Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Преобразование уравнений теории упругости

При рассмотрении статического нагружения геометрически подобных однородных и изотропных упругих тел, для которых математическое описание процессов деформирования разработано с исчерпывающей полнотой, представляется целесообразным анализировать механическое подобие явлений на основании масштабных преобразований уравнений теории упругости  [c.84]

Преобразование уравнений теории упругости  [c.390]


ПРЕОБРАЗОВАНИЕ УРАВНЕНИЯ ТЕОРИИ УПРУГОСТИ  [c.429]

Преобразование уравнений теории упругости (продолжение)  [c.430]

Подставим в преобразованные уравнения теории упругости (28.14.4),  [c.430]

В этой книге излагается общая теория криволинейных координат и ее применения в механике, в учении о теплоте и теории упругости разъясняется преобразование уравнений теории упругости к криволинейной системе координат и в качестве примера исследуется деформация сферической оболочки. В заключительных главах Ламе подвергает критическому анализу принципы, на основе которых строится вывод основных уравнений теории упругости. Теперь он уже не одобряет вывод уравнений по способу Навье (с привлечением гипотезы молекулярных сил), а отдает предпочтение методу Коши (в котором используется лишь статика твердого тела). Затем он принимает гипотезу Коши, согласно которой компоненты напряжения должны быть линейными функциями компонент деформации. Для изотропных материалов принятие этой гипотезы приводит к сокращению кисла необходимых упругих постоянных до двух, находимых из испытаний на простое растяжение и простое кручение. Таким путем все не-  [c.144]

Другой путь — разложение в ряд Фурье (вдоль малого размера). Уравнения относительно коэффициентов Фурье определяют путем интегрального преобразования уравнений теории упругости (см. 37). Однако для упругого слоя (пластины, оболочки) с поверхностями, свободными от напряжений (или с заданными напряжениями), не существует такой системы функций, при использовании которой указанное преобразование привело бы к независимым друг от друга уравнениям относительно искомых коэффициентов (см. 19). Поэтому, если с самого начала сохранить лишь конечное число членов ряда, соответствующие коэффициенты Фурье будут определены с некоторой погрешностью, зависящей от роли отброшенных членов. Хотя эта роль, вообще говоря, также зависит от плавности изменения напряженного состояния, при этом получаются приближенные уравнения,  [c.11]

Таким образом, для трансформант от напряжений и деформаций получаются уравнения, полностью совпадающие с уравнениями теории упругости. Правда, в этих уравнениях присутствует параметр, различным значениям которого будут соответствовать в полученной вспомогательной задаче теории упругости различные значения упругих постоянных (называемых мгновенными модулями). После решения задачи в трансформантах (а вернее, класса задач для тех значений параметра р, которые предполагается использовать при обратном преобразовании) необходимо восстановить требуемые величины. Естественно, что задача упрощается, если ее решение в трансформантах удается получить в явном виде.  [c.666]


Здесь черточки над буквами обозначают преобразования Лапласа соответствующих функций. Уравнения (17.9.1) имеют форму обычных уравнений закона Гука. Выполняя преобразования Лапласа над уравнениями равновесия, соотношениями связи между деформациями и перемещениями и граничными условиями, мы получим для изображений систему уравнений, совпадающую с системой уравнений теории упругости. Ее решение ничем не отличается от решения задачи обычной теории упругости изображения напряжений и перемещений оказываются выраженными явно через изображения заданных на границе усилий и перемещений и функций наследственности. Теперь последний этап будет заключаться в том, чтобы перейти от изображений к оригиналам. Эта процедура буквально повторяет ту, которая предписывается принципом Вольтерра, но в других терминах.  [c.599]

Будем искать решение уравнений теории упругости для тела малой толщины, имеющее медленную изменяемость по переменным о и / по сравнению с изменяемостью по г. Уравнения равновесия (1.1.7) запишем в перемещениях, используя формулы (1.1), затем сделаем преобразование масштаба (1.2.3). Система координат применяется такая же, как и в эластомер)-ном слое. В результате преобразования масштаба переменных производные от функций по новым переменным имеют тот же порядок, что и сами функции. Параметры Ламе Л, В и переменные т), есть безразмерные величины порядка единицы.  [c.87]

Современные исследования по неклассической механике оболочек связаны с непосредственным применением соотношений теории упругости, различных вариантов асимптотического способа, построением уравнений теории оболочек на основе уравнений теории упругости в сочетании с их аналитическими преобразованиями.  [c.4]

Если форма тела и условия нагружения достаточно просты и если поведение материала может быть представлено одной из простейших моделей, то приведенную выше систему уравнений можно проинтегрировать непосредственно (см. задачу 9.22). Однако для более общих условий обычно принято искать решение, пользуясь принципом соответствия упругой и вязкоупругой задач. Этот принцип основывается на том, что система основных уравнений теории упругости и преобразования Лапласа по времени вышеприведенной системы основных уравнений теории вязкоупругости записываются одинаково. Соответствующие уравнения для квазистатических изотермических задач, в которых черточки означают преобразования Лапласа по времени, например  [c.292]

Из ЭТОЙ таблицы видно, что если С в уравнениях теории упругости заменить на QIP, то обе группы уравнений будут иметь одинаковую форму. В силу этого, если в решении соответствуюш,ей задачи теории упругости С заменить на QIP для вязкоупругого материала, то полученный результат будет преобразованием Лапласа решения задачи теории вязкоупругости. Обратным преобразованием найдем само решение для вязкоупругого материала.  [c.293]

В последующие годы развитие методов, основанных на использовании общих уравнений теории упругости и, в частности, функций Папковича — Нейбера, позволило свести многие общие смешанные задачи упругого равновесия полупространства к некоторым классам смешанных задач теории потенциала. При этом в качестве основной из таких задач целесообразно выделить тот случай, когда на всей границе полупространства заданы касательные напряжения, в некоторой конечной области 6" граничной плоскости 2 = 0 известно нормальное перемещение щ = f (х, у), а вне 6 (в области 3 ) задано нормальное напряжение сг = о (х, у). Так, для контактной задачи без трения и пригрузок имеем о = О, а функция / определяется формой основания штампа. Существенно, что смешанные задачи указанного класса в конечном счете могут быть сведены к нахождению одной гармонической функции, заданной в /5", причем в области 8 известна ее нормальная производная. Советскими учеными были разработаны эффективные методы подхода к подобным задачам теории потенциала, позволившие, в частности, дать точные решения некоторых контактных и сходных смешанных задач. Основными из этих методов являются следующие применение сфероидальных и эллипсоидальных координат (А. И. Лурье) построение и использование функции Грина (Л. А. Галин М. Я. Леонов, 1953) метод интегральных уравнений (И. Я. Штаерман В. И. Моссаковский, 1953) использование тороидальных координат и интегральных преобразований (Я. С. Уфлянд, 1956, 1967) метод комплексных потенциалов (Н. А. Ростовцев, 1953, 1957). Мы здесь специально не выделяем метод парных интегральных уравнений, успешно развитый Я. Н. Снеддоном ), поскольку его эффективность существенно проявляется при решении более сложных смешанных задач, о которых речь пойдет ниже.  [c.34]


Вариационными принципами теории упругости называются некоторые основные теоремы, выраженные в форме интегральных равенств, связывающих напряжения, деформации и перемещения во всем объеме тела, и основанные на свойствах работы упругих сил. Вариационные принципы представляют практический интерес в том смысле, что на них основаны методы, позволяющие находить эффективное решение задач во многих случаях, когда классический путь интегрирования основных уравнений теории упругости представляет не преодолимые пока затруднения. В этом параграфе мы займемся одним интегральным преобразованием, которое позволит упростить дальнейшие выводы.  [c.324]

Рассматриваются граничные интегральные уравнения динамических задач для упругих тел с трещинами в пространстве преобразований Лапласа. В связи с этим все излагаемые результаты относятся к дифференциальным и интегральным уравнениям, а также функциям в пространстве преобразований Лапласа. Поэтому в соответствующих местах во избежание повторений слова в пространстве преобразований Лапласа опускаются. Введенные выше поверхностные потенциалы (5-4) удовлетворяют тождественно дифференциальным уравнениям теории упругости везде в области V за исключением внешней границы дУ и поверхностей трещин й. Частные решения, соответствующие действию объемных сил и неоднородным начальным условиям, выражаются объемными потенциалами. В связи с этим решение той или иной задачи динамики упругих т л с трещинами можно представить в виде суммы граничных и объемных потенциалов. Граничные потенциалы должны содержать достаточно неизвестных, чтобы можно было удовлетворить граничным условиям на внешней поверхности тела дУ и поверхностях трещин й. Для нахождения этих неизвестных строятся граничные интегральные уравнения. При этом используются интегральные соотношения (5.51) или (5.58), в которых учтены свойства граничных потенциалов на границе тела (5.39) и на поверхности трещии (5.43). Во избежание повторений ниже будем использовать соотношения (5.58).  [c.124]

Принцип виртуальной работы можно сформулировать для уравнений теории упругости в пространстве преобразований Лапласа. Используя методику, изложенную в разделе Д.З, получаем  [c.206]

Если, кроме значений и при х = О, л, задать значения ее вторых частных производных по X, то только в этом случае в уравнении (19.27) будет содержаться единственная неизвестная и (п, у). В противном случае остаются еще неизвестные граничные функции. Аналогичная трудность возникает и при решении уравнений теории упругости, если граничные условия заданы только в напряжениях или только в перемещениях. Неизвестные граничные функции не входят в преобразованные уравнения лишь в двух случаях если заданы нормальные напряжения и касательные смещения и если заданы касательные напряжения и нормальные смещения [4].  [c.90]

В X. 1 мы видели, что для того, чтобы получить результаты классической теории бесконечно малых деформаций, справедливой для малых деформаций из естественной конфигурации требуется некоторое дополнительное неравенство. С другой сто-роны, как мы видели в VII. 3, мы не можем слепо следовать образцу чистой математики и налагать чересчур сильные условия, достаточные для того, чтобы обеспечить безоговорочную единственность решения граничной задачи с заданными перемещениями и с заданными усилиями, поскольку такая единственность при больших деформациях была бы точно так же неподходящей, как и нарушение этой единственности при малых деформация . Во всяком случае, сейчас это предостережение излишне, поскольку общие дифференциальные уравнения теорий упругости лежат за пределами области, для которой аналитикам удалось построить полезную теорию. В предыдущем параграфе мы изучали возможность наложить требование, чтобы преобразование от главных растяжений к главным силам в изотропном материале было монотонным. Теперь мы рассмотрим соответствующее условие для упругих материалов, имеющих произвольную группу равноправности.  [c.321]

Во всех предыдущих пунктах мы методически приводили трехмерные уравнения теории упругости к двухмерным уравнениям теории оболочек. То же самое предстоит осуществить и сейчас. Проинтегрируем каждое из уравнений системы (16) по у в пределах толгцины оболочки, т. е. от y=hl2 до —h 2. Далее, умножая первые два уравнения (16) на и интегрируя по if в тех же пределах, после некоторых преобразований получим  [c.33]

Использовав эту теорему и применив преобразования (5.119) ко всем условиям и уравнениям краевой задачи линейной теории вязкоупругости для нестареющих изотропных сред, получим краевую задачу в изображениях, формально совпадающую с обычной краевой задачей линейной теории упругости отличие от обычной задачи состоит в том, что все заданные и искомые функции, а также модули упругости зависят от комплексной переменной р как от параметра.  [c.241]

Применение указанной в 2.1 последовательности преобразований (выражать все неизвестные через три перемещения и, ь, по, которые примем за основные) приводит к следующей системе основных уравнений метода перемещений в теории упругости  [c.31]

Уравнения (9.59) имеют такой же вид, как и уравнения равновесия плоской задачи теории упругости в декартовых координатах. Для преобразования третьего уравнения равновесия вспомним зависимости между поперечными силами и изгибающими и крутящими моментами, полученные нами ранее для пластин (6.14). Эти зависимости сохраняют такой же вид и для пологих оболочек  [c.256]

Многие задачи вязкоупругости при помощи преобразования Лапласа (или Фурье) определяющих уравнений и граничных условий по истинному или приведенному времени становятся математически эквивалентными аналогичным задачам для упругих тел. Такая аналогия называется принципом соответствия и дает возможность использовать методы теории упругости для получения решений (в изображениях) задач вязкоупругости. Впервые этот принцип был установлен Био [11] для анизотропной среды.  [c.140]


Формулы преобразования компонентов напряжений при переходе от полярной системы координат к декартовой. Прежде всего составим уравнения пространственной задачи теории упругости в цилиндрических координатах.  [c.687]

Аналогично показанному в настоящем разделе выводу может быть сделан вывод дифференциальных уравнений равновесия и совместности деформаций в теории упругости, в теории пластин и оболочек и т. д. Одновременно с уравнениями могут быть получены все естественные граничные условия ). Можно показать, что уравнения Эйлера инвариантны при преобразовании подынтегральной функции в функцию от новых независимых переменных. Методы вариационного исчисления удовлетворяют тому требованию, что минимум скалярной величины (функционала) не зависит от выбора координат. Это наиболее естественным образом соот-  [c.448]

В рассматриваемой постановке при = s G S представление (3.9) выражает собой преобразование вектора напряжений на L в вектор перемещений на S. При известных векторах ы (i) иы°(5) и ядре интегрального оператора система уравнений (3,5) является системой интегральных уравнений Фредгольма первого рода относительно неизвестного вектора напряжений Р/с(х) на L. Решение этой системы представляет собой обратную задачу теории упругости, в которой искомый вектор напряжений недоступен для прямого исследования, а изучается его косвенное проявление в виде вектора перемещений на доступном для измерений участке поверхности.  [c.65]

Уравнения плоской задачи теории упругости в полярной системе координат могут быть получены путем преобразования уравнений главы 17 с использованием зависимостей (18.1) и (18.2). Однако, более просто вывести все уравнения непосредственно в полярной системе координат.  [c.375]

Пользуясь результатами масштабных преобразований уравнений равновесия, граничных условий и геометрических соотношений линейной теории упругости, которые, как указывалось, справедливы для случая упругопластических деформаций и допускают известный произвол в выборе масштаба относительных удлинений ( 5.1), можно поставить выбор этого масштаба в зависимость от характера диаграмм деформации модели и натуры.  [c.93]

Из вариационных принципов теории упругости определяющие уравнения вытекают как условия стационарности, и в этом смысле они эквивалентны определяющим уравнениям. Однако вариационные формулировки имеют ряд преимуществ. Во-первых, функционал, который подлежит варьированию, имеет вполне определенный физический смысл и инвариантен относительно преобразования координат. Следовательно, если вариационный принцип сформулирован в одной системе координат, то можно получить определяющие уравнения в другой системе координат, выписав инвариантную величину в новой системе координат, а затем применив варьирование.  [c.19]

Особое внимание уделено получению основных уравнений, соотношений и вариационных формулировок задач статики и термоупругости многослойных оболочек с использованием варианта теории, учитывающего деформации поперечных сдвигов. В качестве кинематических гипотез выступают предположения о несжимаемости стеики оболочки в поперечном направлении и линейном распределении по толщине многослойного пакета касательных перемещений. Распределения касательных поперечных напряжений выбираются в наиболее простом виде независимо от кинематических гипотез. Приведение трехмерной задачи теории упругости к двумерной осуществляется с использованием смешанной вариационной формулировки. Все преобразования выполнены с учетом переменности метрики по толщине оболочки. Показана идентичность полученных уравнений равновесия с интегральными уравнениями трехмерной теории упругости.  [c.66]

См. [1.2], т. 2, ч. 1, стр. 86 и 296. (Замечание. Уильда Джон Макуорн Рэнкин (1820—1872) в 1852 г. вывел уравнения преобразования напряжений. Ему принадлежат многие другие работы по теории упругости и строительной механике, включая исследования поведения арок и подпорных стен. Он приобрел известность также своими трудами по гидродинамике, оптике, акустике, свойствам кристаллов и т. д. см. [1.11, стр. 197—202 [стр. 238— 245 русского перевода] и [1.2], т. 2, ч. I, стр. 287—322. Барре де Сен-Венан (1797—1886) обычно упоминается как наиболее выдающийся упругист всех времен. К наиболее известным полученным им результатам относятся запись основных уравнений теории упругости и разработка точной теории изгиба и кручения балок. Им были созданы также теории пластических деформаций и теории колебаний. Сведения о его жизни и работах приведены в книгах [1,1], стр. 229—242 [стр. 278—293 русского перевода], и  [c.550]

Лебедев Н. Н Скальская И. П. О решении одного класса парных интегральных уравнений теории упругости и математической физики, связанных с преобразованием Мелера — Фока.— ПММ, 1969, 33, вып. 6.  [c.118]

Таким образом, вариационное уравнение 65 = О, в интегральной форме выражающее условия равновесия деформированного тела, эквивалентно и включает в себя соответствующие дифференциальные уравнения равновесия теории упругости вместе с условиями равновесия на поверхности тела (граничными условиями). Указанные дифференциальные уравнения служат уравнениями Эйлера функционала Э. При этом если последний будет выражен только через три фукнции перемещений Э = Э (и, v, w), то, следуя по пути, показанному в примере, мы придем к уравнениям Эйлера в форме уравнений Ляме (2.44), т. е. уравнений равновесия, записанных в перемещениях. Отметим, что в этом случае при исключении из уравнения 65 = О частных производных функций би, 8v, би потребуется операция, аналогичная интегрированию по частям — переход от интеграла по объему к интегралу по поверхности по формуле Грина. На этих преобразованиях останавливаться не будем.  [c.57]

В задачах наследственной теории упругости приходится вводить несколько операторов Вольтерра и выполнять некоторые операции, состоящие в решении интегральных уравнений, ядра которых представляют некоторые комбинации исходных ядер и их резольвент. Правило умножения операторов и соотношения (17.1.7) позволяют записать и выполнить промежуточные операции преобразований по правилам алгебры, однако заключительный этап будет состоять в решении интегрального уравнения. Ряд Неймана при этом скорее указывает на принципиальную возможность решения интегрального уравнения, чем служит эффективным средством для такого решения. На практике положение облегчается тем фактом, что ядра наследственности, характеризующие свойства материала, выбираются в результате обработки опытных данных, а опытные данные лежат внутри некоторой полосы разброса. Поэтому, как правило, оказывается возможным искать операторы наследственности внутри некоторого класса, достаточно широкого для удовлетворительного воспроизведения опытных данных, с одной стороны допускающего явное выполнение обращения (17.1.7), с другой. Выберем некоторый оператор К, который будем называть порождающим оператором. Тогда оператор Г (Х) будем называть резольвентным оператором, порождаемьш оператором К. Из (17.1.7) следует такое явное выражение для резольвентного оператора Г ( .)  [c.579]


Так же, как и в других задачах теории упругости, условия совместности деформаций (5.34) используют только при решении задач в усилиях-деформациях. При решении задач в перемещениях эти условия выполняются тождественно. В этом можно убедиться, подставив в уравнения (5.34) выражения деформацид и параметров изменения кривизны согласно формулам (5.33). При преобразованиях следует воспользоваться уравнениями Кодацци—Гаусса  [c.241]

Остановимся кратко на содержании главы. В разд. 2,2 на основе принципа виртуальных перемещений Лагранжа выведены основные соотношения подкрепленной ребрами криволинейной панели. В разд. 22.3 выделено элементарное решение Сопротивления материалов. Преобразование исходных уравнений для плоской панели к системе разрешающих уравнений содержится в разд. 2.4. Далее в разд. 2.5 изучено напряженно-деформированное состояние симметрично подкрепленной панели. Рассмотрена панель как конечной, так и бесконечной длины. Решение представлено в виде быстросходящихся рядов, даны результаты численных расчетов и программы расчета. В разд. 2.6 изучается эффект подкрепления панели на торце дополнительным ребром, работающим только иа изгиб. В разд. 2.7, как и в разд. 2.5, рассмотрена симметрично подкрепленная панель, но при кососимметрнчиом загруженин ребер парой сил. Решение отличается от полученного в разд. 2.5, так как требуется учитывать изгиб панели в ее плоскости. Решение доведено до числа. В разд. 2.8 рассмотрены панели с двумя ребрами разной жесткости для случа.я, когда поперечное перемещение панелн равно нулю или отлично от нуля. В разд. 2.9 на примере бесконечной пластины с полубесконечным ребром дается оценка погрешности решения путем введения гипотезы отсутствия поперечной деформации пластины. Эта оценка выполнена, путем срав неиня решения на основе упомянутой гипотезы с точным решением, полученным иа основе уравнений плоской теории упругости. Результаты этого раздела опубликованы Э. И. Грнголюком и В. М. Толкачевым [5]. В этой работе дана также общая постановка задач включения на основе гипотезы отсутствия поперечной деформации, рассмотрены задачи для пластины и ребра конечных размеров, для полубесконечной пластины с полубесконечным ребром, а также задача для защемленной по боковым сторонам полубесконечной полосы, нагруженной на торце постоянной распределенной нормальной нагрузкой.  [c.68]

В работе [28] рассмотрена обратная задача теории упругости для бесконечной плоскости с заданным полем напряжений. Плоскость ослаблена отверстием. Определяется форма отверстия при условии, что среднее напряжение всюду в плоскости оставалось неизменным. Авторы такой контур отверстия назьгаают гармоническим. Поставленная задача сводится к сингулярному интегро-дифференциальному уравнению относительно функции, определяющей конформное преобразование плоскости с единичным кругом на плоскость с гармоническим вырезом. Полученное уравнение существенно нелинейно относительно неизвестной функции.  [c.193]


Смотреть страницы где упоминается термин Преобразование уравнений теории упругости : [c.252]    [c.40]    [c.152]    [c.19]    [c.18]    [c.320]    [c.224]   
Смотреть главы в:

Теория упругих тонких оболочек  -> Преобразование уравнений теории упругости

Теория упругих тонких оболочек  -> Преобразование уравнений теории упругости



ПОИСК



Преобразование уравнений

Преобразование уравнений классической теории упругости к ортогональным криволинейным координатам

Преобразование уравнений теории упругости (продолжение)

Теории Уравнения

Теория преобразований

Теория упругости

Упругость Теория — см Теория упругости

Уравнения Уравнения упругости

Уравнения теории упругости

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте