Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Несущая способность малоцикловая

Исследование напряженного состояния, предельной несущей способности и прочности (включая малоцикловую) корпусов глубоководных аппаратов с учетом среды.  [c.665]

Разрушение деталей и конструкций при малом числе циклов нагружения связано, как правило, с наличием повторных пластических деформаций в зонах концентрации напряжений. Для оценки несущей способности таких деталей необходимо учитывать характеристики деформации и разрушения материала, а также влияние напряженного и деформированного состояния на малоцикловую долговечность. Так как в зонах концентрации напряжений относительно быстро устанавливается режим жесткого нагружения, особое значение приобретают исследования поведения при этом виде нагружения материала и изучение диаграмм его деформирования.  [c.89]


Приведенные данные показывают, что использование высокопрочных сплавов (аз>980 МПа) для деталей, имеющих концентраторы напряжений, может в ряде случаев снизить их малоцикловую прочность и несущую способность.  [c.104]

Обычно повторное нагружение с малой частотой приложения нагрузок сопутствует какому-либо другому виду нагружения — многоцикловой усталости, длительному статическому нагружению и поэтому не всегда учитывается. Однако в настоящее время стало ясно, что повторно-статическое нагружение, или так называемая малоцикловая усталость, оказывает существенное влияние на несущую способность материалов в конструкциях. Разрушения от повторно-статического нагружения встречаются в силовых элементах самолетов, кораблей, деталях систем управления, периодически запускаемых двигателях, сосудах давления и т. д.  [c.97]

Настоящая работа посвящена первым двум из указанных основных направлений исследований проблемы несущей способности элементов конструкций при малоцикловом нагружении.  [c.4]

Несущая способность рассматриваемых конструкций при таких условиях работы ограничена малым числом циклов (10 ) и определяется малоцикловой прочностью гофрированной оболочки. Разрушение компенсаторов, сопровождающееся прорастанием трещины в окружном направлении и нарушением герметичности оболочки, происходит преимущественно за счет накопления усталостных повреждений. Доля повреждений от действия внутреннего давления и односторонне накапливаемой деформации, как правило, не существенна. Последнее объясняется тем, что работа сильфонов как компенсирующих элементов происходит, в основном, при постоянных размахах циклических перемещений, не приводящих к развитию односторонних деформаций и накоплению квазистатического повреждения.  [c.198]

Серенсен С. В. Малоцикловое сопротивление при повышенных температурах и несущая способность элементов конструкций.— В кн. Исследования малоцикловой прочности при высоких температурах. М,-Наука, 1975.  [c.286]

Серенсен С. В. Малоцикловое сопротивление при повышенных температурах и несущая способность элементов конструкций.— Матер. Всесоюз. симп. по малоцикловой усталости при повышенных температурах. Челябинск ЧПИ, 1974, вып. 4.  [c.286]

Изложенные закономерности сопротивления термоциклическому нагружению относятся к однородным напряженным состояниям растяжения — сжатия или чистого сдвига. Они являются основой для определения малоцикловой несущей способности неоднородно напряженных элементов конструкций. Эта циклическая напряженность находится в упругопластической области, являясь при стационарном внешнем нагружении нестационарной в силу процессов перераспределения деформаций и напряжений при повторном деформировании. Анализ полей деформаций в зонах наибольшей напряженности элементов, особенно в местах концентрации, связан с решением достаточно сложных краевых задач, о чем далее будут изложены некоторые данные. Применительно к задачам концентрации напряжений и деформаций представилось возможным применить решение Нейбера [23], связывающее коэффициенты концентрации напряжений и деформаций Ке, в упругопластической стадии с коэффициентом концентрации напряжений а в упругой стадии. Анализ ряда теоретических, в том числе вычислительных, решений и опытных данных о концентрации деформаций позволил [241 усовершенствовать указанное решение путем введения в правую часть соответствующего выражения функции F (5н, а, тп), отражающей влияние уровня номинальных напряжений Он, отнесенных к пределу текучести, уровня концентрации напряжений а и показателя степени т диаграммы деформирования при степенном упрочнении. Зависимость Нейбера в результате введения этих влияний выражается следующим образом  [c.16]


Необходимыми для рассмотренного выше расчетного определения долговечности элементов конструкций на стадии образования л развития трещин являются испытания гладких стандартных образцов при кратковременном и длительном статическом нагружении (с оценкой характеристик прочности и пластичности), а также образцов с начальными трещинами при малоцикловом нагружении при соответствующей температуре и времени выдержки (с измерением скорости развития трещин). Приведенные выше уравнения позволяют осуществлять пересчет получаемых из экспериментов данных на другие числа циклов и времена нагружения. Воспроизведение в опытах эксплуатационных режимов нагружения, уровней номинальной и местной напряженности, исходной дефективности с учетом кинетики изменения статических и циклических свойств представляется пока трудноосуществимым. В связи с этим разработка способов приближенной оценки несущей способности элементов конструкций, работающих при высоких температурах (когда имеет место активное взаимодействие длительных статических и циклических повреждений), приобретает существенное значение.  [c.120]

Располагая такими данными, можно на стадии проектирования выполнить обоснованный выбор конструкционного материала, формы и размеров изделий с параметрами, обеспечивающими заданную малоцикловую долговечность, а затем провести расчетную оценку и на стадии изготовления опытных образцов экспериментальную проверку несущей способности реальной гофрированной оболочки с учетом влияния технологии изготовления на НДС и прочность опасных зон конструкции.  [c.169]

Обобщая результаты исследования малоцикловой долговечности оболочечных корпусов можно констатировать, что разработанный метод расчета тонкостенных оболочечных элементов при малоцикловом неизотермическом нагружении достаточно эффективен и позволяет с удовлетворительной для инженерной практики точностью оценивать несущую способность высоконагруженных элементов конструкции при малоцикловом термомеханическом нагружении.  [c.257]

Разработка и совершенствование методов испытаний на термическую (термомеханическую) малоцикловую усталость металлов и жаропрочных сплавов имеет существенное значение при получении базовых расчетных характеристик деформирования и разрушения материалов и является основой для оценки несущей способности элементов теплонапряженных и высоконагруженных конструкций обоснования выбора материала конструкций, работающих при термомеханическом и термоусталостном нагружениях прогнозирования долговечности конструкций оценки роли технологических факторов (литья, покрытия и т.п.).  [c.127]

Как отмечалось выше, малоцикловые разрушения в резьбовых соединениях происходят либо по поперечным сечениям резьбовой части стержня соединения с крупными шагами, либо посредством последовательного среза витков резьбы (соединения с мелкими шагами). Наблюдаются и случаи переходных видов, когда при срезе отдельных витков окончательное разрушение происходит по поперечному сечению. Из анализа несущей способности резьбовых соединений М20, выполненных с шагом резьбы, равным 1,0 1,5 2,0 и 2,5 мм, следует, что наибольшая долговечность (при том же значении амплитуды напряжений) достигается для соединений М20 X 2,0 и М20 X 1,5. При этом реализуются различные виды разрушения.  [c.211]

Расчет несущей способности производится на основе анализа общих и местных деформаций (или напряжений) элементов конструкций и по расчетным кривым усталости или по данным малоцикловых испытаний лабораторных образцов/по соответствующему руководящему техническому материалу.  [c.216]

Изложенные выше данные относятся к однородным напряженным состояниям и являются основой для определения несущей способности в зонах концентрации элементов конструкций, работающих в условиях малоциклового нагружения.  [c.20]

Сопротивление корпусов ВВЭР хрупкому разрушению в связи с накоплением радиационных повреждений является одним из основных вопросов обеспечения их несущей способности. При величинах интегрального потока до нейтр/м2 наблюдаемое в опытах увеличение критических температур хрупкости достигает 200 С, смещая критические температуры для корпусов в область эксплуатационных. Снижение пластичности корпусных сталей под действием облучения сказывается и на уменьшении сопротивления малоцикловому разрушению при долговечностях до 5 10 . Влияние коррозионных повреждений при соответствующей очистке воды и жидкометаллических теплоносителей на механические свойства корпусных сталей не велико это влияние может сказаться на долговечности на стадии развития трещин циклического нагружения.  [c.76]


Приведенные выше данные о сопротивлении материалов деформированию и разрушению при малоцикловом нагружении позволяют определять несущую способность элементов конструкций (рис. 5.12). Для этого используют также данные об их эксплуатационной нагруженно-сти (механической и тепловой). К числу таких данных, в первую очередь, относятся нагрузка Qg и число циклов нагружения (см. рис. 5.12,а). При выбранных для  [c.95]

В Институте машиноведения исследования в области малоцикловой усталости, развернутые по инициативе академика АН УССР С. В. Серенсена и доктора технических наук профессора Р. М. Шнейдеровича, в течение ряда лет проводятся, исходя из учета кинетики полей неоднородных деформаций определяемых свойствами диаграммы циклического деформирования, и возможности одностороннего накопления деформаций, ведущему к ква-зистатическому разрушению. Структура задачи определения несущей способности элементов конструкций при малоцикловом нагружении состоит из трех основных направлений  [c.4]

Специфической особенностью повреждения при малоцикловой усталости, отличающей ее от обычной усталости, является накопление односторонней макропластической деформации. Эта особенность сначала порождала сомнения в приемлемости поверхностного наклепа для увеличения несущей способности деталей, работающих в условиях малоцикловой усталости. Эти сомнения базировались на том, что ППД сопровождается уменьшением запаса пластичности наклепанного слоя, тогда как способность к накоплению пластической деформации является одним из основных факторов, определяющих сопротивление малоцикловой усталости материалов и конструкций. По той же причине ставилась под сомнение устойчивость благоприятных остаточных напряжений, вызванных поверхностным наклепом. Однако в результате ряда специальных исследований (применительно к сосудам давления, подштамновым плитам прессов, корпусам подводных лодок и др.) эти сомнения были преодолены. К настоящему времени накоплен большой экспериментальный материал, подтверждающий возможность применения поверхностного наклепа для увеличения несущей способности материалов в условиях малоцикловой усталости.  [c.164]

Возникающие при малоцикловом нагружении деталей в зонах концентрации напряжений местные пластические деформации вьиывают перераспределение напряжений и деформаций и разрушение в условиях нестационарного процесса деформирования. В связи с этим для оценки несущей способности элементов конструкций при наличии концентрации напряжений и деформаций необходим количественный анализ изменения напряжений и деформаций на основании критериев прочности с учетом нестационарности напряженно-деформированного состояния (НДС).  [c.4]

В ряде случаев авиационные конструкции эксплуатируются в условиях сложного взаимодействия спектров аэродинамической температурной и силовой нагруженности. Воздействие силовых факторов и температуры на этапах полетного цикла порождает интенсивное протекание процессов перераспределения напряжений и деформаций, изменение структурных параметров и механических характеристик материала, накопление циклических и длительных повреждений. Изменение несущей способности элементов авиационных конструкций оказывается особенно выраженным для малоциклового нагружения при наличии пластических деформаций и нагрева, когда изменение механических свойств по числу циклов и по времени обусловливает заметную неста-ционарность кинетики местных напряженно-деформированных состояний. Расчет долговечности в таких условиях, как отмечается в гл. 1, 2, 4, 8 и 11, осуществляют на основе решений соответствующих краевых задач, реализуемых экспериментально, с помощью численных решений или приближенных аналитических методов.  [c.114]

Для элементов современных конструкций, работающих в условиях воздействия температурных и силовых факторов, процессы перераспределения деформации, накопления новреждений и изменения механических свойств оказывают сопоставимое влияние на кинетику несущей способности, отражая особенности воздействия циклических и статических составляющих нагруженности. Эта кинетика особенно выражена для условий малоциклового нагружения при новынгенных температурах на стадиях образования и развития трещин.  [c.16]

Исследование несущей способности рабочих колес ко.мгфессоров авиационных ГТД при малоцикловом нагружении в условиях нормальной и повышенных температур/В. Г. Баженов, А. Л. Балюк, В. Г. Резник и др. — Проблемы прочности, Г981, № 11, с. 45—48. ,  [c.234]

Наибольшее внимание в вопросах сопротивления малоцикловому и хрупкому раз-р утиению уделяется определению несущей способности основных элементов атомных энергетических установок - корпусов реакторов, каналов, парогенераторов, теплообменников, трубопроводов, внутрикорпусных устройств. В первую очередь это относится к водо-водяным энергетическим реакторам мощностью от 70 до 1000 МВт с температурами теплоносителя от 270 до 325°С, изготавливаемым из малоуглеродистых низколегированных сталей больших толшин. Такие стали склонны к хрупкому разрушению вследствие проявления масштабного фактора, радиационного и циклического повреждения, а также деформационного старения. Толщины стенок корпусов ВВЭР, работающих при давлении от 10 до 16 МПа находятся в пределах от 120 до 260 мм, а в некоторых зонах до 500 мм, диаметры от 1000 до 4000 мм, и высота от 6000 до 24000 мм.  [c.75]


При малоцикловой нагрузке с рабочими напряжениями нижеа термическая обработка и поверхностный наклеп существенно повышают несущую способность конструкции.  [c.204]

Оценка несущей способности элементов конструкций при малоцикловом нагружении основана на анализе напряженного и деформированного состояния в зонах концентрации напряжений (деформаций) с использованием кинетики циклических деформационных свойств материалов по числу циклов нагружения и соот-иетствующих критериев разрушения. Изменение деформационных характеристик зависит как от условий нагружения, так и от структурного состояния материала и может характеризоваться либо увеличением (разупрочняющиеся материалы), либо уменьшением (упрочняющиеся материалы), либо неизменностью (циклически стабилизирующиеся материалы) ширины петли гистерезиса с ростом числа циклов нагружения с заданной амплитудой нагрузки (напряжение) в цикле.  [c.6]

Прогресс в теории неупругого деформирования, отмечаемый в последние два-три десятилетия, в существенной мере связан с актуальностью проблемы малоциклового разрушения для многих теплонапряженных и высоконагруженных конструкций современной техники. Необходимость расчета полей напряжений и деформаций при изменяющихся нагрузках и температурах потребовала переоценки простейших классических теорий пластичности и ползучести с точки зрения возможности отражения ими множества деформационных эффектов, которые при однократном нагружении не проявляются или признаются малосущественными. Оказалось, что разработка теории неупругого деформирования, удовлетворяющей новым требованиям, связана с немалыми принципиальными трудностями значительные затруднения возникали также при реализации поцикловых расчетов кинетики деформирования в связи с исключительно большой их трудоемкостью. На определенном этапе это предопределило преимущества приближенного подхода к оценке несущей способности конструкций, опирающегося на представления и методы предельного упругопластического анализа. Развитие, которое получил этот подход за последние десятилетия [16, 20], обеспечило ему довольно высокую эффективность при решении прикладных задач. С другой стороны, полученные в рамках теории приспособляемости (и ее дальнейшего обобщения — теории стационарных циклических состояний) четкие представления о различных типах поведения конструкции способствовали более глубокому пониманию многих характерных особенностей повторно-переменного деформирования.  [c.7]


Смотреть страницы где упоминается термин Несущая способность малоцикловая : [c.322]    [c.10]    [c.154]    [c.259]    [c.180]    [c.59]    [c.287]    [c.67]    [c.206]    [c.287]    [c.195]    [c.264]   
Несущая способность и расчеты деталей машин на прочность Изд3 (1975) -- [ c.417 ]



ПОИСК



Муханов К. К., Ларионов В. В., Ханухов X. М. Метод оценки несущей способности сварных стальных конструкций при малоцикловом нагружении

Несущая способность

Сервисен етр Малоцикловое сопротивление при повышенных температурах и несущая способность элементов конструкций

Статическая и малоцикловая несущая способность

Ток несущий



© 2025 Mash-xxl.info Реклама на сайте