Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Однородная деформация общего типа

Геометрическое толкование этой теоремы следующее. При однородной деформации общего типа две произвольные параллельные плоскости испытывают  [c.47]

Однородная деформация общего типа  [c.50]

Рис. 2.3. Базисные параллелепипеды для однородной деформации общего типа. Рис. 2.3. Базисные параллелепипеды для <a href="/info/25317">однородной деформации</a> общего типа.

Пользуясь развитым в главе 2 описанием однородной деформации общего типа, выберем систему вмороженных базисных векторов e , ортонормальную в ненапряженном состоянии to и совпадающую с главными осями деформации tot (рис, 2.3). Длины ej базисных  [c.105]

Простое растяжение в направлении, например ь при постоянном объеме есть частный случай рассмотренной ранее однородной деформации общего типа. Если напряжения поверхностной силы на площадках, параллельных направлению удлинения, равны нулю, т. е.  [c.107]

Мы видим, что если деформация —>/1 есть чистый сдвиг, то необратимая деформация /о 2 будет однородной деформацией общего типа с теми же самыми главными осями и с неравными единице главными степенями удлинения (рис. 4.1). В частности, главная степень удлинения в направлении главной оси, вдоль которой отсутствовало удлинение при деформации оказывается большей единицы.  [c.124]

Простое растяжение с поперечным сужением, рассмотренное выше, представляет частный случай деформации более общего типа, в котором компоненты перемещения и, у, w являются линейными функциями координат. Действуя тем же путем, что и раньше, можно показать, что этот тип деформации обладает всеми свойствами, обнаруженными выше для случая простого растяжения. Плоскости и прямые остаются плоскостями и прямыми после деформации. Параллельные плоскости и параллельные прямые после деформации остаются параллельными. Сфера после деформации становится эллипсоидом. Деформация такого вида называется однородной деформацией. Ниже будет показано, что для этого случая деформация в любом заданном направлении будет одинаковой для всех точек деформируемого тела. Следовательно, два геометрически подобных и подобным образом ориентированных элемента тела остаются после деформации геометрически подобными.  [c.238]

Для любых двух состояний однородной деформации, как это было показано, деформация наиболее общего типа представлена на рис. 2.3. Ее описание полностью исчерпывается определением материальных прямых в  [c.53]

Однородное напряженное состояние будет определено, если заданы напряжения поверхностных сил на трех площадках с некомпланарными (т. е. не параллельными одной плоскости) нормалями. Тогда напряжения на другой новой площадке можно вычислить из условий равновесия тетраэдра с гранями, параллельными этой площадке и трем заданным площадкам. Исходя из описания деформации, развитого в главе 2, естественно выбрать грани базисного параллелепипеда, построенного на базисных векторах в , в качестве характерных площадок, к которым приложены заданные напряжения. Это будет сделано ниже, сначала для случая базисного параллелепипеда в виде куба с единичными ребрами, а затем для параллелепипеда общего типа.  [c.76]


В книге приведены общие соотношения для расчета гармонических составляющих э.д.с. накладного датчика в зависимости от коэрцитивной силы, остаточной и максимальной индукции ферромагнитных материалов при одновременном воздействии Переменных и постоянных полей. Даны рекомендации по выбору оптимальных значений намагничивающих полей и конструктивных элементов датчиков. Рассмотрены основные типы феррозондов с поперечным и продольным возбуждением. На основании общих соотношений теории дислокаций описаны процессы упрочнения, ползучести, изменения магнитных и механических свойств металлов при деформации и усталости нагружения. Даны рекомендации по применению методов и приборов по контролю качества термообработки и упругих напряжений, однородности структуры.  [c.2]

При решении задачи статики многослойных панелей общего вида методом конечных элементов (МКЭ) на основе вариационных формулировок смешанного типа (4.41), (4.42) требования к выбору функций формы остаются такими же, как и в методе перемещений. В качестве функций формы конечного элемента наиболее часто используются алгебраические полиномы, порядок которых должен обеспечивать требуемую гладкость функций и их производных. В МКЭ важным требованием к функциям формы является требование воспроизводить в элементе однородное напряженно-деформированное состояние и, в частности, описывать смещение элемента как жесткого целого. Наиболее распространенный способ удовлетворения указанным требованиям состоит в повышении порядка аппроксимирующих полиномов. При этом используются полиномы более высокого порядка, чем это требуется, исходя из структуры вариационных уравнений, что приводит к увеличению обобщенных степеней свободы конечного элемента. Применение смешанных вариационных формулировок позволяет с помощью независимой аппроксимации деформаций и перемещений улучшить свойства конечных элементов.  [c.190]

Аналогичные закономерности по влиянию общей деформации на структуру и механические свойства получены для легированных сплавов типа ВТЗ-1, ВТ5 и др. Однородная структура и минимальные значения анизотропии свойств в этих сплавах могут быть достигнуты при более высокой общей деформации порядка 90%. С повышением легирования сплава общая деформация для достижения однородной структуры и механических свойств должна быть в пределах 85—90%.  [c.77]

В книге приводятся общие уравнения теории упругого равновесия тел, обладающих упругой анизотропией различных типов, как однородных, так и неоднородных. Дается математическая формулировка общих задач равновесия упругого анизотропного тела и наиболее важных проблем — растяжения, кручения, изгиба, плоской задачи, осесимметричной деформации и их обобщений. Даны решения большого числа частных задач, относящихся ко всем разнообразным проблемам, полученные как самим автором, так и другими исследователями. Как правило, все задачи доводятся до явных формул, а в ряде случаев — до таблиц и графиков.  [c.2]

Кинетическая теория описывает изотропное несжимаемое идеально упругое тело и позволяет установить соотношения между главными напряжениями и главными удлинениями, аналогичные тем, которые были выведены нами ранее для материала, подчиняющегося условию (4.7). (У Трелоара в уравнениях (4.19а) символы ti, ки G, р соответствуют символам ри, е,-, [Хо, —р в нашей записи уравнений (4.14)). Из того, что эти уравнения были выведены для однородной деформации общего типа (при постоянном объеме), следует идентич-  [c.111]

В работах [328, 330, 332, 339, 3551 было показано, что описание-кривой нагружения ОЦК-поликристаллов уравнением параболического типа (3.57) значительно расширяет возможности экспериментального изучения процесса деформационного упрочнения. Обобщением-результатов этих работ, а также ряда литературных данных [9, 289,, 290] является общая схема деформационного упрочнения поликристал-лических ОЦК-металлов и сплавов [47, 48] (рис. 3.33), которая отражает сложный многостадийный характер процесса, обусловленный поэтапной перестройкой дислокационной структуры при деформации. Считается, что перестройка структуры (от относительно однородного распределения дислокаций через сплетения и клубки к дислокационной ячеистой структуре) вызывает соответствующее изменение внутренних напряжений [2961, следовательно, и параметров процесса деформационного упрочнения. Данная схема основывается на анализе и обобщении результатов механических испытаний и структурных исследований, проведенных на десяти сплавах ОЦК-металлов [47, 481, которые различались по величине модуля упругости, энергии дефекта упаковки, наличию дисперсных упрочняющих фаз, уровню примесных элементов и размеру зерна (в пределах одного сплава). В частности, были исследованы при испытаниях на растяжение в интервале температур 0,08—0,5Гпл однофазные и дисперсноупрочненные сплавы-на основе железа (армко, сталь 45, Ре + 3,2 % 81), хрома, молибдена (МЧВП с размером зерна 100 и 40 мкм, Мо Н- 4,5 % (об.) Т1М, ЦМ-10-и ванадия (технически чистый ванадий), а также сплавы ванадия и ниобия с нитридами соответственно титана и циркония [95].  [c.153]


Сделанные упрощения не справедливы для многофазного сплава типа механической смеси, состоящего из разнородных кристаллических зерен с кубической решеткой или из разнородных упругоизотропных зерен, имеющих различные упругие характеристики. Несмотря на то, что в таком поликристалле каждое зерно в отдельности изотропно по отношению к тепловому расширению и всестороннему равномерному растяжению или сжатию, модули всестороннего сжатия поликристалла и отдельных зерен различны, а избыточная температурная деформация зерен Лей =7 О. Поэтому в (2.69)—(2.72) не удается перейти от тензорных компонентов напряжений и деформаций к девнаторным компонентам, т. е. на неупругое деформирование таких поликристаллов в общем случае должны повлиять и гидростатическая составляющая тензора осредненных напряжений, и даже однородное по объему изменение температуры. Влияние этих факторов не учитывается в распространенных феноменологических теориях неупругого деформирования материала (см. 1.5).  [c.104]

Итак, установлена замкнутая система линейных однородных уравнений устойчивости слоистых композитных оболочек. Записанная в вариациях обобщенных перемещений система состоит из пяти дифференциальных уравнений в частных производных с двумя независимыми переменными j S относительно пяти искомых функций и , и . И", TTj. Ее порядок от числа слоев оболочки не зависит и равен 12, что соответствует количеству задаваемых для нее краевых условий (3.3.6). Зависимость коффициентов этих уравнений от параметра внешних нагрузок проявляется через характеристики основного состояния (перемещения, деформации, усилия) и в общем случае нелинейна. Задача заключается в определении таких значений этого параметра, при которых линейная однородная система уравнений устойчивости, подчиненная надлежащим однородным краевым условиям, допускает нетривиальное решение. Этими значениями параметра нагрузок определяются критические точки, которые, согласно существующей классификации [45, 51 ], могут быть двух типов — точки бифуркации и предельные точки. При переходе через точку бифуркации может теряться устойчивость по типу разветвления форм равновесия. Переходу через предельную точку соответствует скачкообразный переход от одной равновесой формы к другой [45, 51 ].  [c.61]

В большинстве практически важных случаев для описания докритического равновесного положения оболочки можно использовать линейные уравнения изгиба. При этом характеристики основного напряженно-деформированного состояния пропорциональны параметру нагрузок. Если же в уравнениях устойчивости сохраняются члены, которыми учитывается влияние перемещений и деформаций перед потерей устойчивости, то зависимость коэффициентов этих уравненй от параметра нагрузок в общем случае остается нелинейной. Эта зависимость становится линейной лишь тогда, когда пренебрегается как нелинейностью основного равновесного состояния, так и влиянием докритических деформаций. В этом случае решение задачи устойчивости сводится к определению собственных чисел и собственных элементов линейной однородной краевой задачи для системы дифферециальных уравнений с частными производными. Упрощенные уравнения такого типа позволяют выявить точки бифуркации и нашли широкое применение  [c.61]

Большинство литых и сварных корпусных деталей представляют собой коробчатые тонкостенные конструкции с внутренними перегородками и ребрами. Деформации таких тонкостенных корпусных деталей условно мохуг быгь разделены на общие, искажения контура и местные (рис. 1.5.12). Общие деформации для деталей типа стержней мотуг быть представлены как деформации изгаба, сдвига и кручения сплошных брусьев, а для деталей типа пластин - как деформации однородных пластин.  [c.121]


Смотреть страницы где упоминается термин Однородная деформация общего типа : [c.53]    [c.122]    [c.158]    [c.136]   
Смотреть главы в:

Эластичные жидкости  -> Однородная деформация общего типа

Эластичные жидкости  -> Однородная деформация общего типа



ПОИСК



Деформации, типы

Деформация однородная

Общие типы

Однородность тел



© 2025 Mash-xxl.info Реклама на сайте