Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформация пассивная

Представленный выше анализ направлен на выяснение режима движения пассивных маркеров в поле скорости, которое генерируется двумя точечными вихрями внутри круговой области. Если анализировать деформацию пассивного контура, изначально расположенного в хаотической области, то следует ожидать достаточно интенсивного режима перемешивания. С другой стороны, если контур поместить в регулярную область, то он должен с течением времени увеличивать свою длину по линейному закону [2].  [c.460]


Зависимости между напряжениями и деформациями при нагрузке и разгрузке не совпадают. В соответствии с этим принято различать активное и пассивное деформирование образца. При активном деформировании или, как говорят обычно, активной деформации напряжение возрастает, при пассивной — уменьшается. Таким образом, участок диаграммы Oi (рис. 404) соответствует активной, а СР — пассивной деформации. Деформация, измеряемая отрезком ОБ (рис. 404), может рассматриваться как сумма чисто пластической, необратимой деформации ОР и упругой деформации РО, которая восстанавливается после снятия нагрузки. Таким образом, деформация образца не является ни чисто пластической, ни чисто упругой.  [c.354]

При исследовании неупругого поведения материалов необходимо различать активный (нагрузка) и пассивный (разгрузка) процессы деформирования. Элементарная работа напряжений на приращениях деформаций определяется выражением  [c.98]

Как это уже было показано, значения деформаций при на-грузке и разгрузке образца за пределом упругости для одного и того же напряжения неоднозначны. Двузначность сохраняется и при сложном напряженном состоянии в случае нагрузки и разгрузки образца, поэтому в теории пластичности вводят понятие об активной и пассивной деформациях, простом и сложном нагружениях.  [c.97]

Активная деформация — процесс с возрастающими пластическими деформациями, связанный с ростом нагрузки, или нагружением. Разгрузку стержня называют пассивной деформацией, она сопровождается уменьшением упругой части деформации, которая происходит по закону Гука, тогда как пластическая деформация остается неизменной.  [c.97]

Во втором (пассивном) периоде происходит восстановление упругих или вязких деформаций, при этом контактная сила Р уменьшается. Если Я = О, то происходит нарушение контакта. Имеем разгрузку, которой соответствует зависимость  [c.334]

СКОЛЬ угодно сложным образом. Величины Оц удовлетворяют уравнению (16.3.1) при движении по пути нагружения поверхность деформируется и уравнение (16.3.1) меняет свой вид, но таким образом, что конец вектора напряжения всегда лежит на поверхности S. Будем называть нагружение активным, если приращение вектора о направлено в наружную сторону поверхности S и, следовательно, сопровождается пластической деформацией. Если вектор da направлен внутрь объема, ограниченного поверхностью S, и, следовательно, происходит лишь упругая де( )орма-ция, будем называть нагружение пассивным или разгрузкой. Наконец промежуточный случай, когда da лежит на поверхности нагружения, мы будем называть нейтральным нагружением. Сделаем два следующих предположения.  [c.539]


Нейтральное нагружение не сопровождается пластической деформацией. Это условие выражает требование непрерывности при переходе от пассивного нагружения к активному. Заметим, что в теории идеальной пластичности дело обстоит совершенно иначе, там величина пластической деформации или скорости деформации неопределенна и становится отличной от нуля при достижении вектором о поверхности текучести. В деформационной теории, как она была сформулирована выше, непрерывности при переходе от пассивного нагружения к активному нет при активном нагружении, бесконечно мало отличающемся от нейтрального, происходит пластическая деформация, при бесконечно близком пассивном пути нагружения деформация упруга. Это обстоятельство служит серьезным доводом, препятствующим расширенному использованию деформационной теории.  [c.539]

Активная и пассивная деформации.  [c.258]

Законы пластического деформирования зависят от того, увеличивается или уменьшается нагрузка. В связи с этим различают два вида деформации активную и пассивную.  [c.259]

При простом растяжении или чистом сдвиге эти понятия легко разграничиваются. Активной называется деформация, при которой напряжение по абсолютной величине растет, а пассивной,— при которой напряжение по абсолютной величине убывает.  [c.259]

При сложном напряженном состоянии пластическая деформация может происходить при самых разнообразных соотношениях между напряжениями. В этом случае деформацию элемента тела в данный момент называют а кт и в н о й, если интенсивность напряжений сг,- имеет значение, превышающее по абсолютной величине все предыдущие ее значения пассивной, если интенсивность напряжений а,- по абсолютной величине меньше хотя бы одного из предыдущих ее значений. (Понятие об интенсивности напряжений о,- дано в 2.) При активной деформации пластическая деформация возрастает, а при пассивной остается постоянной. Активную деформацию называют процессом нагружения, а пассивную —иногда разгрузкой.  [c.259]

Первый закон — закон изменения объема. При упругопластических как активных, так и пассивных деформациях твердого тела объемная деформация всегда является упругой и подчиняется закону Гука (3.7)  [c.266]

При простом разгружении, т. е. когда все внешние силы начинают одновременно убывать также пропорционально их общему параметру ( пассивная деформация), упруго-пластическое тело подчиняется обобщенному закону Герстнера для описания в этом случае закона спада деформации и напряжений применимы законы линейной теории упругости.  [c.193]

Зависимости между напряжениями и деформациями при нагрузке и разгрузке не совпадают. В соответствии с этим принято различать активное и пассивное деформирование образца. При активном деформировании или, как говорят обычно, активной деформации напряжение возрастает, при пассивной — уменьшается. Таким образом, участок диаграммы ОВС (рис. 350) соответствует активной, а F — пассивной деформации. Деформация, измеряемая отрезком 0D (рис. 350), может рассматриваться как сумма чисто пластической, необратимой деформации OF и упругой де-  [c.348]

Высокая коррозионная стойкость сплавов принципиально не исключает возможность появления так называемого коррозионного растрескивания даже в средах, где установлена их высокая коррозионная стойкость. Поэтому коррозионное растрескивание представляет большую опасность. Она заключается в том, что разрушение вязкого в нормальных условиях металла, подверженного одновременно воздействию напряжения и определенной активной среды, происходит хрупко, т.е. без заметных деформаций и при напряжениях, более низких, чем временное сопротивление и даже предел текучести. Этот вид разрушения наиболее характерен для высокопрочных металлических материалов, склонных к пассивации, но находящихся, однако, в условиях, когда пассивное состояние под влиянием агрессивной среды может нарушаться в зоне максимальных напряжений. У титана вследствие высокой устойчивости пассивного состояния и быстрой регенерации во многих средах пассивных оксидных пленок при их механическом повреждении, а также из-за достаточной пластичности чувствительность к коррозионному растрескиванию оказалась во много раз меньше, чем у высокопрочных и нержавеющих сталей, алюминиевых и магниевых сплавов. Но по мере разработки более прочных титановых сплавов и расширения области их применения были установлены случаи явного коррозионного растрескивания и определены многие агрессивные среды, способствующие этому явлению.  [c.32]


Созданию высокой химической активности в вершине трещины содействует и механический фактор. Как известно, механические напряжения в вершине трещины очень высоки. Даже при низких значениях интенсивности напряжений материал в вершине трещины находится под действием напряжений, близких к пределу текучести. Это создает благоприятные условия для прохождения в вершине трещины локальных деформаций, в результате чего на кромках ступеней сдвига (в местах выхода дислокаций на поверхность) плотность анодного тока может резко увеличиваться. Оба фактора не только способствуют повышению плотности анодного тока, но и содействуют в этом друг другу. Например, если структура и состав сплава таковы, что в нем имеются выделения по границам зерен, отличающиеся по электрохимическим характеристикам от матрицы, то потенциальная чувствительность к межкристаллитной коррозии может быть реализована путем прохождения в вершине трещины пластических деформаций, разрушения пассивной пленки и активации анодных процессов по границам зерен. Это же положение относится в полной мере и к сегрегациям внутри твердого раствора, когда суще-  [c.57]

Рис. 18. Зависимость параметров поляризации малоуглеродистой стали от деформации Дфс — уменьшение стационарного потенциала Дф — уменьшение потенциала активного состояния при плотности тока анодной поляризации 0,13 мА/см — плотность тока активного состояния при потенциале —270 мВ (н. в. э.) — плотность тока пассивного состояния при потенциале —120 мВ (н. в. э.) Рис. 18. Зависимость <a href="/info/39730">параметров поляризации</a> <a href="/info/6794">малоуглеродистой стали</a> от деформации Дфс — уменьшение <a href="/info/39792">стационарного потенциала</a> Дф — уменьшение потенциала <a href="/info/130770">активного состояния</a> при <a href="/info/208913">плотности тока анодной</a> поляризации 0,13 мА/см — <a href="/info/6698">плотность тока</a> <a href="/info/130770">активного состояния</a> при потенциале —270 мВ (н. в. э.) — <a href="/info/6698">плотность тока</a> <a href="/info/183900">пассивного состояния</a> при потенциале —120 мВ (н. в. э.)
Коррозионное поведение нержавеющих сталей различно в зависимости от того, в какой области анодной поляризационной кривой находится потенциал в данный момент. Поэтому наибольший интерес представляют данные о влиянии деформации и напряжений на характерные точки и участки этой кривой, особенно те, которые ограничивают область пассивного состояния.  [c.78]

В области потенциалов, соответствующих пассивному состоянию стали типа 1008 в растворах нитрата аммония, деформация проволоки кручением в 40 оборотов приводила к росту скорости коррозии в 400 раз [67].  [c.79]

Более сложной задачей является предотвраш,ение коррозионного растворения минералов, не участвующих в технологическом процессе механического разрушения, но присутствующих в области действия кислотного раствора (например, выбуриваемого шлама или готового продукта помола), с тем чтобы предотвратить излишний расход реагентов. Здесь следует выбирать раствор такого состава, который обеспечивал бы относительно пассивное состояние твердой фазы при отсутствии деформации и ее активное растворение при механическом воздействии, т. е. добиваться сочетания механохимического и хемомеханического эффектов в локальных областях механического воздействия. Для кальцита таким раствором является раствор серной кислоты, которая образует пассивирующий слой гипса на поверхности минерала, не растворяющийся без механического воздействия. Исследование зависимости устойчивости пассивного состояния от концентрации кислоты показало, что в 10%-ном ее растворе быстро происходит устойчивая пассивация поверхности кальцита, обеспечивающая экономное расходование реагентов.  [c.131]

При статическом нагружении с помощью разрывной машины на фиксированных уровнях нагрузки, соответствующих области упругой деформации, стадии легкого скольжения, области деформационного упрочнения и стадии динамического возврата, снимали анодные потенциодинамические кривые (2,4 В/ч) и определяли зависимость от степени деформации потенциалов полной пассивации и перепассивации (области пассивного состояния), скорости  [c.81]

Если тот же вал опереть на три подшипника (рис. 2.7. б), то третья опора не изменит кинематики движения вала, так как она является пассивной связью, но существенно изменит условия работы вала. Более высокие требования предъявляются к точности изготовления, так как в этой системе передавае.мые силы зависят от деформации звеньев из-за возможного несовпадения осей вала и подшипников вал вынужден изгибаться в подшипниках появятся дополнительные силы от изгиба вала, трение в них увеличится и снизится кпд механизма.  [c.23]

Нагружение данного тела в данный момент времени называется активным, если величина J.f имеет значение, превышающее все предшествующие значнеия, и пассивным (или разгрузкой) Б противоположном случае. Как видно из анализа диаграмм на рис. 5.14 и 5.15, связь напряжений с деформациями различна при активном нагружении и при разгрузке.  [c.267]

Самоорганизация деформации в данной модели отвечает периодическому рлспредолеиию стопоров. Заметим, что при N 500, 1000 большая часть ячеек П,, еще пассивна. Во всех случаях величина D удовлетворяет неравенствам 1,5 < D < 2.  [c.223]

У111.2. Понятие об активной и пассивной деформациях, простом и сложном нагружениях  [c.97]

Разгрузкой всего тела называнэт процесс изменения внещних сил, при котором во всех областях тела, где произошла пластическая деформация, интенсивность напряжений о,, начинает убывать одновременно. Это значит, что тело из стадии активной деформации переходит в стадию пассивной деформации.  [c.267]


Вид деформации (растяжение или сжатие) сильно влияет на образование двойников в металле с г. п. у. решеткой. Так, в кристалле цинка (с/а= 1,856) с базисной плоскостью, параллельной оси образца, можно добиться двойникования при растяжении, так как плоскость Ki (1012) (рис. 80,6) после деформации относительно плоскости двойникования (10Г2) поворотом по часовой стрелке занимает положение К . Представив левую половину кристалла (рис. 80,6), помещенную в пассивный захват испытательной машины, убеждаемся, что сдвиг  [c.140]

В теории пластичности очень важно различать процессы активной и пассивной деформаций. Активной деформацией называется такая, при которой каждое очередное значение интенсивности напрягкений О больше всех предшествующих. Если i меньше хотя бы одного из предшествующих значений, то деформацию следует называть пассивной. Разгрузка является пассивной деформацией, а простое нагружение — активной деформацией.  [c.283]

Как отмечено ранее, исключительно высокая коррозионная стойкость и электрохимическая пассивность титановых сплавов вызваны наличием на поверхности металла инертных оксидных пленок. Если защитная пленка по какой-либо причине разрушается, как, например, при пластической деформации металла, то незащищенный металл корродирует до тех пор, пока на нем снова не образуется защитная пленка и дальнейшая реакция подавляется до нового разрушения пленки. В этих условиях коррозионный процесс возможен лишь в том случае, если скорость тре-щинообразования превышает скорость роста пленки. Естественно, эти соотношение могут сдвигаться при изменении физико-механических 56  [c.56]

Испытаниями при постоянных нагрузках установлено, что равномерная деформация в условиях длительного разрушения сохраняется примерно на одном уровне и составляет 5—6% по прогнозу на ресурс 10 и 2 10 ч. Кроме активных пластических деформаций перегрузки создавались дополнительные пассивные пластические деформации за счет возобновлегжя неустановив-шейся стадии ползучести и за счет интенсификации ускоренной  [c.171]

При статическом нагружении с помощью разрывной машины на фиксированных уровнях нагрузки, соответствующих области упругой деформации, стадии легкого скольжения, области деформационного упрочнения и стадии динамического возврата, снимали анодные потёнциодинамические кривые (2,4 В/ч) и определяли зависимость от степени деформации потенциалов полной пассивации и- перепассивации (области пассивного состояния), скорости коррозии (потери массы), плотности тока начала пассивации (в области Фладе-потенциала), потенциалов активного и транспассиБного состояний при определенном значении тока поляризации, плотностей тока активного, пассивного и транспассивного состояний на определенных уровнях потенциалов. При динамическом нагружении записывали плотности токов активного растворения и пассивного состояния в потенциостати-ческом режиме, величины потенциалов в гальваностатическом режиме, а также изучали влияние скорости деформации на величину тока и электродные потенциалы.  [c.80]

Рис, 21. Уменьшение потенциала активного растворения Дф при гальваностатической поляризации стали 1Х18Н9Т с плотностью тока 0,75 мА/см (/ — статическое нагружение 2 — скорость деформации в минуту 4,86% 3 — 21,2% 4 — 48,6%), плотность тока области Фладе-потеициала, плотность тока активного растворения при потенциале — 250 мВ, плотность тока пассивного состояния при потенциале 900 мВ, потери массы образцов АО, потенциал полной пассивации и потенциал перепассивации ф в зависимости от степени деформации при статическом нагружении до напряжений, отмеченных цифрами О, /, 7, 3, 4 на диаграмме растяжения (а). Штриховкой обозначена область пассивного состояния  [c.82]

Одним из наиболее активных видов механического воздействия на коррозию твердых тел при их контакте в условиях агрессивных сред является трение. Локальная пластическая деформация в тонком приповерхностном слое активирует металл и разрушает защитные пленки, обнажая ювенильную поверхность. Исследование, выполненное на нержавеющих сталях [113], показало, что при треции плотность тока в области транспассивного состояния увеличивается почти на два порядка, область активного, растворения расширяется и почти полностью подавляется область пассивного состояния, причем в пассивной области при наличии трения плотность тока почти на пять порядков выше стационарного ее значения в отсутствие трения.  [c.138]

Как следует из рис. 43 (кривая 2), степень защиты ингибитором КПИ-1 от коррозии при пластической деформации стали относительно невысокая, хотя данный ингибитор высокоэффективен при защите упругодеформируемой стали. Начальный участок кривой 2 указывает на прочность образующейся пассивной пленки до пластической деформации 2%, после чего пленка прорывается и "коррозионный ток скачком возрастает.  [c.141]

Следует указать, что никель, обладающий высокой энергией дефектов упаковки и поэтому облегченным поперечным скольжением дислокаций при деформации, не образует плоских скоплений дислокаций и поэтому не может считаться подходящим объектом для изучения закономерностей механохимического поведения деформируемого металла в смысле влияния степени деформации на его электрохимические свойства. В то же время, ячеистую субструктуру слабо взаимодействующих дислокаций в никеле можно было бы использовать для изучения адсорбционной и пассивационной способности дислокационных центров , не осложненной их взаимодействием. Однако монотонная зависимость адсорбционных и электрохимических свойств пассивной поверхности от плотности дислокаций (и степени деформации) может искажаться механическими нарушениями пассивирующего слоя в местах выхода линий и полос скольжения, плотность и топография, которых зависят от стадий кривой упрочнения.  [c.73]


Смотреть страницы где упоминается термин Деформация пассивная : [c.22]    [c.58]    [c.115]    [c.116]    [c.85]    [c.85]    [c.88]    [c.82]    [c.84]   
Сопротивление материалов (1970) -- [ c.33 ]

Сопротивление материалов (1999) -- [ c.435 ]

Сопротивление материалов (1986) -- [ c.348 ]

Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.151 ]

Теория пластичности (1987) -- [ c.156 ]

Сопротивление материалов (1959) -- [ c.69 , c.169 ]

Курс теории упругости Изд2 (1947) -- [ c.415 ]

Пластичность Ч.1 (1948) -- [ c.97 ]

Справочник машиностроителя Том 3 Изд.2 (1956) -- [ c.17 ]



ПОИСК



Две задачи теории пластичности. Активная, пассивная и нейтральная деформация. Простое ч сложное нагружения

Деформация активная пассивная

Основы теории пластичности Основные уравнения теории пластичности Две задачи теории пластичности. Активная и пассивная деформации. Простое нагружение

Пассивность

Понятие об активной и пассивной деформациях, простом и сложном нагружениях



© 2025 Mash-xxl.info Реклама на сайте