Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упругое последействие

Показателями основных свойств упругих элементов являются упругая характеристика, коэффициент жесткости, коэффициент чувствительности, упругое последействие и упругий гистерезис.  [c.460]

Источником погрешностей, вносимых упругими измерительными элементами, является несовершенство упругих свойств материалов, характеризующееся упругим последействием и упругим гистерезисом.  [c.462]


Упругое последействие проявляется в запаздывании деформации пружины по сравнению с изменением приложенной нагрузки,  [c.462]

Если при напряжениях, соответствующих точке 5 (рис. 11.13), прекратить нагружение и оставить образец на некоторое время под нагрузкой, то деформация будет расти (отрезок 57), причем вначале быстрее, а затем медленнее. При разгрузке часть деформации, соответствующая отрезку О/, исчезнет почти мгновенно, другая часть деформации, изображаемая отрезком ОО, исчезнет не сразу, а спустя некоторое время . Это явление изменения упругих деформаций во времени называют упругим последействием. Чем однороднее материал, тем меньше упругое последействие. Для тугоплавких материалов при обычных температурах оно настолько невелико, что его можно не учитывать. Наоборот, в материалах органического происхождения упругое последействие велико и с ним нельзя не считаться.  [c.38]

Несовершенные свойства материалов упругих элементов вызывают упругое последействие и упругий гистерезис, которые могут быть источником погрешностей в измерительных устройствах. Упругое последействие проявляется в запаздывании деформации пружины по сравнению с изменением прилагаемой нагрузки. Гистерезис проявляется в несовпадении характеристик пружины при нагружении и снятии нагрузки. Значение гистерезиса зависит от материала и напряжений в материале пружины. Вследствие этого для ряда чувствительных элементов допускаемые напряжения определяются не пределом прочности или текучести, а допустимым значением гистерезиса.  [c.355]

Закон Гука не учитывает зависимости деформации тел от времени действия сил, вызывающих его деформацию. В реальных твердых телах упругая деформация, соответствующая действующим силам, устанавливается не сразу, а через некоторый промежуток времени, различный для разных материалов. После прекращения действия внешних сил тела также не сразу восстанавливают свои размеры и форму, т. е. деформация тела исчезает не полностью, а часть ее остается и затем медленно спадает со временем. Это явление называется упругим последействием. У некоторых твердых тел эта остаточная деформация практически вообще не исчезает. Такие тела под действием небольшой, но длительно действующей ГИЛЫ ведут себя как тела жидкие, а под действием большой кратковременной силы они оказываются хрупкими. Примером таких тел может служить лед или вар. При обычных условиях они текут под воздействием продолжительно действующих сил и легко ломаются при интенсивных кратковременных воздействиях.  [c.162]


Упругие чувствительные элементы не лишены известных недостатков, обусловленных несовершенством упругих свойств материалов, из которых они изготовлены. В результате этого их работа может сопровождаться явлениями гистерезиса и упругого последействия.  [c.156]

Явление гистерезиса заключается в том, что у чувствительного элемента зависимости бр = ф(р), полученные при увеличении и уменьшении давления я одних и тех же пределах упругой деформации, не совпадают между собой, образуя петлю гистерезиса. Явление упругого последействия проявляется в том, что стрелка деформационного прибора, находившегося определенное время под нагрузкой, не сразу после снятия ее возвращается на нуль.  [c.156]

Узел сетки 58 Узлы разностной сетки нерегулярные 62 регулярные 62 Упругое последействие 156 Уравнение  [c.357]

Теория наследственности использует уравнения теории упругого последействия Больцмана. Уравнения теории наследственности Больцмана — Вольтерры являются наиболее общими для описания изменений напряжений и деформаций во времени. Реологические уравнения этой теории удовлетворительно описывают последействие, релаксацию, скоростное и деформационное упрочнение, изменение напряжения при заданном законе изменения деформаций в(т).  [c.484]

Что называется ползучестью, последействием, упругим последействием и релаксацией  [c.89]

Упругое последействие. Ползучесть. Релаксация  [c.40]

Это явление изменения упругих деформаций во времени называется упругим последействием. Чем однороднее материал, тем меньше упругое последействие. Для тугоплавких материалов (металлов) упругое последействие при обычных температурах невелико, и его можно не принимать во внимание. Для материалов органического происхождения упругое последействие велико, и с ним приходится считаться.  [c.40]

Относительная погрешность от упругого последействия и упругого гистерезиса, называемая просто гистерезисом, выражается в процентах от наибольшей величины прогиба  [c.334]

При прессовании в закрытых пресс-формах получают заготовки заданной формы и размеров. Однако допуски на их размеры по длине и поперечному сечению более высокие по сравнению с точной механической обработкой. Точность изготовления порошковых заготовок зависит от точности пресса, пресс-форм, стабильности упругих последействий при холодном прессовании и объемных изменений при спекании, износа пресс-форм, роста линейных размеров полуфабрикатов и изделий при хранении и т. д. Упругое последействие зависит от ряда технологических факторов дисперсности и формы частиц порошка, содержания оксидов, твердости материала частиц, давления, прессования, наличия смазок и пр. Упругое последействие в заготовках из порошков хрупких и твердых материалов всегда больше, чем в изделиях из мягких и пластичных порошков. Оно сильнее проявляется по высоте заготовок (до 5...6 %), чем по диаметру (не более 2...3 %). Упругое последействие облегчает снятие заготовок с пуансона за счет увеличения охватывающих размеров, но препятствуют их извлечению из пресс-форм при наличии всевозможных выступов, ребер и пр.  [c.184]

Возвращаясь к основным определяющим уравнениям (2.5), (2.6) и (2.8) нелинейной теории ползучести неоднородно-стареющих тел, отметим следующее. Для стареющих материалов, у которых время упругого последействия или время релаксаций зависит от напряжений а, кривые ползучести, на основе которых  [c.25]

Типичные кривые ползучести и кривые восстановления (упругое последействие) для специально обработанных образцов представлены на рис. 19. Результаты, полученные при помощи условия суперпозиции (3), изображены штриховой линией предполагалось, что упругое последействие равно сумме деформации, обусловленной напряжением, приложенным при t = О, и деформации, обусловленной равным по величине, но противоположным по направлению напряжением, приложенным при t— 1 час. Тот факт, что деформация, полученная на опыте, больше, чем вычисленная методом суперпозиции, типичен для армированных и неармированных стеклопластиков в условиях  [c.187]


Упругое последействие. Упругий гистерезис  [c.152]

Упругое последействие. Описывая деформирование образца в 2.11, мы отвлеклись от того, как протекает оно во времени. Рассмотрим деформирование образца в пределах соблюдения закона Гука с учетом фактора времени. Наблюдения показывают наличие некоторого отставания деформаций от напряжений — деформация происходит как в процессе возрастания силы, так и в течение некоторого отрезка времени после прекращения роста напряжения. Такое явление носит название упругого последействия при нагружении. Отстают деформации от напряжений и в процессе разгрузки нагрузка уже снята с образца — напряжения равны нулю, а упругая деформация к этому моменту еще не полностью исчезла и остаток ее продолжает уменьшаться, доходя до нуля, еще некоторый отрезок времени. Это явление называется упругим последействием при разгрузке ГНа рис. 2.51 графически изображена зависимость  [c.152]

Упругий гистерезис. Вследствие наличия упругого последействия при периодическом изменении напряжений по закону.  [c.152]

УПРУГОЕ ПОСЛЕДЕЙСТВИЕ. УПРУГИЙ ГИСТЕРЕЗИС  [c.153]

Рис. 4.103. Кривая ползучести полимера 1—участок упругой деформации и деформации упругого последействия, 2 — участок деформации вынужденно-эластического характера (снимается после нагрева выше Т ), 3 — участок, предшествующий разрушению. Рис. 4.103. <a href="/info/1668">Кривая ползучести</a> полимера 1—участок <a href="/info/1488">упругой деформации</a> и <a href="/info/5862">деформации упругого последействия</a>, 2 — участок деформации вынужденно-эластического характера (снимается после нагрева выше Т ), 3 — участок, предшествующий разрушению.
Имэются другие данные, свидетельствующие о том, что реальные текучие материалы, поведение которых не описывается уравнением (2-3.1), обладают некоторой степенью упругости. На самом деле в таких материалах обычно наблюдаются явления, подобные упругому последействию, которые с высокой достоверностью указывают на наличие упругости.  [c.74]

Концепции упругости текучих материалов и памяти по отношению к прошлым деформациям, хотя они и тесно связаны одна с другой, все же нельзя рассматривать как эквивалентные. Такие явления, как упругое последействие, очевидно, относятся к области, интуитивно рассматриваемой как упругость. Однако существуют такие наблюдаемые в реальных материалах явления, которые, хотя и подкрепляют концепцию памяти материала по отношению к прошлым деформациям, все же не отвечают нашим интуитивным представлениям об упругости. Типичные явления этого типа известны как реопексия и тиксотропия . Реопектиче-ские или тиксотропные материалы, подвергаемые сдвигу, как, например, в условиях линейного течения Куэтта, обладают зависящей от BjjeMeHH кажущейся вискозиметрической вязкостью, значение которой зависит от продолжительности сдвига и достигает асимптотического значения после весьма долгого периода. Однако такие материалы после мгновенного прекращения деформации не обязательно проявляют упругое последействие.  [c.76]

После перемещенпя резца относительно обработанной поверхности происходит упругое восстановление поверхностного деформированного слоя на величину h,. (рис. 6.12, й) — упругое последействие. В результате образуется контактная площадка шириной Н между обработанной поверхностью и вспомогательной задней поверхностью резца. Со стороны обработанной поверхности возникают силы нормального давления N и трения F. Чем больше значение упругой деформации, тем больше сила трения. Для уменьшения сил трения у режущего инструмента делают задние углы (а и aj, значения которых зависят от степени упругой деформации металла заготовки.  [c.268]

В процессе прессования частицы порошка подвергаются упругим и пластическим деформациям, в результате чего в заготсшке накапливаются значительные напряжения. После извлечения из пресс-формы заготовки размеры ее изменяются за счет упругого последействия.  [c.422]

Стандартизация упругих элементов (пружин, мембран и др.) предусматривает обеспечение взаимозаменяемости как по присоединительным размерам, так и по характеристике, выражаюш,ей зависимость перемещения (деформации) торца пружины или рабочего центра другого элемента от приложенной силы. Оптимальное значение параметров и стабильность характеристики упругих элементов определяются точностью их размеров и формы, механическими свойствами материалов, а также конструктивными и технологическими факторами. Упругие элементы должны иметь мппимальное упругое последействие (т. е. минимальную остаточную обратимую деформацшо, исчезающую в течение некоторого времени после снятия нагрузки) и наименьшую петлю гистерезиса (несовпадение характеристик при нагружении и разгружении, определяемое максимальной разностью между деформациями при нагружении и разгружении упругого элемента). Для определения влияния геометрических, механических и других параметров на работу упругих 76  [c.76]

Явления гистерезиса и упругого последействия проявляются одновременно, причем второе усиливает первое. На практике производится учет совместнога действия того и другого явлений под названием практический гистерезис . Практический гистерезис влияет на погрешность прибора.  [c.156]

При снятии характеристики упругогоэлемента на практике всегда имеет место упругое последействие н упругий гистерезис.  [c.334]

Упругое последействие про-Рг Р является в том, что после прекраш,енпя изменения нагрузки упругий элемент некоторое время продолжает деформироваться (участки кривой АВ при Ра = onst и СО при Р = 0) (рис. 24.2, б).  [c.334]

Фланцы, расположенные на небольшом расстоянии от края цилиндра, лучше прессовать более толстыми с припуском под обтачивание после спекания. Резанием обрабатывают также внутреннюю и наружную резьбы. Выемки или радиальные канавки, расположенные параллельно оси прессования, могут быть выполнены пресс-инетрументом. Ступицы шестерен еледует выполнять на 2... 3 мм меньше диаметра окружности впадин (рис. 7.2, 10). В случаях, когда это возможно, следует заменять криволинейные и непараллельные поверхности параллельными. Это, в частности, относится к деталям, которые ранее изготовлялись литьем ли ковкой. В зависимости от удобства прессования углубления и пазы целесообразно заменять выступами (рис. 7.2,//) или пазы заменять углублениями (рис. 7.2,12). В целях облегчения выталкивания прессовок, особенно фланцев, из пресс-форм, их следует выполнять с конусностью К—0,007 Вч, где е, — упругие последействия по диаметру, %.  [c.182]


Миллимикродеформацию можно исследовать с применением специально конструируемого нестандартного оборудования или с помощью метода ямок травления . Необходимо иметь в виду, что выбор метода измерения деформаций должен определяться уровнем измеряемой величины, так как при завышенной чувствительности метода на результат исследования микропластичности могут накладываться дополнительные эффекты, возникающие в области нелинейной упругости (релаксация, упругое последействие и др.).  [c.39]

Рис. 19. Кривые ползучести и упругого последействия для однонаправленных стеклоэпоксидных волокнистых композитов при 6 = 30°, температуре 73 1 °С и влажности 21 1%. Для случая (1) показаны теоретические результаты, полученные методом суперпозиции (косые крестики) и следующие из нелинейной теории (темные кружки). По оси абсцисс — время в часах, по оси ординат — деформация в процентах, значения напряжений в правой части рисунка указаны в фунт/дюйм . По данным работы [63]. Рис. 19. <a href="/info/1668">Кривые ползучести</a> и упругого последействия для однонаправленных стеклоэпоксидных волокнистых композитов при 6 = 30°, температуре 73 1 °С и влажности 21 1%. Для случая (1) показаны <a href="/info/525212">теоретические результаты</a>, <a href="/info/473555">полученные методом</a> суперпозиции (косые крестики) и <a href="/info/216170">следующие</a> из <a href="/info/562876">нелинейной теории</a> (темные кружки). По оси абсцисс — время в часах, по оси ординат — деформация в процентах, <a href="/info/156725">значения</a> напряжений в правой части <a href="/info/405362">рисунка</a> указаны в <a href="/info/321165">фунт</a>/<a href="/info/4604">дюйм</a> . По данным работы [63].
Некоторые общие замечания о разрушении. Разрушение не является мгновенным актом, оно начинает возникать еще до появления видимых трещин последним предшествует образование микротрещин или некоторое разрыхление структуры. Именно этим объясняется то, что термины остаточная деформа ц и,я после разрушения и пластическая деформация не являются синонимами. В состав остаточной деформации после разрушения кроме пластической деформации входят удлинения за счет образования микротрещин и разрыхления структуры. В тех случаях, когда образец разгружен до возникновения в нем первых изменений, относящихся к разрушению, остаточная деформация совпадает с пластической (имеется в виду, что упругое последействие при разгрузке исчерпано в противном случае в первый момент после разгрузки природа остаточной деформации может быть у пр у го-пл астической).  [c.253]

Эффект Ребиндера существенно зависит от продолжительности контакта материала с внешней адсорбционно активной средой, так как вещество окружающей среды проникает в микрощели постепенно. Спустя некоторый отрезок времени происходит полное проникновение поверхностно-активного вещества внутрь образца — образец как бы набухает. Вследствие разъединения частей металла заполненными мнкротрещнна-ми резко падает его электропроводность, восстанавливаемая спустя некоторое время по снятии нагрузки, так как вследствие постепенного смыкания микрощелей поверхностно-активное вещество выдавливается из образца. Эта постепенность смыкания щелей позволяет относить явление к классу упругого последействия.  [c.275]

В некоторых полимерах последействие длится многие годы и кажущиеся состояния равновесия принимаются за истинное. Если нагрузка носит знакопе ременный характер, то установление равновесного состояния может не поспевать за изменением нагрузки вследствие последействия, и поэтому деформация в каждом цикле совершается иначе, чем в предыдущих. В литературе такое явление носит название гистерезиса. Точнее было бы называть его неустановившимся гистерезисом в отличие от гистерезиса установившегося ( 2.23), с петлей, полностью повторяющейся при каждом последующем цикле, вследствие того что упругое последействие успевает полностью исчерпываться. Чем сильнее в полимере последействие, тем значительнее и гистерезис.  [c.339]

В связи с наличием упругого последействия получение модуля упругости по кривой 0 — а ведет к погрешности. Модуль упругости больше получаемого по наклону начального учасгка кривой.  [c.345]

Можно поставить опыт (Лазуркин — Аскадский), обнаруживающий интересный эффект. Если образец, в котором происходит релаксация напряжений, разгрузить, сохраняя длину фиксированной, то, так как после разгрузки исключена деформация упругого последействия, вновь возникнут напряжения (рис. 4.105).  [c.348]


Смотреть страницы где упоминается термин Упругое последействие : [c.306]    [c.356]    [c.227]    [c.257]    [c.161]    [c.162]    [c.153]    [c.154]    [c.154]    [c.365]    [c.365]   
Смотреть главы в:

Физические эффекты в машиностроении  -> Упругое последействие

Сопротивление материалов  -> Упругое последействие


Основы гидромеханики неньютоновских жидкостей (1978) -- [ c.74 , c.76 ]

Физические основы механики и акустики (1981) -- [ c.162 ]

Теория и техника теплофизического эксперимента (1985) -- [ c.156 ]

Ротационные приборы Измерение вязкости и физико-механических характеристик материалов (1968) -- [ c.85 ]

Деформация и течение Введение в реологию (1963) -- [ c.163 , c.168 ]

Конструкционные материалы Энциклопедия (1965) -- [ c.3 , c.379 ]

Математическая теория упругости (1935) -- [ c.127 ]



ПОИСК



Вебером упругого последействия

Влияние давления прессования на упругое последействие

Влияние структурных факторов на величину упругого последействия

Внутреннее трение . 3. Упругое последействие (задержанная обратимая деформация)

Деформация упругого последействи

Деформация упругого последействия

Линей нодеформируемое упруго-вязкое тело, обладающее последействием

Металлические порошки аддитивность упругое последействие

Последействие

Последействие высокоэластическос упругое

Последействие упругое 241, 375 — График

Последействие упругое. Elastic after-effect. Elastischer

Последействие упругое. Elastic after-effekt. Elastlscher

Потеря давления на трение о стенки прессформы Давление выталкивания. Упругое последействие

Тело упруго-вязкое, обладающее последействием

Теории пластичности, нелинейной упругости и последействия

Теория надежности наследственности (упругого последействия)

Трение. Давление выталкивания. Упругое последействие

Упругое последействие и гистерезис

Упругое последействие преддействие

Упругое последействие. Упругий гистерезис

Характеристики упругого чувствительного элемента. Упругое последействие и гистерезис



© 2025 Mash-xxl.info Реклама на сайте