Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пористая структура

Особо легкие пластмассы ячеистой и пористой структуры на основе синтетических смол называют пенопластами.  [c.364]

S - насыщенность пористой структуры жидкостной фазой  [c.4]

Пористый электронагреватель может быть использован также и в качестве парогенератора, например в пароструйных вакуумных насосах. В этом случае для повышения надежности его работы на внутренней входной поверхности размещается дополнительный, контролирующий поток жидкости слой из проницаемого электроизоляционного малотеплопроводного материала повышенного гидравлического сопротивления, который исключает закипание жидкости до входа в пористую структуру и обеспечивает равномерное распределение ее по поверхности (Пат. 3943330 США).  [c.10]


Все приведенные выше теплообменные устройства с проницаемым высокотеплопроводным заполнителем в каналах или межтрубном пространстве (см. например, рис. 1.3 и 1.10) могут быть использованы для организации фазового превращения потока теплоносителя. Отметим некоторые наиболее интересные конструкции испарительного элемента для сброса теплоты, подводимой к сплошной поверхности. В конструкции, показанной на рис. 1.11,д, охлаждающая жидкость распределяется по каналам 2 и при движении сквозь пористую матрицу 3 в окружающее пространство она поглощает теплоту и испаряется. Если такое устройство размещено в отверстии корпуса аппарата перед воздухозаборником реактивного двигателя, то в качестве испаряющейся жидкости можно использовать горючее последнего. В другом испарительном элементе пористое покрытие на теплоотдающей поверхности не имеет каналов, но выполнено трехслойным, с различной проницаемостью боковых и среднего слоев, причем последний имеет наиболее высокое гидравлическое сопротивление (см. рис. 1.11, 6). Охлаждающая жидкость распределяется по теплоотдающей поверхности стенки 1 внутри примыкающего к ней слоя 4 высокой проницаемости. Далее направления потоков теплоты и испаряющейся жидкости в пористой структуре совпадают — по нормали от теплопередающей поверхности.  [c.14]

Значительный перепад давлений, создаваемый на пористой структуре при движении сквозь нее парожидкостной смеси, используется в ПТЭ для реализации дрос-  [c.16]

Коэффициенты а, /3 не зависят от вида фильтрующейся жидкости, поскольку они являются характеристиками пористой структуры. При исследовании сопротивления пористых металлов при различных температурах не обнаружено заметного изменения коэффициентов сопротивления. Только происходящие в материале структурные преобразования при высоких температурах или больших механических нагрузках приводят к изменению их гидравлических характеристик.  [c.23]

Внутри проницаемой матрицы в потоке содержатся + 1 составляющие, Это Aq и продукты его разложения, а также компоненты, присутствующие во внешнем пограничном слое и диффундирующие внутрь пористой структуры (Ai, / = 0, 1, 2,..., t bi i + 1,  [c.64]

Наибольшее применение при этом получила модель относительной фазовой проницаемости. На основании экспериментальных исследований было установлено, что две несмешивающиеся жидкости одновременно текут сквозь пористую структуру каждая по своим извилистым устойчивым каналам. С учетом этого предложено считать для каждой фазы справедливым закон Дарси как для однофазного потока, но с уменьшением проницаемости пористой структуры вследствие наличия другой фазы.  [c.86]


Здесь S - насыщенность пористой структуры жидкостью.  [c.90]

Подставляя в него функции (4.26), находим аналитическую зависимость между расходным массовым паросодержанием потока х и насыщенностью S пористой структуры жидкостной фазой  [c.91]

Таким образом, составляющая потерь давления на ускорение испаряющейся смеси в пористой структуре пренебрежимо мала по сравнению с вязкостной и инерционной составляющими. Физически это объясняется высокими абсолютными значениями вязкостной и инерционной составляющих сопротивления при движении потока в проницаемой матрице по сравнению с потоками в обычных каналах, тогда как потери давления на ускорение определяются только физическими свойствами и удельным расходом теплоносителя и не зависят от геометрии потока.  [c.96]

Теплообмен при локальном тепловом равновесии внутри пористого материала. При умеренном внешнем тепловом воздействии температуры проницаемой матрицы и теплоносителя не отличаются заметно и тогда имеет место локальное тепловое равновесие внутри пористой структуры Т = 1.Ъ дальнейшем будут определены условия, при которых это предположение выполняется.  [c.100]

При конденсации пара на поверхности микропленки теплота конденсации теплопроводностью через микропленку передается проницаемой матрице, а затем также теплопроводностью через каркас — стенкам канала. Вследствие чрезвычайно развитой поверхности раздела фаз пар — жидкость внутри пористой структуры и малой толщины микропленки, особенно в начале области конденсации, объемная интенсивность передачи теплоты от пара к пористому материалу очень велика. Интересно отметить, что процессы конденсации потока пара и испарения потока теплоносителя внутри каналов с проницаемым заполнителем имеют одинаковый физический механизм и отличаются только направлением.  [c.121]

Металлокерамические материалы. Эти материалы, изготовляемые из порошков путем прессования и спекания в защитной атмосфере, применяют в связи с их удовлетворительной работой при скудном смазывании. Материалы имеют пористую структуру с объемом пор 15...35 %, который заполняется маслом (путем специальной пропитки вкладышей горячим маслом).  [c.379]

Приравняв нулю производную от (2) и используя последнее равенство из (3), получаем, что при образовании паровой фазы критического объема внутри пористой структуры условие механического равновесия поверхности принимает вид  [c.83]

Поры представляют собой либо небольшие замкнутые объемы, образуя так называемую закрытую пористость, либо — объемы, сообщающиеся между собой (открытая пористость). Структура покрытия, нанесенного на металл, приведена на рис. 6-25. Распространение тепла в пористых материалах обусловливается целым рядом различных явлений [127]. Внутри твердых частиц тела, а также в местах непосредственного контакта между ними наблюдается теплопроводность в среде же, заполняющей поры, наличествуют и  [c.158]

Очевидно, что одним из главных факторов, определяющих свойства границ на различных масштабных уровнях поликристаллических сплавов, является их пустотно-шероховатая пористая структура. Мерой отклонения границы раздела от равновесия служит величина свободного объема, который определяется удельным количеством пустот на единицу площади поверхности границы  [c.93]

Коэффициенты теплопроводности теплоизоляционных и строительных материалов, имеющих пористую структуру, при повышении температуры возрастают по линейному закону и изменяются в пределах от 0,02 до 3,0 вт м-град. Значительное влияние на коэффициенты теплопроводности пористых материалов оказывают газы, заполняющие поры и обладарощие весьма малыми коэффициентами теплопроводности по сравнению с X твердых компонентов. Увеличение X пористых материалов при повышении температуры объясняется значительным возрастанием лучистого теплообмена между поверхностями твердого скелета пор через разделяющие их во-  [c.350]

Детали подшипников тщательно проверяют на дефекты (неметаллические включения, ликвация карбидов, карбидная сетка, пористость структуры) с помощью методов, пз которых наиболее чувствительным является ультразвуково .  [c.544]

Качественно новые свойства достигаются при фазовом превращении потока теплоносителя внутри примыкающего к сплошной стенке проницаемого материала. В первую очередь, перенос теплоты от стенки теплопроводностью через пористый каркас (или в обратном направлении) исключает высокое термическое сопротивление у стенки, создаваемое сплошной паровой пленкой при кипении теплоносителя или сплошной пленкой конденсата при конденсации потока пара. Это позволяет полностью осуществить фазовое превращение потока при высокой интенсивности теплообмена. Кроме того, капиллярные силы создают равномерную насыщенность пористой структуры жидкостью, чем устраняется расслоение двухфазного потока в канале под действием внешних сил. Поэтому такой способ организации форсированного теплообмена при фазовых превращениях типичен, например, для систем при изменении их ориентацш относительно направления силы тяжести или в условиях пониженной гравитации.  [c.14]


Пористые высокогеплопроводные металлы используются также и при изготовлении теплообменников сосредоточенного теплообмена (дискретного типа) для получения сверхнизких температур. Предельно развитая поверхность теплообмена пористой структуры позволяет уменьшить граничное термическое сопротивление Калицы, вызывающее температурный скачок на границе раздела жидкость - твердое тело, через которую передается теплота. Такой теплообменник представляет собой блок, содержащий две камеры, заполненные проницаемым высокотеплопроводным материалом с большой удельной поверхностью Обьпшо и пористая матрица и блок выполняются из меди. При растворении Не в Не на пористой насадке в одной из камер температура получаемой смеси может понизиться до 0,011 К. За счет этого происходит охлаждение всего блока и протекающего через другую камеру потока Не .  [c.17]

Зависимость теплопроводности пористых металлов различной структуры от температуры имеет такой же вид, как и у соответству-юших сплошных. Это свидетельствует как об отсутствии изменений в пористой структуре, так и о том, что перенос теплоты за счет лучистой составляющей мал по сравнению с теплопроводностью матриц в исследованных диапазонах температуры. Поскольку у ряда металлов верхняя граница такого диапазона (например, для вольфрама t = 2600 °С) близка к температуре плавления, то можно не учитьшать радиационного переноса теплоты в пористых металлах во всем диапазоне их рабочих температур.  [c.36]

Отсутствие единства в выборе характерного размера для числа Re при расчете критериев. Из табл. 2.4 следует, что для этого использованы параметр /3/а, средний диаметр частиц исходного порошка ёц, средний размер пор и т. д. Ранее отмечалось, что характерный размер /а играет особую роль в определении режима течения в пористой структуре. Это очень важно, так как можно ожидать, что изменение режима движения охладителя окажет влияние на значение показателя степени в критериальном уравнении. Кроме того, параметр (З/а может быть определен достаточно точно, тогда как погреишость определения и d доходит до 20 %. Большие затруднения вызывает выбор характерного размера (иного, чем /а) для проницаемых непорошковых металлов - из волокон, спиралей, сеток, вспененных.  [c.41]

Еще большая ошибка в последнем методе допускается, когда при расчете среднелогарифмической разности температур вместо температуры теплоносителя на входе в пористый материал используется его начальная температура. Вследствие резкого повышения температуры потока в очень тонком слое охладителя у входа в пористую структуру эта ошибка в действительности может иметь место даже тогда, когда измеряют температуру теплоносителя вблизи входа в пористую стенку. В результате теплоноситель получает теплоту до входа в образец, что приводит к значительному завышению объемного внутрипорового коэффициента теплоотдачи йу- При этом величина предварительного подогрева зависит от условий эксперимента, например, от расхода теплоносителя,и очень ре> ко - от толщины образца. Для тонких пористых пластин толщиной около 1 мм с объемным тепловьщелением предварительный подогрев может составить до 0,9 всего нагрева охладителя, быстро уменьшаясь с увеличением его расхода. Если учесть, что основная часть приведенных в табл. 2.4 результатов получена для образцов толщиной менее 5 мм, то можно ожидать, что именно этот эффект и является основной причиной зависимости объемного коэффициента внутрипорового теплообмена от толщины образца в тех случаях, когда его толщина 5 включена в явном виде в критериальное уравнение теплообмена. В то же время при использовании расчетно-экспериментального метода обработки данных для широкого диапазона толщин образцов в специально поставленных экспериментах не обнаружена зависимость коэффициента объемного тегшообмена от толщины образца [ 11]  [c.42]

Одной из причин разброса экспериментальных данных по теплообмену может быть неоднородность пористой структуры. Такая неоднородность вызывает существенную неравномерность расхода охладителя, что приводит к большой неоднородности температуры нагреваемой поверхности. Результаты по теплообмену в значительной степени зависят от неоднородностей в тех случаях, когда интенсивность внутрипорового теплообмена вычисляется по данным измерения температуры матрицы и охладителя только на входной и выходной поверхностях и если замеры  [c.45]

Промежуточная темная влажная зона включает в себя переход от сухой внутрипоровой поверхности к поверхности, покрытой тонкой микропленкой. Прорывающиеся через насыщенную жидкостью пористую структуру паровые микроструи образуют периодически (где внешняя поверхность влажная без пленки) или постоянно (где поверхность покрыта микропленкой) разрушающиеся полусферические тонкие оболочки. Таким образом, промежуточная темная влажная зона - это постепенное увеличение потока пара и сокращение потока жидкости в режиме течения ее в виде обволакивающей частицы материала микропленки.  [c.80]

При постоянном расходе охладителя плотность объемного тепловъь деления постепенно повышается и на внешней поверхности образца наблюдается изменение структуры потока начиная от однофазного истечения жидкости, затем появляются сначала отдельные, а затем - цепочки мельчайших гаэопаровых пузырьков. Далее жидкость на поверхности закипает и постепенно увеличивается расходное паросодержание потока до полного его испарения и высыхания внешней поперхности. При этом картина истечения охладителя на всех стадиях аналогична изложенной ранее для адиабатного потока. Но здесь получены подробные данные также и для завершающей стадии, когда жидкостная пленка утоньшается и переходит в темную влажную поверхность с небольшими пенными скоплениями тонкой структуры. Последние образуются из жидкостной микропленки, выносимой паровыми микроструями из поровых каналов. Насыщенность пористой структуры жидкостью уменьшается, и после этого внешняя поверхность высыхает и светлеет.  [c.81]

Интенсивному парообразованию внутри пористой структуры способствует также и то, что после зарождения пузырька и выхода пара в виде микроструйки в связанные каналы в поре остается часть пара. Все отмеченные особенности приводят к непрерывному без резких пульсаций образованию пара в многочисленных центрах при отсутствии измеряемого  [c.84]


Многочисленные экспериментальные исследования подтвердили справедливость системы уравнений (4.9) для различных двухфазных потоков (жидкость—жидкость жидкость—газ) с точностью, достаточной для практических приложений. При этом оказалось, что относительные фазовые проницаемости зависят только от вида пористой структуры и от насыщенности ее каждой фазой. На рис. 4.3 приведен пример эмпирических зависимостей относительных фазовых проницаемостей для газоводяной смеси от насыщенности s пористой среды смачивающей фазой (водой). Они получены на основе обобщения ряда данных и имеют следующее аналитическое описание  [c.87]

С учетом приведенных в гл. 4 сведений о структуре и теплообмене двухфазного потока внутри проницаемых матриц можно представить следующий механизм процесса. После начала парообразования пар течет сначала отдельными микроструями, которые постепенно заполняют все более мелкие поровые каналы. Жидкость движется в виде постепенно утоняющейся микропленки, которая обволакивает частицы материала и заполняет все сужения и тупиковые поры. Под действием капиллярных сил жидкость в пленке перетекает поперек канала. За счет этого обеспечивается равномерная насыщенность пористой структуры. Такой режим сохраняется до полного испарения всего теплоносителя.  [c.117]

Давление в двухфазном потоке поперек канала постоянно, поэтому температура t паровой фазы, равная температуре насыщения также постоянна. Принимаем, что капиллярные силы обеспечивают равномерное распределение жидкости внутри пористой структуры (ее насыщенности s) поперек канала. Вследствие этого постоянна и интенсивность объемного внутрипорового теплообмена h (s), рассчитываемая по формуле (4.8). Вдоль канала падает, а йу (s) - возрастает.  [c.118]

Описанный выше механизм образования сталей путем кристаллизации из расплава показал, что пористая структура граничных зон является неотъ-  [c.92]

Следующая зона II (см. рис. 75), расположенная в сторону вышележащих подповерхностных зон переходного слоя, имеет рыхлую, пористую структуру, связанную с обрывом большого количества дислокаций в нижележащей зоне. Она может быть описана как губка Менгера. В ней реализуются растягивающие напряжения. Фрактальная размерность заполнения веществом материала трехмерного пространства в данной зоне принимает значения в интервале 3>Л ° >2,5. Понижение фрактальной размерности и плотности вещества происходит за счет роста количества вакансий и пор в данной зоне переходного слоя. Фрактальная размерность структуры дефектов увеличивается по толщине зоны в направлении от объемной части и увеличивает энергетическое содержание данной области переходного поверхностного слоя.  [c.119]


Смотреть страницы где упоминается термин Пористая структура : [c.136]    [c.157]    [c.7]    [c.22]    [c.25]    [c.55]    [c.73]    [c.89]    [c.121]    [c.122]    [c.133]    [c.134]    [c.136]    [c.81]    [c.82]    [c.86]    [c.86]    [c.88]   
Углеграфитовые материалы (1979) -- [ c.16 , c.33 , c.74 , c.146 , c.231 , c.232 , c.259 , c.278 ]



ПОИСК



133 — Пористость 1.132 — Содержание газов 1.129 — Структура

Влияние структуры осадка на пористость

Влияние структуры, толщины и пористости покрытий на коррозионную стойкость

Железо пористое спечённое чистое — Структура и свойства

Исследование массообмеиа в искусственных капиллярно-пористых структурах

Исследование массообмеиа в капиллярно-пористых структурах

Обобщенная модель эффективной теплопроводности капиллярно-пористых структур, насыщенных жидкостью

Переносимая мощность проницаемость пористых структур

Подшипники пористые Ульмана бронзо-графитовые - Структура

Пористая структура пигментов

Пористое охлаждение 4- 1. Структура пористых материалов и гидродинамика течения в порах

Пористость

Рабочие условия тепловой трубы пористой структуры (фитиля)

Развитие методов управления структурой и свойствами пористых порошковых материалов

Связь между свободным объемом полимеров, коэффициентом молекулярной упаковки и пористой структурой

Соколова, Ф. А. Фехретдинов, О. А. Серегина. Исследование пористой структуры и уплотнение композиционных материалов на основе нитрида алюминия

Структура, теплообмен и сопротивление потока теплоносителя, испаряющегося в пористых матрицах

Структуры покрытий аморфные пористые

Теория массообмеиа при кипении в капиллярно-пористых структурах



© 2025 Mash-xxl.info Реклама на сайте