Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

УПРУГОЕ ТЕЛО Общая теория деформаций и напряжений

В первом разделе тома даются принципы и основные уравнения механики упругого деформируемого твердого тела теории деформаций и напряжений, дифференциальные уравнения равновесия, связь между компонентами напряжения и деформации, общие теоремы теории упругости и строительной механики, вариационные принципы и их использование для решения задач механики деформируемого твердого тела, методы конечных и граничных элементов.  [c.16]


При простом разгружении, т. е. когда все внешние силы начинают одновременно убывать также пропорционально их общему параметру ( пассивная деформация), упруго-пластическое тело подчиняется обобщенному закону Герстнера для описания в этом случае закона спада деформации и напряжений применимы законы линейной теории упругости.  [c.193]

Иногда высказывается утверждение, что при любых изотермических процессах нагружения без промежуточных разгрузок для модели пластического тела с упрочнением можно рассматривать связи между полными деформациями и напряжениями как связи, аналогичные связям нелинейной теории упругости. Ниже показывается, что в общем случав это утверждение неверно Для частных путей нагружения для малой частицы такая трактовка допустима. Подчеркнем, однако, что для заданного част-  [c.430]

Теории пластичности устанавливают связь между пластическими деформациями и напряжениями. Так же, как и в теории упругости, эта связь не зависит от времени, т.е. при неизменном напряженном состоянии деформированное состояние не меняется и наоборот. Однако в отличие от упругости конечное упругопластическое деформированное состояние тела зависит от предшествующей истории изменения напряженного состояния (истории нагружения). Задача построения общей теории пластичности не решена вследствие сложности процесса пластического деформирования реального материала. Предложен ряд различных теорий, основанных на физических, структурных и модельных представлениях [8, 18, 22, 28, 37].  [c.88]

В предыдущих параграфах мы пользовались сингулярным решением для изотропного упругого тела, хотя в большинстве практических случаев рассматриваемые материалы обладают сильно анизотропными упругими свойствами (например, слоистые и армированные материалы, а также большинство материалов естественного происхождения). Возрастание анизотропии сказывается на уменьшении симметрии в упругих свойствах и увеличении числа упругих постоянных, связывающих напряжения и деформации в точке такого тела. В теории упругости анизотропной среды показано, что произвольный анизотропный материал, не обладающий плоскостями симметрии упругих свойств, можно охарактеризовать 21 независимой упругой постоянной [19,20]. Использованную в этом случае форму закона Гука лучше всего продемонстрировать, записав шесть независимых компонент деформаций и напряжений для трехмерного случая в виде векторов j и е и заметив, что наибо-лее общее линейное соотношение между ними представляется в виде матрицы упругих податливостей [С] размером 6x6, откуда  [c.125]


Исследование деформаций и напряжений в местах силового контакта деталей представляет собой один из наиболее сложных разделов математической теории упругости. Начало теории деформации упругих тел в местах контакта на основе использования общих уравнений теории упругости и методов теории потенциала положено работой Г. Герца [41].  [c.381]

При распространении электромагнитной волны происходит перенос (течение) энергии, подобно тому как это имеет место при распространении упругой волны. Вопрос о течении энергии в упругой волне был впервые (1874 г.) рассмотрен Н. А. Умовым ), который доказал общую теорему о потоке энергии в любой среде. Поток энергии в упругой волне может быть вычислен через величины, характеризующие потенциальную энергию упругой деформации и кинетическую энергию движения частиц упругой среды. Плотность потока энергии выражается с помощью специального вектора (вектор Умова). Аналогичное. рассмотрение плодотворно и для электромагнитных волн. До известной степени можно уподобить энергию электрического поля потенциальной энергии упругой деформации, а энергию магнитного поля — кинетической энергии движения частей деформированного тела. Так же как и в случае упругой деформации, передача энергии от точки к точке в электромагнитной волне связана с тем обстоятельством, что волны электрической и магнитной напряженностей находятся в одной фазе. Такая волна называется бегущей. Движение энергии в бегущей упругой или электро-магнитной  [c.37]

При решении задач теории упругости для общего случая трехмерных тел встречаются большие математические затруднения это обстоятельство вынуждает переходить к решению более или менее широких классов частных задач, одним из которых является плоская задача теории упругости. В плоской задаче теории упругости рассматриваются три случая упругого равновесия тела, имеющих большое значение для практики плоская деформация, плоское напряженное состояние и обобщенное плоское напряженное состояние.  [c.99]

Предыдущие главы (исключая предварительное изложение основ теории упругости в главе 1) касались двумерных задач. Настоящая глава, так же как и последующая, посвящена дальнейшим общим вопросам, которые важны для решения рассматриваемых далее задач. В данной главе анализ напряжений полностью отделен от анализа деформаций и не вводятся никакие зависимости между напряжениями и деформациями. Эти результаты приложимы к напряжениям, возникающим в любой (сплошной) среде, например в вязкой жидкости или в пластическом твердом теле, и то же самое справедливо в отношении деформаций.  [c.229]

Если указанные две предпосылки не выполняются, то говорят о нелинейной теории упругости. Последняя может разделяться на а) теорию нелинейную физически (связь между напряжениями и деформациями нелинейна), но линейную в геометрическом (деформационном) отношении б) линейную в физическом смысле, но нелинейную в геометрическом (случай конечных деформаций в идеально упругом теле) и в) нелинейную и в физическом и геометрическом отношениях (общий случай).  [c.50]

Задача теории упругости неоднородного тела формулируется и решается аналогично задаче теории упругости однородного изотропного или анизотропного тела. Различие между ними состоит лишь в том, что в физических уравнениях (законе упругости) механические характеристики являются заданными непрерывными функциями координат. Здесь необходимо еще раз подчеркнуть, что при этом деформации тела считаются малыми и предполагается выполнение обобщенного закона Гука. Очевидно, что в случае неоднородного тела остаются справедливыми общие уравнения механики сплошной среды соотношения Коши между деформациями и перемещениями и т. д. Подробное изложение теории напряжений и деформаций приводится в многочисленных книгах [11, 100, 138 и др.], поэтому ниже они даются без вывода в прямоугольной системе координат х, у, z) в объеме, необходимом для дальнейшего изложения. Эти же уравнения в других системах координат (цилиндрической, сферической) можно найти в указанных выше и других изданиях.  [c.32]


Таким образом, полная система уравнений теории упругости устанавливает лишь общие закономерности изменения напряжений, деформаций и перемещений в упругих телах. Решение же конкретной задачи может быть получено, если заданы условия нагружения тела. Это дается в граничных условиях, которые и отличают одну задачу теории упругости от другой.  [c.332]

Существование резкой границы между упругим и неупругим деформированием, возможность выделения из общей деформации ее пластической составляющей — эти вопросы до сих пор остаются дискуссионными. Как известно, в основе теории пластического течения лежит представление о поверхности текучести. Предполагается, что эта поверхность ограничивает значения напряжений, вызывающих лишь упругую деформацию в элементарном объеме тела. Пластическое деформирование возможно при напряжениях, отвечающих границе данной области, т. е. при выходе отображающей точки на поверхность нагружения.  [c.122]

В случае разрезов нулевой толщины (как в данной задаче) собственное число % может быть найдено Р ] из физических соображений, на основании общих положений механики разрушения. В гл. V будет показано, что во всякой физически корректной модели упругого тела характерные напряжения и деформации на краю математического разреза (в рамках теории Малых деформаций) должны обращаться в бесконечность так, чтобы их произведение имело особенность вида 1/г. В предельных- случаях допускается ограниченность напряжений или деформаций идеально-пластическое тело (напряжения ограничены, деформации имеют порядок 0(1/г)), идеально-отвердеваю-щее тело (деформации ограничены, напряжения имеют порядок 0(1/0).  [c.113]

Если температура упругого тела зависит от координат, то в нем возникают термические напряжения. Поле этих напряжений находится из обычных уравнений теории упругости с объем- // А ной силой, определяемой после гг/ решения чисто температурной задачи Поэтому распределение напряжений и деформаций вблизи фронта хрупкой трещины в неизотермическом случае дается общими формулами (3.44) —(3.46).  [c.529]

Исследования Вебера дали яркое экспериментальное доказательство того, что всякая общая теория деформирования твердых тел должна включать такое поведение, как описываемое им, особенно после того, как он показал, что упругое последействие является воспроизводимым явлением и отражается в зависимости между напряжением и деформацией при очень различных историях деформирования.  [c.87]

Цель решения задач теории упругости состоит в нахождении распределения напряжений и смещений в упругом теле, подверженном действию заданной системы объемных сил и заданных напряжений или смещений на границах. В общем трехмерном случае это означает определение в точках тела шести компонент напряжений Сц = Oji и трех компонент смещений ut как функций от координат этих точек. Уравнения равновесия (2.5.1) и соотношения напряжение—деформация (2.5.6) дают для этих девяти неизвестных девять уравнений  [c.29]

В этой книге излагается общая теория криволинейных координат и ее применения в механике, в учении о теплоте и теории упругости разъясняется преобразование уравнений теории упругости к криволинейной системе координат и в качестве примера исследуется деформация сферической оболочки. В заключительных главах Ламе подвергает критическому анализу принципы, на основе которых строится вывод основных уравнений теории упругости. Теперь он уже не одобряет вывод уравнений по способу Навье (с привлечением гипотезы молекулярных сил), а отдает предпочтение методу Коши (в котором используется лишь статика твердого тела). Затем он принимает гипотезу Коши, согласно которой компоненты напряжения должны быть линейными функциями компонент деформации. Для изотропных материалов принятие этой гипотезы приводит к сокращению кисла необходимых упругих постоянных до двух, находимых из испытаний на простое растяжение и простое кручение. Таким путем все не-  [c.144]

В общем случае связь между напряжениями и деформациями не является линейной. Для учета этой нелинейности нужно использовать точное выражение для тензора деформаций (1.5) и в соотношениях типа (1.13) сохранить члены с более высокими степенями деформаций. К чему приводит учет нелинейности упругости в теории распространения ультразвуковых волн, мы рассмотрим более подробно далее (в гл. IV—V) по отношению к продольным волнам в среде, характеризующейся одним модулем упругости, а затем, в гл. X, коротко остановимся на нелинейности твердых тел.  [c.25]

В общей теории трения жидкостей показывается, что при деформации отдельных элементов жидкости возникают напряжения такого же рода, как и в упругих телах, с той только разницей, что они пропорциональны не деформациям, а скоростям деформаций. Поэтому известные из теории упругости формулы для девяти компонентов напряженного состояния в случае жидкости принимают вид  [c.146]

Все эти экспериментальные исследования, несомненно, послужили мощным толчком к тому, чтобы предпринимать попытки к теоретическим исследованиям по вопросу о составлении дифференциальных уравнений движения жидкости с учётом не только давления", но и внутреннего трения. К этому времени стали открываться возможности для теоретических исследований такого рода в связи с развитием механика упруго деформируемого тела. Накопление исследований и решений конкретных задач по теории изгиба брусьев, по теории кручения стержней и по теории колебаний стержней и пластинок на основе использования закона Гука о пропорциональности напряжений деформациям создало все предпосылки не только к тому, чтобы установить общие уравнения равновесия и колебаний упругих тел, но и к тому, чтобы закон Гука в несколько изменённой форме распространить на жидкость и на основе этого создать дифференциальные уравнения движения жидкости с учётом внутреннего трения. Этим обстоятельством и объясняется тот факт, что создатели математической теории упругости—Навье, Пуассон, Коши, Сен-Венан и Стокс оказались одновременно и создателями математической теории движения вязкой жидкости.  [c.14]


Основные математические объекты МСС суть тензоры различных порядков нулевого — скаляры (плотность, энергия), первого — векторы (радиус-вектор, поток тепла, скорость), второго — тензоры деформаций, внутренних напряжений, третьего и четвертого — тензоры пьезоэлектрических констант, коэффициентов вязкости и упругости и др. Все эти тензоры считаются непрерывно дифференцируемыми достаточное число раз по координатам и по времени, ограничены вместе с их производными в области тела. Все они введены в XIX веке в процессе создания теории упругости, гидромеханики и других разделов теоретической физики, и затем в алгебре и геометрии была создана их общая теория.  [c.50]

Глава I. О с н о в н ы е уравнения механики упругого тела. Здесь на 75 страницах изложены все общие основания теории упругости, а именно а) учение о напряженном состоянии тела б) учение о деформации в) связь между напряжением и деформацией г) выведены дифференциальные уравнения равновесия упругого тела и поставлены две основные задачи 1° определить состояние тела, когда даны силы, на него действующие 2° определить состояние тела, когда даны смещения точек поверхности, ограничивающей тело.  [c.9]

Методы теории функций комплексного переменного, как показал впервые С. Г. Лехницкий (его работы были опубликованы в тридцатых годах см., например, [1]), применимы и к случаю однородного анизотропного тела, имеющего в каждой точке плоскость упругой симметрии, параллельную данной плоскости, которую мы примем за плоскость Оху. Если тело подвергается плоской деформации, параллельной этой плоскости, то функция напряжений (функция Эри) удовлетворяет вместо бигармонического уравнения более общему уравнению (имеется в виду случай отсутствия объемных сил)  [c.603]

В общем виде здесь будут исследоваться только однородные напряженные или деформированные состояния. В этой главе мы будем интересоваться в первую очередь влиянием температуры на упругие свойства тел позже будут рассмотрены влияние температуры на пластичность, вязкость или скорость изменения деформаций со временем. Так же как и в термодинамической теории идеальных газов, удобно выделить специальные виды процессов деформирования и нагружения твердого тела и описать, например, те из них, при которых изменения температуры вследствие нагревания или охлаждения тела происходят при поддерживаемой на заданном уровне деформации или напряжении. Удобно также различать изотермические и адиабатические изменения состояния как специальные виды процессов нагружения. При изотермическом изменении состояния температура поддерживается постоянной.  [c.15]

Изучению напряжений, деформаций и перемещений в пластически деформируемых телах посвящен раздел механики деформируемого твердого тела, называемый теорией пластичности [10, 12, 13, 18, 36]. Теория пластичиости решает глав1гым обра юм те же задачи, что и линейная теория упругости, но для материалов с другими физическими свойствами. Поэтому между указанными теориями имеется много общего, в частности общими оказываьзтся уравнения равновесия, зависимости между перемещениями и деформациями, уравнения совместности деформаций. Только вместо закона Гука, используемого в линейной теории упругости, в теории пластичности применяются другие физические соотношения.  [c.293]

Остановимся еще на одном, казалось бы парадоксальном, примере. Из решения плоской задачи теории упругости для бесконечной области (безразлично — бесконечной или полубеско-нечной) будет следовать, что при неравенстве нулю главного вектора внешних сил перемещения оказываются бесконечными. В этом нет ничего удивительного, поскольку при рассмотрении плоской задачи (допустим, в случае плоской деформации) с позиций пространственной задачи оказывается, что суммарное усилие обращается в бесконечность. Следует заметить, что переходы к бесконечному телу при решении задачи в напряжениях и перемещениях не эквивалентны друг другу. Если в напряжениях переход и возможен, то в смещениях он может и быть ошибочен, что и подтверждается приведенным примером. Для устранения же бесконечных смещений можно предложить, например, такой спосЪб. После того как решение в деформациях определено достаточно точно из решения для бесконечного тела, находят по ним смещения в истинном теле, исходя из его фактических размеров и краевых условий. Разумеется, строгое обоснование предлагаемого подхода затруднительно для общего случая, но в частных задачах, по-видимому, оно может быть достигнуто.  [c.304]

Если на всей поверхности тела заданы усилия, граничные условия задают на поверхности линейные комбинации искомых функций, т. е. напряжения. Но если заданы перемещения точек поверхности, то сформулировать граничные условия в напряжениях в общем виде невозможно эти условия будут содержать некоторые интегралы от напряжений и их производных, которые получатся, если в формулы Чезаро внести выражения деформаций через напряжения по закону Гука. Иногда, например, в плоской задаче теории упругости соответствующие преобразования удается довести до конца.  [c.251]

При определении коэффициента внешнего трения необходимо исходить из напряженного состояния в зонах фактического касания. В общем случае вследствие распределения вершин микронеровностей по высоте микроиеров-ности в зависимости от глубины внедрения могут деформировать материал поверхности менее жесткого тела упруго, упругоиластнчески или пластически. Границы между каждым из Ердов деформирования определяют, решая соответствующие контактные задачи теорий упругости и пластичности. Однако в ряде случаев (например, при трении резин, а также металлов при небольших контурных давлениях) в зонах касания возникают упругие деформации. Как показывает анализ, при внедрениях, соответствующих пластическим деформациям, в зонах касания поверхностей с наиболее распространенными Б инженерной практике параметрами шероховатостей основные силовые взаимодействия приходятся ia микронеровности, деформирующие материал поверхностного слоя менее жесткого тела пластически. Поэтому в настоящее время принято оценивать взаимодействие твердых тел при упругих и пластических деформациях в зонах касания. Теория взаимодействия твердых тел ири упругопластических деформациях пока ещё не разработана.  [c.192]

Пластичностью называется свойство твердого тела изменять под внешними воздействиями, не разрушаясь, свою форму и размеры и сохранять остаточные (пластические) деформации после устранения этих воздействий. Теория пластичности является разделом механики, который устанавливает общие законы образования в твердых телах любой конфигурации пластических деформаций и возникающих на всех стадиях пластического деформирования напряжений, вызываемых различными внешними причинами (нагрузками, температурными воздействиями и др.). Теория пластичности в отличие от теории упругости рассматривает тела, которые по своей природе не подчиняются свойствам упругости. Если тело не пэдчиняется свойствам упругости с самого начала приложения к нему внешних воздействий, то оно называется пластическим. Диаграмма деформирования пластического тела показана на рис. 99. Если же тело в начале нагружения обладает упругими свойствами и лишь с некоторой стадии нагружения в нем появляются остаточные деформации, то оно называется упругопластическим. Диаграммы дес рмирования упругопластических тел изображены на рис. 100 и 10L  [c.217]


Кинетическая теория описывает изотропное несжимаемое идеально упругое тело и позволяет установить соотношения между главными напряжениями и главными удлинениями, аналогичные тем, которые были выведены нами ранее для материала, подчиняющегося условию (4.7). (У Трелоара в уравнениях (4.19а) символы ti, ки G, р соответствуют символам ри, е,-, [Хо, —р в нашей записи уравнений (4.14)). Из того, что эти уравнения были выведены для однородной деформации общего типа (при постоянном объеме), следует идентич-  [c.111]

Наиболее общие математически возможные соотношения напряжение — деформация необязательно являются производными от одной скалярной функции. Например, из классической теории упругости хорошо известно, что введение деформационно-энергетической функции уменьшает число независимых упругих констант в соотношениях напряжение—деформация. Ограничения на соотношения напряжение — деформация для изотропных материалов в теории больших конечных деформаций были рассмотрены Лоджем и Вейссенбергом Р]. Некоторые авторы ввели термин гипоупругость (т. е. меньше, чем упругость) для описания упругих материалов, напряжение в которых является производной только от простой деформационно-энергетической функции. По-видимому, весьма маловероятно, чтобы реально существовала упругая среда (в том смысле, что напряжение есть однозначная функция деформации), которая в то же время была бы негипоупругой. В этом случае переменных Т, уц было бы достаточно для описания напряжений, но не термодинамического состояния, что довольно странно. Если это так, то различие между упругими и гипоупругими твердыми телами скорее математическое, нежели физическое.  [c.206]

Рассмотренные примеры показывают, что механизм вязкого разрушения достаточно сложен. Экспериментальные данные последних лет свидетельствуют о том, что очень высокие скорости роста пор, предсказываемые теориями вязко-упругого тела, являются нереальными, так как частицы могут перемещаться вместе с матрицей до тех пор, пока не произойдет разрыва поверхностных связей. Модель Томасона описывает это явление с точки зрения пластического стеснения деформации и в общем случае достаточно хорошо обрисовывает физическую картину разрушения. По-видимому, образование макроскопической шейки на растягиваемом образце не определяет локального вязкого разрушения в нем (хотя радиальные растягивающие напряжения в шейке облегчают рост пор) и слабо связано с процессами, происходящими у концентратора напряжений.  [c.202]

При исследовании больших деформаций среды используются два подхода — Эйлера и Лагранжа. Определяющее уравнение теории пластичности содержит тензоры напряжений и приращений деформаций и описывает жесткоидеальнопластическое поведение тела. Если необходимо учесть влияние упругости, это уравнение предполагают применимым к пластической области скоростей деформации, к которой для вычисления общей скорости деформации добавляют упругую область. Скорость упругой деформации рассматривают как функцию скорости изменения напряжений.  [c.153]

В своём выводе основных уравнений теории упругости Навье (см. стр. 129) исходил из предположения, что идеально упругое тело состоит из молекул, между которыми при его деформировании возникают силы взаимодействия. При этом принималось, что силы эти пропорциональны изменениям расстояний между молекулами и действуют по направлениям соединяющих их прямых линий. Таким путем Навье удалось установить соотношения между деформациями и упругими силами для изотропных тел с введением лишь одной упругой константы. Коши (см. стр. 135) первоначально ввел две константы в зависимости между напряжением и деформацией в случае изотропии. В самом же общем случае анизотропного тела Пуассон и Коши допускали, что каждая из шести компонент напряжения может быть представлена однородной линейной функцией шести компонент деформации (обобщенный закон Гука). В эти функции входило 36 постоянных. Положив в основу физического истолкования явления упомянутую выше молекулярнуро теорию, они снизили число постоянных для общего случая до 15. Они показали, что изотропия допускает дальнейшее снижение этого числа, так что окончательно для записи соотношений между компонентами напряжения и деформации необходима лишь одна постоянная, которую и ввел Навье.  [c.262]

Уравнения теории упругости содержат производные от смещений, т. е. фактически определяют деформации тела. Но не всякое поле деформаций может иметь место в реальном упругом теле в силу непрерывности смещений. Налагаемые этим ограничением условия (условия совместности) для компонент деформации получил в 1860 г. Сен-Венан. Аналогичные условия для компонент напряжения были получены Э. Вельтрами и в более общей форме — Дж. Мичеллом  [c.54]

Эти простейшие задачи на основании различных произвольных допущений относительно деформации тел были разрешены значительно ранее установления обпщх уравнений теории упругости. Сюда относятся случаи растяжения и сжатия призматических стержней, задача о всестороннем равномерном сжатии, чистый изгиб призматических стержней и пластинок и кручение круглых стержней. Все эти вопросы излагаются в элементарном курсе сопротивления материалов. Здесь мы еще раз возвращаемся к ним, чтобы на самых простых примерах показать общий ход решения задач теории упругости и выяснить общий метод определения перемещений точек упругого тела, если известно распределение напряжений.  [c.62]

Первое систематическое рассмотрение устойчивости равновесия упругих тел принадлежит Дж. Брайану Он выяснил пределы применимости теоремы Кирхгофа и показал, что при условии малых деформаций она отпадает, если только один или два размера тела можно считать малыми. При этом явление неустойчивости может иметь место в пределах упругости, если произведение модуля упругости Е на квадрат отношения малого размера к конечному будет того же порядка, что и предел упругости материала. Дальнейшая разработка общей теории устойчивости равновесия упругих тел принадлежит Р. Саусвеллу Он устраняет ограничение относительно малости деформаций и оперирует с идеальным телом бесконечно большой прочности. При этих условиях и тела, у которых все размеры одного порядка, могут оказаться в состоянии неустойчивого равновесия. Исходя из однородного напряженного состояния тела, Р. Саусвелл дает точкам тела весьма малые перемещения и, v, w ) и для этой отклоненной формы пишет дифференциальные уравнения нейтрального равновесия, причем считает начальные деформации конечными. То соотношение между внешними силами и размерами тела, при котором полученные уравнения дают для и, у и w решения, удовлетворяющие условиям на поверхности, определяет критическое значение нагрузки в рассматриваемом случае. Применяя свой общий метод к тонким стержням и пластинкам, Р. Саусвелл нашел, что имеющееся решения задач устойчивости являются лишь первыми приближениями, хотя и вполне достаточными для практических приложений. Мы в дальнейшем ограничимся этими приближенными решениями, отсылая интересующихся теорией вопроса к работе Р. Саусвелла.  [c.258]

Мы изложили здесь в самых общих чертах вывод основных уравнений математической теории изотропного упругого тела, подвергнутого бесконечно малой деформации. Необходимо, по крайней мере вкратце, отметить, что некоторые материалы, хрупкие или обладающие пористой структурой с мягкими и слабыми включениями (чугун, бетон), но следуют линейным зависимостям между напряжениями и деформациями, выраженным уравнениями (25.2), (25.3) или (25.14). Кривая простого растяжения или сжатия для таких материалов в пределах малых деформаций состоит из двух сегментов—одного Qx f ( х) для стадии нагрузки и другого, с более крутым уклоном d x d x> для разгрузки. Эти материалы обнаруживают обычно весьма заметный упругий гистерезис с характерными для него петлями в кривых деформирования иод иеременными циклами нагрузки и разгрузки (гл. 1П). Делались разнообразные попытки использовать аппарат математической теории упругости также и для этих материалов, соответствеппо его обобщив. Поскольку такие материалы обнаруживают отчетливые изменения объема, то в определенных случаях представляется достаточным принять для них линейную зависимость между малым упругим изменением объема  [c.445]

Общая теория такой несимметричной упругости была разработана братьями Коссера ) в 1910 г. В классической теории упругости материальная частица совпадает с точкой, а деформированное состояние описывается перемещением точки. В отличие от этой модели братья Коссера ставят в соответствие каждой частице деформированной среды ортогональный трехгранник. Таким образом частицы получают ориентирование (полярная среда). Каждая частица среды Коссера является малым абсолютно твердым телом. Деформация такой среды описывается не только вектором перемещения и, но также вектором поворота о, т. е. величиной, являющейся функцией положения х и времени t. При таких предположениях в теле возникают не только напряжения Oij, но и моментные напряжения образующие, вообще говоря, несимметричные тензоры.  [c.798]



Смотреть страницы где упоминается термин УПРУГОЕ ТЕЛО Общая теория деформаций и напряжений : [c.20]    [c.7]    [c.104]    [c.44]    [c.166]    [c.44]    [c.50]    [c.6]    [c.146]    [c.22]    [c.628]   
Смотреть главы в:

Механика деформируемого твердого тела  -> УПРУГОЕ ТЕЛО Общая теория деформаций и напряжений



ПОИСК



597 — Деформации и напряжения

Деформация упругая

НАПРЯЖЕНИЯ И ДЕФОРМАЦИИ Теория напряжений

Напряжения упругие

Общая теория деформаций

Общая теория напряжений

Тела упругие — Деформации —

Теория деформаций

Теория напряжений

Теория напряжений и деформаций

Теория упругости

Упругие тела

Упругость Теория напряжений и деформаций

Упругость Теория — см Теория упругости

Упругость напряжение



© 2025 Mash-xxl.info Реклама на сайте