассмотрим потенциал U непрерывного распределения масс в некотором объеме, предполагая объем и распределение масс симметричными относительно плоскости z = 0. Этот потенциал будет необходимым образом четной функцией z, следовательно, производная dUldz обращается в нуль при z = 0 вне заполненного массой объема. Будем теперь сплющивать объем  [c.374]

Наряду с двумя pa MOi репными постановками задач теории упругости (в перемещениях и в напряжениях) известны и другие подходы, когда в качестве искомых функций используются одновременно и перемещения и напряжения (смешанная постановка задачи) или другие, искусственно вводимые функции. Один из таких подходов будет рассмотрен в следующей главе.  [c.341]

Задача о штампе теперь сведена к смешанной краевой задаче теории упругости во-первых, касательные напряжения Xzx, Tyz обраш,аются в нуль на всей плоскости 2 = 0 во-вторых, вне области Q этой плоскости обращаются в нуль нормальные напряжения в-третьих, задано нормальное перемещение w точек области Q. Величины pj i Рг/> наперед неизвестны для их определения используются уравнения равновесия штампа (6.1.6).  [c.309]

В дайьдайшем, при рассмотрении предельного равновесия тел с трещинами, будут необходимы решения только основной смешанной граничной задачи теории упругости.  [c.20]

Интегральные представления комплексных потенциалов Ф (г) и Y (г) (1.145) являются общим решением двумерной бигармони-ческой задачи, содержащим две произвольные комплексные функции g (/) и q (/) (или четыре действительные функции), что позволяет с их помощью изучать самые разные краевые задачи для областей с разрезали . В частности, удовлетворив с помощью представления (1.145) и формул (1.26), (1.30), (1.42) граничным условиям плоской задачи теории упругости для бесконечной плоскости с разрезами, когда на одном берегу разреза заданы смещения, а на другом — напряжения, найдем сингулярные интегральные уравнения второго рода. При использовании условий неидеального контакта упругих тел, когда напряжения и смещения берегов разреза связаны линейными зависимостями (см. [40, 172, 175, 261]), легко получить сингулярные интегро-дифференциальные уравнения типа Прандтля для тел с тонкостенными упругими включениями 238]. Интегральные представления могут быть использованы при решении различных смешанных задач для тел с разрезами, задач о полосах пластичности, моделируемых скачками перемещений [23], и др.  [c.38]

Подобное исследование приводит к необходимости решения краевой задачи теории упругости в сложной области, которое может быть осуществлено в точной постановке лишь для некоторых идеализированных случаев. Одной из традиционных идеализаций является предположение о неограниченности области, в которой расположены дефекты. Методы определения напряжённого состояния упругих тел вблизи внутренних концентраторов напряжений в виде систем трещин, разрезов и тонких включений изложены в монографиях Н.И. Мусхелишвили [107], Г.Я. Попова [115], Т.Н. Савина [125]. Случаи, когда дефекты расположены вблизи границы упругого тела, не могут рассматриваться в рамках упомянутой выше идеализации. В.В.Можаров-ским и В.Е. Старжинским [104] предложен метод решения плоской контактной задачи для полосы, дискретно спаянной с основанием (имеющей конечное число разрезов на границе их раздела). Система круговых отверстий, расположенных вблизи границы полуплоскости, рассмотрена в [125]. Однако алгоритмы решения задач, развитые в [104, 125] и некоторых других работах, достаточно сложны для конкретных реализаций (особенно в случае исследования смешанных задач теории упругости) и, кроме того,  [c.205]


Смотреть страницы где упоминается термин Задача теории упругости смешанная : [c.95]    [c.226]    [c.26]    [c.313]    [c.676]    [c.683]    [c.157]    [c.202]    [c.265]    [c.919]    [c.71]    [c.102]    [c.316]    [c.311]    [c.676]    [c.678]    [c.118]    [c.180]    [c.187]    [c.309]   
Теория упругости Изд4 (1959) -- [ c.132 ]



ПОИСК



I смешанные

Задача граничная теории упругости (первая, вторая, смешанная)

Задача смешанная

Задача упругости

Задачи теории упругости

Классическая теория упругости основная смешанная задача

МАТЕМАТИЧЕСКИЕ МЕТОДЫ В КОНТАКТНЫХ ЗАДАЧАХ Смешанные задачи теории функций комплексного переменного и их приложение к плоским контактным задачам теории упругости

Математические функциональные методы в смешанных задачах теории упругости

СМЕШАННЫЕ И КОНТАКТНЫЕ ЗАДАЧИ ПЛОСКОЙ ТЕОРИИ УПРУГОСТИ Смешанные задачи плоской теории упругости и теории изгиба пластиКонтактные задачи плоской теории упругости

Смешанная краевая задача теории упругости в перфорированной области

Смешанные и контактные задачи плоской теории упругости для областей, ограниченных прямыми линиями

Теория упругости

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте