Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства твердых тел

Твердое тело представляет собой комплекс атомов, находящихся во взаимодействии. Физико-химические и прочностные свойства твердого тела зависят от типа связи атомов и характера их взаимного расположения, поэтому, прежде чем рассматривать природу сварного соединения, следует вспомнить некоторые сведения из физики твердого тела.  [c.8]

При температурах в районе комнатной тепловые свойства твердых тел простого состава, в частности, металлов, неплохо описываются той моделью твердого тела, которую мы изучали в 3.4. Учитывая это и пренебрегая изменением объема при нагревании.  [c.94]


Механические свойства твердых тел......90  [c.69]

МЕХАНИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ ТЕЛ  [c.90]

Диаграмма растяжения. Зависимость напряжения ст от относительного удлинения i является одной из важнейших характеристик механических свойств твердых тел. Графическое изображение этой зависимости называется диаграммой растяжения. По оси ординат откладывается механическое напряжение 0, по оси абсцисс — относительное удлинение е (рис. 102).  [c.91]

К настоящему времени накоплено множество данных по проявлению золотого сечения в физических и биологических системах. Установлены ранее неизвестные связи золотого сечения со свойствами различных объектов, проявляющихся в физических свойствах воды, громкости и частоты звука, спектре видимого света, физико-механических свойствах твердых тел, физиологических функциях организма и т.п. [53-56].  [c.74]

Кроме того, разница в свойствах твердого тела и жидкости проявляется в коэффициенте диффузии - скорости, с которой атомы могут перемещаться в веществе с места на место при их хаотическом движении. Диффузия в  [c.112]

Принимаемая в теоретической механике идеализация свойств твердых тел не вносит ошибок, но значительно упрощает решение задач о равновесии и движении этих тел.  [c.8]

После снятия нагрузки, если не превзойден определенный предел, тело принимает свои первоначальные размеры и форму. Свойство твердых тел принимать первоначальную форму и размеры, после прекращения действия внешних сил, называется упругостью.  [c.202]

Физика твердого тела — это наука о строении, свойствах твердых тел -и происходящих в них явлениях.  [c.8]

Конечно, для понимания и установления связей между структурой и свойствами твердых тел такого качественного объяснения явно недостаточно, и каждый исследователь стремится знать о структуре более тонкие вещи, а именно он пытается определить атомную структуру твердого тела. Знать атомную структур — 3 35  [c.35]

При взаимодействии атомов одного сорта с атомами другого сорта характер химической связи определяется их способностью захватывать или отдавать валентный электрон. Эта способность характеризуется так называемой электроотрицательностью атомов X. По существу, электроотрицательность — это параметр, выражающий тенденцию атома притягивать к себе электроны в конкретном твердом теле. Электроотрицательность — относительная мера взаимодействия атомов, она не является строго физической величиной, поскольку она не постоянна и зависит от природы другого атома, с которым химически связан данный атом. Один и тот же атом в химической связи иногда одновременно может выступать и как электроположительный, и как электроотрицательный. Электроотрицательность очень слабо зависит от типа связи и от конкретных особенностей кристаллической структуры, что делает ее некоторым объективным параметром атомов, который полезен при обсуждении свойств твердых тел.  [c.57]


Реальные кристаллы отличаются от идеализированной модели наличием достаточно многочисленных нарушений регулярного расположения атомов. Любое отклонение от периодической структуры кристалла называют дефектом. Дефекты структуры оказывают существенное, порой определяющее, влияние на свойства твердых тел. Такими структурно-чувствительными, т. е. зависящими от дефектов структуры, свойствами являются электропроводность, фотопроводимость, люминесценция, прочность и пластичность, окраска кристаллов и т. д. Процессы диффузии, роста кристаллов, рекристаллизации и ряд других можно удовлетворительно объяснить исходя из предположения об их зависимости от дефектов. В  [c.84]

Современная наука и техника непрерывно предъявляют повышенные требования к механическим свойствам твердых тел. На-J14  [c.114]

Механические свойства твердых тел наиболее полно описываются диаграммами деформации. Диаграммы деформации представляют собой зависимости между механическими напряжениями а, которые возникают в твердом теле при приложении к нему внешней силы, и деформациями е. Из диаграмм деформации получают систему характеристик прочности (пределы прочности, текучести, упругости, относительные удлинения, сужения и др.). Заметим, что диаграммы деформации не зависят от геометрических размеров образца, поскольку о и г являются удельными величинами.  [c.122]

На рис. 4.9 приведена типичная диаграмма деформации для одноосного растяжения цилиндрического образца. Естественно, что изучение механических, в том числе и упругих, свойств твердых тел легче всего начать с анализа диаграммы деформации. Как видно из рис. 4.9, кривая а=[(е) обнаруживает несколько характерных особенностей. Так, при малых напряжениях наблюдается линейная 122  [c.122]

Заметим, что на упругие и пластические свойства твердых тел оказывает влияние характер сил связи. Ковалентные кристаллы (алмаз, кремний, германий) при комнатной температуре бывают жесткими и хрупкими, так как направленный характер связей препятствует сдвиговому движению, а также мешает перемещению одного атома вслед за другим, как это имеет место при движении дислокаций в решетке. Разрушение начинается прежде, чем дислокации могут обеспечить достаточно большие сдвиги, поскольку их движение затруднено ио сравнению с движением дислокаций в металлах. Ионные кристаллы гораздо более пластичны, если они совершенно чистые (обычные кристаллы могут быть и хрупкими из-за наличия внедренных в них дефектов). Электростатические силы — ненаправленные, и потому ионы могут перемещаться с места на место в той мере, в какой этому мешают их размеры. Металлы, как мы видели выше, наиболее пластичны в них возможно свободное перемещение дислокаций.  [c.136]

Итак, предел прочности твердых тел еще далек, и нужна огромная и кропотливая работа для его достижения. Эта работа, в частности, касается развития количественной теории дислокаций, требует окончательной разгадки механизма образования усов , изучения влияния малых примесей на процессы деформации и разрушения. Злободневной проблемой является проблема получения материалов особой чистоты, поскольку большинство физических свойств твердых тел (не только механических) определяется присутствующими в них примесями.  [c.140]

Из сказанного следует, что каждую моду колебаний с классической частотой D (к, s) можно возбудить с помощью целого числа квантов Й(о (к, s) энергии. При этом величина л (к, s) в формуле (5.70) имеет простой смысл — это число фононов данного сорта с импульсом р и энергией Й(о(к, s). Во многих задачах, связанных с тепловыми свойствами твердых тел, необходимо знать среднее число фононов <п(к, s)> с энергией Йш(к, s), существующих в данной моде колебаний при температуре Т. Для нахождения <л(к, s)> воспользуемся выражением для средней энергии квантового осциллятора, полученного Планком  [c.162]

СВОЙСТВА ТВЕРДЫХ ТЕЛ В СИЛЬНЫХ ЭЛЕКТРИЧЕСКИХ ПОЛЯХ  [c.256]

ВЛИЯНИЕ ПОВЕРХНОСТНЫХ УРОВНЕЙ НА ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ТВЕРДЫХ ТЕЛ  [c.261]

Выше было показано, что ограничение кристалла поверхностью приводит к появлению в запрещенной зоне локализованных состоя-Еий. Эти поверхностные уровни, так же как уровни примесей и дефектов, могут оказывать существенное влияние на физические свойства твердых тел. Это влияние может оказываться в следующих явлениях.  [c.261]


Кристаллическая структура. Можно было предполагать, что переход в сверхпроводящее состояние связан с какими-то изменениями кристаллической структуры. Однако изучение кристаллической структуры сверхпроводников рентгеновскими методами показало, что при понижении температуры металла ниже Тс не происходит никаких изменений ни в симметрии решетки, ни в ее параметрах. Более того, было установлено, что свойства твердого тела, зависящие от колебаний кристаллической решетки, также остаются неизменными. Например, температура Дебая и решеточный вклад в теплоемкость — одни и те же в нормальной и сверхпроводящей фазах. Все это позволило сделать вывод, что сверхпроводимость не связана с какими-либо изменениями кристаллической структуры.  [c.263]

Это была не единственная трудность, стоящая перед гипотетическим эфиром. Как показали измерения Фуко и Физо, скорость распространения света в разных средах различна. Это могло иметь место в случае, если бы эфир обладал разными свойствами в разных средах. Неприятиости, связанные с эфиром, этим не исчерпываются. Если эфир обладает свойствами твердого тела, то в нем могут распространяться как поперечные, так и продольные волны, в то время как у световой волны продольной составляющей нет. Следовательно, эфир должен был обладать такими свойствами, которые допускают распространение в нем только поперечной волны.  [c.7]

Итак, экспериментальные исследования Резерф< )рда по рассеянию а-частиц при их прохождении через тонкие металлические листки показали, что основная масса атома и положительный электрический заряд сосредоточены в небольшой (lO — 10 м) центральной области атома, именуемой атомным ядром. В нейтральном атоме вокруг ядра обращается Z электронов. Такая мОт дель получила название ядерной модели атома. Ядерная модель атома в сочетании с квантовыми закономерностями объясняет возникновение и структуру атомных спектров процессы возбуждения и ионизации атомов, свойства молекул, свойства твердых тел (металлов) и т. д.  [c.81]

Рхли бы ядро обладало свойствами твердого тела, то ве.чнчнна  [c.196]

Кроме того, разница в свойствах твердого тела и ядадкости проявляется в коэффициенте диффузии - скорости, с которой атомы могут перемешаться в веществе с места на место при их хаотическом движении. Диффузия в жидкостях намного больше, чем в твердых телах. Например, дш меди коэффициент диффузии в твердом состоянии равен 10 см с [17].  [c.40]

Для объяснения последнего факта потребовалось введение понятия "дислокация". Однако вопрос о целесообразности и предназначении их для конденсированной среды остается открытым. Трудно согласиться с идеей о случайном характере формирования одного из важнейщих свойств твердых тел - пластичности при вероятностном распределении дислокаций  [c.64]

Механические свойства твердого тела отражают его реакцию на воздействие некоторых внешних факторов. В простейшем случае такими внешними факторами являются механические воздействия сжатие, растяжение, изгиб, удар, кручение. Кроме механиче-v KHx существуют тепловые, магнитные, электрические и другие воздействия.  [c.114]

Уровень достижений в области получения твердых материалов с улучшенными свойствами сейчас высок. Однако эти достижения были бы невозможны без научно обоснованного подхода к проблеме улучшения механических свойств. Возможности для такого подхода появились с развитием физических методов исследования твердых тел и прежде всего структурных рентгеновского, электро-нографпческого, нейтронографического и электронно-микроскопи-ческого. Стало ясно, что. большинство свойств твердых тел зависит от особенностей их атомной структуры. Крупным шагом в развитии физической теории прочности твердых тел явились теория несовершенств и, в первую очередь, теория дислокаций. Оказалось, что механическая прочность твердых тел зависит, главным образом, от дислокаций и что небольшие нарушения в расположении атомов кристаллической решетки приводят к резкому изменению такого структурно чувствительного свойства, как сопротивление пластической деформации.  [c.115]


Смотреть страницы где упоминается термин Свойства твердых тел : [c.7]    [c.152]    [c.7]    [c.7]    [c.2]    [c.7]    [c.96]    [c.240]   
Тепловые трубы Теория и практика (1981) -- [ c.0 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте