Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Анализ системы уравнений и ее решение

Если задача статически определима, то напряжения Ох, Оу, Тху находятся независимо от скоростей Ых, Vx. Для нахождения скоростей деформации при найденных напряжениях имеем систему линейных уравнений (IX.9) и (IX.6). Решая ее для заданных граничных условий, определяют поле скоростей. Если задача статически неопределима, необходимо совместное решение уравнений для напряжений и скоростей, что связано с известными трудностями, так как при этом приходится в той или иной мере задавать контуры пластической зоны, дополнять граничные условия для напряжений и учитывать, чтобы распределение скоростей вписывалось в заданные граничные условия. В связи с этим имеет большое значение анализ системы уравнений (1Х.4) и (IX.5), остановимся на этом подробнее.  [c.112]


Полученная таким образом система дифференциальных уравнений, описывающая гидродинамику, теплообмен и массообмен, в общем случае является нелинейной, трехмерной, в частных производных. Получить в этом случае аналитическое ее решение невозможно. В связи с этим при анализе гидродинамики, теплообмена и массообмена используют приближенные аналитические и численные решения этой системы уравнений. Достоверность используемых решений проверяют опытным путем. В настоящее время наиболее эффективные методы приближенных решений базируются на теории пограничного слоя.  [c.277]

Таким образом, в общем случае динамический анализ машины сводится к составлению и интегрированию системы уравнений движения ее механической части совместно с характеристиками двигателей. Трудности, возникающие при решении задач динамического анализа, и методы их преодоления будут рассмотрены в гл. III.  [c.14]

Обычно при анализе динамики систем программного управления рассматривают идеальные шаговые двигатели, у которых значения параметров совпадают с расчетными [3, 4, 7]. Динамическая модель реального шагового двигателя значительно сложнее и должна содержать не только расчетные значения параметров двигателя, но и их погрешности. Система уравнений, описываюш,ая поведение шагового привода при одновременном учете всех погрешностей изготовления, сложная, и ее решение вряд ли может быть оправдано вследствие того, что в реальной конструкции всегда можно выделить относительно небольшое число погрешностей, оказывающих доминирующее влияние на показатели точности работы. Поэтому ниже использован приближенный метод анализа влияния погрешностей на динамику системы, основанный на одновременном учете одного или нескольких параметров, преобладающее влияние которых очевидно из рассмотрения конструкции механизма и условий его работы [2]. Этот метод позволяет получить достаточно точные результаты в качественном и количественном отношениях тогда, когда предварительный анализ механизма позволяет с определенной достоверностью указать ошибки, оказывающие максимальное влияние на динамику системы.  [c.136]

Теперь, после того как определено тепловыделение Е, можно интегрировать систему уравнений (8.33) — (8.36). Как показано в [28], система допускает понижение порядка и сводится к одному нелинейному дифференциальному уравнению первого порядка. Качественный анализ уравнения и численное решение показывают, что в зависимости от условий в момент нарушения ионизационного равновесия осуш ествляется тот или иной режим изменения степени ионизации.  [c.452]


Качественный анализ системы уравнений в автомодельных переменных при а > 0. Формулы (2.110), (2.113) характеризуют свойства искомых функций при а > О вблизи конечного фронта температурной волны х = хо °о. То же самое относится и к разложениям в окрестности х = оо в случае а<0, /( >) = 0 и в случае произвольного а при /(°о) = /1 0. Более детальный качественный анализ системы уравнений (2.68), (2.69) позволяет определить характер ее решения при различных граничных условиях во всей области изменения безразмерной независимой переменной х, т. е. при О X Хо 0°. Проведем такое исследование для случая а > 0. Введем замену переменных вида  [c.69]

Основное дифференциальное уравнение и его решение, Изучение свободных колебаний представляет определенный интерес в связи с практическими задачами о движении механической системы после какого-либо воз-муш ения ее состояния равновесия. Однако не только этим определяется важность темы, которой посвяш ена настоянная глава. Дело в том, что характеристики свободных колебаний (собственные частоты и собственные формы) полностью определяют индивидуальные динамические свойства механической системы и имеют первостепенное значение также при анализе ее вынужденных колебаний.  [c.22]

Важным фактором, управляя которым, можно добиться выполнения условий сходимости метода Ньютона, является близость точки начального приближения Vo к точке корня V. Это обстоятельство привело к появлению метода, повышающего вероятность сходимости метода Ньютона и называемого методом продолжения решения по параметру. В этом методе в решаемой системе уравнений выделяют параметр, влияющий на положение точки корня в пространстве фазовых переменных. Например, при анализе электронной схемы таким параметром может быть напряжение источника питания. Система (5.1) решается методом Ньютона многократно при ступенчатом изменении параметра. Пусть параметр Е выбран так, что при - 0 имеем V - 0. Тогда при первом решении выбираем Vq=0 и находим значение корня V, , соответствующее начальному значению параметра Е. Далее увеличиваем Е и решаем систему уравнений при начальном приближении Vo=Vj  [c.228]

В этой вводной главе прежде всего необходимо ввести основные определения и охарактеризовать свойства рассматриваемых волн оптического диапазона. Изложение начинается с анализа уравнений Максвелла и вытекающего из них волнового уравнения. При этом отмечается, что система уравнений Максвелла является следствием законов электрического и магнитного полей, обобщенных и дополненных гениальным создателем этой теории. Таким образом, сразу вводится понятие электромагнитной волны, возникающей в качестве решения волнового уравнения, и проводится рассмотрение ее свойств. При этом выявляется кажущееся противоречие между результатами экспериментальных исследований и решением волнового уравнения в виде монохроматических плоских волн. Данная ситуация может быть понята с привлечением принципа суперпозиции и спектрального разложения, базирующегося на теореме Фурье. В рамках этих представлений можно истолковать особенности распространения свободных волн в различных средах и определить понятия энергии и импульса электромагнитной волны, формулируя соответствующие законы сохранения. Рассмотрение излучения гармонического осциллятора, которым заканчивается глава, позволяет принять механизм возникновения излучения, облегчает модельные представления о законах его распространения и открывает возможность рассмотрения более сложных условий эксперимента, которое проводится в последующих главах.  [c.15]

Хотя система записи в виде комплексных величин очень удобна при решении линейных дифференциальных уравнений и при анализе процессов в линейных цепях, применяя ее, следует соблюдать осторожность, если рассчитываются билинейные количества, как, например, поглощение энергии и поток энергии. По указанной причине в руководстве по лабораторным работам к этому курсу относительно редко употребляются комплексные числа. Однако без комплексных величин квантовая физика выглядела бы довольно громоздко.  [c.143]


Результатами решения этих задач являются сведения о динамических нагрузках в элементах и звеньях системы привода, о пиковых значениях токов, напряжений, давлений в двигателях и системах управления, т. е. о величинах, определяющих работоспособность и надежность систем сведения о точности воспроизведения заданных траекторий и положений рабочих органов сведения о временах протекания переходных процессов сведения о характере колебательных процессов и т. д. Для обработки результатов моделирования и получения на их основе простых соотношений, связывающих показатели динамического качества системы привода с конструктивными параметрами ее элементов, применяется аппарат вторичных математических моделей (ВММ). Для получения ВММ исходная математическая модель (ИММ), т. е. система уравнений движения объекта, исследуется на ЭВМ по определенному плану при различных сочетаниях параметров. Зафиксированные в машинных экспериментах результаты обрабатывают либо методами множественного регрессионного анализа, либо с помощью алгоритмов распознавания образов. В первом случае получают количественные соотношения, позволяющие определять динамические показатели системы в функции ее параметров. Во втором случае получают выражения для качественной оценки соответствия изучаемого объекта заданному комплексу технических требова-  [c.95]

Трудности расчета переходных процессов в машинах, представляющих многомассовые разветвленные схемы, заключаются прежде всего в том, что теория колебаний систем с многими степенями свободы, а следовательно, и классические методы решения систем обыкновенных дифференциальных уравнений все еще сложны для целей инженерного применения не столько с вычислительной стороны, сколько со стороны анализа упругих сил и синтеза параметров машин в целях получения наиболее благоприятного переходного процесса. При это.м необходимо отметить, что трудности инженерных расчетов переходного процесса растут гораздо в большей степени, чем сложность машины. Поэтому сделать полный и особенно наглядный анализ, например трехмассовой системы, так, чтобы он содержал конкретные ее параметры и в простой связи, в настоящее время трудно.  [c.4]

Сущность перечисленных выше методов решения задач о напряженном состоянии заготовки в процессе ее деформирования, применяемых в последние годы, заключаются в следующем. Как известно, наиболее распространенным методом решения задач по определению напряжений является метод совместного решения уравнений равновесия элемента, выделенного в очаге деформаций, и уравнений пластичности. Однако решения этих задач с использованием точных способов механики пластического деформирования сопряжено с решением системы дифференциальных уравнений в частных производных, что вызывает большие трудности и во многих случаях не обеспечивает решений в замкнутом виде. Поэтому большинство задач решается при дополнительных упрощающих допущениях, правомочность которых не всегда обосновывалась анализом влияния их на точность результатов.  [c.202]

Оптимальная математическая модель должна наилучшим образом, т. е. с точностью и полнотой, определяемыми величинами и соотношениями соответствующих исходных погрешностей, включать все существенные факторы и параметры теплоэнергетической установки и обоснованно учитывать ее основные свойства. В процессе построения оптимальной мате матической модели выявляются возможности усовершенствования математической модели — изменения ее объема, точности используемых исходных данных, точности расчета системы балансовых уравнений и т. д. Оптимальная математическая модель позволяет получать решение задачи при наименьших затратах труда и времени счета на ЭЦВМ. Следует отметить, что принципы построения оптимальных математических моделей теплоэнергетических установок находятся на начальной стадии разработки. В настоящее время основой для построения оптимальных моделей является весьма трудоемкий инженерный анализ промежуточных результатов в процессе создания математических моделей [19].  [c.9]

Особенность системы состоит в том. что движение частицы в горизонтальной плоскости является быстрым, а в вертикальном направлении — медленным. Поэтому медленное движение в данном случае, как и в пп. 7 и 8 таблицы, описывается одним уравнением первого порядка. Общин внд уравнений медленного движения для всех трех изученных задач теории вибрационного перемещения также одинаков. Уравнениями быстрого движения в задаче п. 9 таблицы являются первые два исходных уравнения движения системы эта уравнения допускают точное решение 17], однако приведенное выражение для вибрационной силы W(V ) приближенное, полученное в результате пренебрежения силами сопротивления в уравнениях быстрого движения. Из анализа этого выражения следует, что в результате действия вибрации сила сопротивления титла сухого трения трансформировалась а силу нелинейно-вязкого сопротивления (см. п. 7). Если при отсутствии ви ации характерно, что частица может находиться в равновесии в любой точке среды, т. е. обладает континуумом положений равновесия, то при достаточно интенсивной вибрации она непременно погружается (или всплывает).  [c.257]

Скорости и ускорения звеньев структурной группы могут быть найдены после решения задачи о положениях ее звеньев при условии, что известны скорости и ускорения внешних пар группы. В данном случае при определении как скоростей, так и ускорений, тоже получается линейная система уравнений, определителем которой является якобиан D исходной системы уравнений анализа группы.  [c.405]


При составлении исходной системы уравнений для пространственных рычажных механизмов применяют матричные, векторные, тензорные, винтовые и другие методы. Ниже представлены векторный метод, основанный на применении векторной рекуррентной формулы [5], и матричный метод, базирующийся на использовании матриц 4x4. Векторный метод позволяет не только рациональным образом составить исходную систему уравнений анализа, но и найти ее решение в аналитической форме для большинства рассматриваемых механизмов.  [c.420]

Сначала с целью создания основы для анализа периодической системы будет выполнен анализ линейной стационарной системы. Хотя основным объектом исследования в настоящ,ей главе являются периодическая система и особенности ее поведения, решение стационарных систем проще, и они более широко используются. Рассмотрим систему, описываемую обыкновенными дифференциальными уравнениями вида х = Лх + Вх, где А я В — постоянные матрицы. Вектор состояния х имеет размерность п. Динамические характеристики этой системы определяются собственными значениями и собственными векторами матрицы А. Система порядка п имеет п собственных значений Я/ (/= ,..., ) и соответствующих им собственных векторов U/, являющихся решениями системы алгебраических уравнений А — kjl)Uj = 0. Эти однородные уравнения имеют ненулевые решения только в том случае, когда det(y4 — kl) =  [c.341]

Исследование устойчивости совместных махового движения и качания представляет собой сложную задачу динамики. Если необходимы точные численные результаты, то для ее решения часто требуется более совершенная модель, чем описанная выше. Конструктивная и инерционная взаимосвязи изгибных колебаний лопасти в плоскостях взмаха и вращения —важный фактор устойчивости бесшарнирных винтов. Даже слабое влияние махового движения на качание сильно увеличивает аэродинамическое демпфирование и является стабилизирующим. Обычно в динамике бесшарнирного винта необходимо учитывать и кручение лопасти. Выше показано, что компенсаторы взмаха и качания играют важную роль в динамике лопасти. Для шарнирного винта эти компенсаторы определяются конструкцией втулки и системы управления, а для бесшарнирного они зависят от изгибающих и крутящих нагрузок, действующих на лопасть. Таким образом, для точного анализа аэроупругой устойчивости несущего винта нужна полная модель движения лопасти с учетом изгиба в двух плоскостях и кручения. Вывод общих нелинейных уравнений движения для такой модели все еще является предметом исследований. Выше рассмотрен только режим висе-ния, но особенности аэродинамических нагрузок при полете вперед также сильно влияют на устойчивость совместного движения.  [c.608]

Анализ аэроупругости начинается с определения характера проблемы, подлежаш,ей решению (летно-технические характеристики, нагрузки на лопасти и т. д.), и состава модели (одна лопасть, несущий винт или вертолет в целом). Характер проблемы зависит от стадии расчета и от вопроса, представляющего интерес. Затем выявляются основные элементы анализа детальное описание системы, модель динамики (уравнения движения) и аэродинамическая модель. Имеется много различных моделей структуры вихревой системы, вычисления индуктивных скоростей, динамики несущего винта и фюзеляжа, аэродинамики лопасти и других элементов. Важно, чтобы модели, используемые для различных элементов, достаточно правильно отображали явление. Использование подробной модели лишь в части задачи ведет либо к потере точности, либо к снижению  [c.689]

Целью этого сообщения является, во-первых, краткое изложение основных аналитических подходов, широко используемых при анализе и конструировании решений нелинейных уравнений естественной конвекции, и, во-вторых, описание одной новой конструкции и ее возможностей для построения периодических решений пространственной конвекции. Изложенные здесь методы используются или могут быть использованы при решении широкого круга задач механики сплошной среды, которые описываются квазилинейными системами уравнений в частных производных.  [c.371]

При больших интенсивностях излучения на входе нелинейными становятся усиление, потери, преломление, определяющее в общем случае различные явления самовоздействия [4, 71. С одной стороны, их необходимо учитывать при анализе возможных изменений характеристик излучения, а с другой можно использовать для управления характеристиками излучения. Самое строгое описание нелинейного режима работы усилителя должно быть основано на совместном решении системы уравнений полуклассического метода, состоящей из нелинейного волнового уравнений и уравнений для инверсии населенностей рабочих уровней активной среды и поляризации с учетом членов, описывающих возможные нелинейные явления. К сожалению, строгая система уравнений становится настолько сложной, что ее решение при совместном уровне развития численных методов решения и вычислительной техники оказывается невозможным.  [c.185]

Система уравнений Навье — Стокса решается так же, как и система уравнений Эйлера, т. е. совместно с уравнением неразрывности. Обычно для определения искомых функций %, и надо располагать начальными данными и принимать во внимание граничные условия. Следует отметить, что решения уравнений Навье-—Стокса существуют лишь для некоторых частных случаев, но в то же время анализ этих уравнений позволяет правильно понять саму природу движения жидкости.  [c.24]

Уже в 30-е годы было начато изучение устойчивости более общих систем, чем у Ляпунова, что соответствует переходу от пространств конечного числа измерений с евклидовой метрикой к пространствам бесконечно большого числа измерений и метрикой общего характера. Эти исследования были продолжены и значительно продвинуты за последние два десятилетия с широким использованием методов функционального анализа. Переход к пространствам бесконечного числа измерений и общим метрикам дал возможность расширить теорию устойчивости на механические системы, описываемые не обыкновенными дифференциальными уравнениями, а бесконечными системами конечноразностных уравнений, уравнениями с запаздывающим или опережающим аргументом, уравнениями в частных производных и интегро-дифференциальными уравнениями и т. д. Такие системы все чаще встречаются в технике и физике, в теории устойчивости их удельный вес, несомненно, будет расти. Для таких систем подход к проблеме устойчивости в духе Ляпунова имеет особое значение, потому что для них весьма важен правильный учет начальных возмущений и распределение решений по типам и классам в зависимости от начальных условий. Опыт показывает, что здесь встречается гораздо большее разнообразие зон начальных условий, которым соответствуют разные по характеру решения, т. е. разное поведение физической системы.  [c.132]


Плоские задачи. В работах [8,9,16-18] дается постановка плоских контактных задач (см. рис. 1), приводятся системы их разрешающих двумерных интегральных уравнений. Формулируется общая математическая задача для операторного уравнения в абстрактном гильбертовом пространстве, предлагается проекционно-спектральный метод ее решения. Проводится численный анализ ряда конкретных процессов, причем исследуются закономерности как индивидуального, так и совместного влияния основных факторов на характеристики контактного взаимодействия.  [c.551]

Анализ системы уравнений и ее решение. Наиболее широко распространены нелинейные среды с локальным откликом, в которых динамическая решетка либо совпадает с записываюшей ее интерференционной картиной, либо сдвинута на половину периода. Поэтому рассмотрим подробно случай среды с локальным откликом, когда Фр = О, т.е. v = 0. Кроме того, положим, что среда прозрачна (а = 0). В этих условиях система уравнений (3.20) имеет несколько первых интегралов [10]  [c.98]

Непрерывным аналогом системы (2.4) является система ОДУ, преобразованная с помощью явных формул интегрирования в систему разностных уравнений. Система (2.4), как и ее непрерывный аналог, служит для анализа переходных процессов. Для ее решения в каждом варианте моделирования задаются в соответствии с тестами разработчика временные диаграммы изменения вектора входных переменных и и начальные условия для вектора V. Представление в (2.4) неизвестного вектора V в явном виде относительно известных V и и позволяет организовать потактовое моделирование. В каждом такте изменяется время t на где — длительность такта моделирования. В правую часть (2.4) подставляются и( ) и вектор У(/), рассчитанный на предыдущем такте, результат У == У(/+Д/) получается непосредственно по (2.4). Такое моделирование называется асинхронным. Длительность такта моделирования должна выбираться достаточно малой из соображений  [c.117]

Решение системы нелинейных дифференциальных уравнений в частных производных классическими способами, т. е. интегрированием с соответствующими граничными условиями, для большинства основных задач невозможно. Поэтому для приведения непрерывной задачи к дискретному виду и ее решения требуются методы численного анализа. Значения неизвестных определяются на большом, но конечном числе узлов как в пространстве, так и по времени, чтобы получалось по возможности точное решение уравнений. В программе FIELDAY используются метод конечных элементов для уравнения Пуассона комбинированный метод (конечно-разностный/ко-нечных элементов) для уравнений непрерывности [16.10]. Скорость изменения плотности подвижных носителей во времени аппроксимируется по методу Эйлера. Полученные уравнения линеаризуются затем одним из двух методов. Первый предусматривает разделение системы трех дискретных уравнений уравнения решаются последовательно [16.11]. Применение второго, более сложного метода подразумевает одновременное решение всех уравнений с линеаризацией по методу Ньютона [16.12, 16.13]. Оба метода приводят к матричным уравнениям большой размерности с сильно разреженными матрицами для получения окончательного результата эти уравнения необходимо решать многократно.  [c.464]

Система дифференциальных уравнений ( ) с граничными условиями ( представляет собой классическую нелинейную задачу на собственные значения для неизвестного собственного числа Л и неизвестных собственных функций 1 ((/ ),..., 5((/ ). Из однородности системы уравнений ( ) и граничных условий ( )-( ) следует, что функции к Т)у2 р), Т)уъ р) и к" (Т)у1((р) также являются решениями, т.е. амплитуда решения к не может быть найдена нри анализе асимптотического новедения решения нри Я 0. Поэтому для  [c.394]

Задача ставится Jreдyющим образом как определить характер устойчивости равновесия системы по структуре действующих сил Примером решения такой задачи может служить теорема Лагранжа и ее обращение, на основании которой вопрос об устойчивости равновесия консервативной системы решается исследованием одной потенциальной энергии без привлечения анализа левых частей уравнений (см. 3.1 и 3.2).  [c.164]

При расчете методом начальных параметров двухточечная краевая задача для элемента или конструкции из последовательно сопряженных элементов сводится к задаче Коши [2]. Начальные данные для нее определяются из системы алгебраических уравнений, порядок которой совпадает с порядком исходной системы дифференциальных уравнений и не зависит от числа элементов в конструкции. Хотя при относительно большой длине оболочек здесь также накапливается погрешность, однако структура метода начальных параметров позволяет, во-первых, анализировать скорость ее накопления и, во-вторых, указать удобный способ снижения этой погрешности до требуемой величины. Анализ численной процедуры метода показьшает, что начальный вектор для задачи Коши всегда получается с машинной точностью. Решение задачи Коши проводится путем последовательного перемножения матриц перехода для элементов конструкции на начальный вектор с получением нового начального вектора. Накопление погрешности происходит на этом этапе расчета конструкции при большой ее длине. Для сохранения требуемой точности расчет конструкции проводится последовательными участками, частично налегающими друг на друга. Длина каждого участка должна не более чем вдвое превышать длину, при которой в мантиссе машинного числа сохраняется достаточное число верных значащих цифр. Расчеты, выполненные на ЭВМ с различной разрядностью чисел, показьшают, что эта длина более чем на порядок превышает интервал которым оценивается качественное различие между короткой и длинной оболочками. При расчете каждого последующего участка используются начальные данные, полученные в расчете предьщущего участка.  [c.46]

Поскольку аналитическое решение приведенной системы весьма затруднительно, то приходится прибегать к ее анализу с позиций теории подобия и находить за-виоимости между безразмерными инвариантами на основании результатов экспериментов. Обработка системы уравнений с помощью аппарата теории подобия позволяет представить безразмерные поля всех переменных величин как функцию определяющих критериев, входящих в условия однозначности.  [c.414]

Матрицу фундаментальных решений Х( системы обыкновенных дифференциальных уравнений (7.2.21), удовлетворяющую начальному условию Х(0)=Е, строят путем численного интегрирования методом Рунге - Кутта. Конечный результат - матрица монодромии К=Х(7). Принадлежность рассматриваемой точки из пространства параметров к области устойчивости или асимптотической устойчивости устанавливают либо путем непосредственного вычисления мультипликаторов, либо на основании анализа норм матрихщг монодромии К и ее возрастающих положительных степеней (критерии (7.4.3) и (7.4.4) или (7.4.6)).  [c.492]

В теории ребристых оболочек широко применяется также метод непосредственного интегрирования уравнений ребристой оболочки обычно с помощью двой- " ных и одинарнйх тригонометрических рядов. Так как коэффициенты уравнений в местах присоединения ребер терпят разрыв, переменные не разделяются. Использование двойных рядов приводит к бесконечной системе алгебраических урав- яений, а одинарных в направлении, нормальном к осям ребер, к бесконечной системе обыкновенных дифференциальных уравнений. При использовании разложения в окружном направлении для оболочек со шпангоутами или в продольном направлении для оболочек со стрингерами переменные разделяются, поэтому здесь дело обстоит проще. Получается система обыкновенных дифференциаль- ных уравнений восьмого порядка со слагаемыми в виде дельта-функций. Перенося эти слагаемые в правую часть, можно представить частное решение с помо- -щью формулы Кошн в виде интегралов с переменным верхним пределом. Процесс дальнейшего решения становится рекуррентным и сводится к последова- I тельному решению систем восьми алгебраических уравнений. Число таких решений равно числу ребер плюс одно решение. Указанный метод использовал Н. И. Карпов [40] при расчете круговой цилиндрической оболочки с продольны- ми ребрами, а также П. А. Жилии [24] при анализе осесимметричной задачи для круговой цилиндрической оболочки со шпангоутами. При использовании формулы Коши необходимо знать систему нормальных фундаментальных функций (ядро Коши). Метод определения ядра Коши для линейных дифференциальных уравнений е переменными коэффйциеитами развит в книге И. А. Биргера [4]. Он осно- г -ван на решении так называемых нормальных интегральных уравнений (аналоги уравнений Вольтерра). В указанной книге дан также ряд приложений теории нормальных интегральных уравнений.  [c.324]


Как видно из рис. 24, формулы [18] в случае Я-поляризации справедливы для S = 0,95 лишь при и < 0,05, а для s = 0,25 — в области и < 0,5. Такая неравномерность объясняется следуюш,им чем больше радиус проводов, тем при меньших и начинают проявляться волновые свойства решетки, т. е. при меньших и элементы решетки становятся соизмеримы с длиной волны. Формулы [18] получены с помош,ью метода малых возмущений, т. е. в предположении, что зависимость дифрагированных полей от и имеет линейный характер. В области длин волн, соизмеримых с препятствиями (s = 0,85, и = 0,1), такие зависимости имеют существенно нелинейный характер, и формулы [18] теряют достоверность. В принципе весь численный анализ можно провести при непосредственном решении интегральных уравнений путем обычной замены интеграла суммой и линейной аппроксимации функции тока с помощью N чисел на всем контуре цилиндра. При этом получаем систему уравнений N-to порядка, которая эффективно решается на ЭВМ. Если в случае Я-поляризации интегральное уравнение заменить системой 20-го порядка (20 точек разбиения), то в интервале О < и < 1 для s = 2all = 0,25 0,50 и 0,75 численные результаты будут хорошо совпадать (с точностью не хуже, чем 0,005) с результатами, полученными из систем [25]. На рис. 24 кружочками показаны результаты для случая s = 0,95. При этом интервал интегрирования разбивался с учетом вероятностного распределения плотности тока.  [c.66]

Отчетливое понимание тех перспектив, которые открывает сокращение геометрической размерности задачи на единицу, и предвидение того, что будущее расчетных методов неизбежно связано с использованием ГИУ, ясно прослеживается и в конце 30-х—начале 40-х годов. Очень показательны в этом отношении исследования Н. И. Мусхелишвили, который, написав серию великолепных статей по созданию и исследованию ГИУ для плоской задачи теории упругости, завершил ее в 1937 г. работой [13], специально посвященной численному решению задач с помощью полученных им уравнений, и тут же вдохновил своих учеников А. Я- Горгидзе и А. К. Рухадзе осуществить такое решение. Их вышедшая в 1940 г. статья [14] содержит все компоненты того метода, который ныне именуется методом граничных элементов . Используется разбиение границы на элементы, аппроксимация функций в пределах этих граничных элементов, сведение к алгебраической системе, решение последней с нахождением неизвестных значений функций на элементах границы, вычисление напряжений в точках тела. Этим способом в работе решены две задачи — тестовая для круглого диска и иллюстративная для лемнискаты. Убедительно показано, что ГИУ могут служить не только целям теоретического анализа, но и универсальным средством решения разнообразных прикладных задач.  [c.267]

Это провозглашение эры исключительного господства аналитического метода могло казаться тем более обоснованным, что в труде Лагранжа содержится и все, что к тому времени составляло механику сплошной среды. Подводя итоги, надо все же признать, что аналитическая механика Лагранжа — не вся механика его времени. Недостаточность для приложений динамики идеальной жидкости, ограничение идеальными связями, т. е. исключение сил трения, математические трудности — словом, все, отделявшее теоретические построения от технических применений, заставляло уже тогда искать новые физические схемы, приближенные методы, обращаться к эксперименту. Это относится прежде всего к механике сплошной среды (см. следующую главу). Но в механике Лагранжа не было и других важных компонентов. В ней отразились и слабые стороны механистического, недиалектического материализма XVIII в. Лагранж обходит вопросы, связанные с тем или другим толкованием таких общих понятий, как пространство и время. А заодно он совсем не касается вопроса о том, каковы те системы координат, которыми он пользуется он ничего не говорит об относительности движения. Он обрывает в этом пункте традиции классической механики. Исходя из уравнений и не вникая в анализ физических основ механики, Лагранж как бы провел некую линию уровня . Все, лежащее выше нее, можно было считать прочно установленным и рекомендовать к применению то, что находилось ниже нее, игнорировалось. Это была новая позиция — позиция разумного самоограничения, но это исключало из рассмотрения ряд основных вопросов механики (и естествознания в целом). Исключить их на том основании, что пока нет удовлетворительного ответа на них и что они слишком близки к метафизике , было полезно можно было сосредоточить усилия на более конкретных задачах, поддающихся решению но это принесло и вред, так как отвлекало от более глубокого исследования основных понятий механики и физики, создавая иллюзию благополучия, которого на самом деле не было.  [c.157]

На смежных гранях прямоугольника заданы условия отсутствия нормальных перемещений и касательных напряжений. Для описания свойств упругого тела используется модель нелинейного несжимаемого материала [70]. Как это было сделано в задачах 6 и 8 для предварительно напряженных цилиндров, здесь задача сведена к парному ряду-уравнению по тригонометрическим функциям, для решения которого также используется метод сведения его к БСЛАУ с сингулярной матрицей. После регуляризации системы найдено ее решение и проведен численный анализ задачи в зависимости от ее параметров. Расчеты проводились для материалов Муни и Бартенева-Хазановича и отражены в таблицах и графиках [46].  [c.173]

Во второй главе дано исследование плоских смешанных задач для упругих тел, усиленных прямоугольными накладками. Здесь рассматривается задач-а о передаче нагрузки от полубесконечной накладки к упругой полуплоскости и плоскости. Нри этом модуль упругости накладки по ее длине изменяется по произвольному закону. В случае однородной накладки при помощи одного интегрального соотношения и аппарата полиномов Чебышева — Эрмита разрешающее интегро-дифференциальное уравнение задачи сведено к дискретному уравнению Винера — Хопфа довольно простой структуры. Таким путем удается получить принципиально повое замкнутое решение задачи о полубесконечной накладке. Далее излагается решение задачи о контактном взаимодействии Стрингера конечной длины и переменной жесткости с упругой полуплоскостью или плоскостью, описываемой интег-ро-дифференциальным уравнением Прандтля при определенных граничных условиях. На основе аппарата полиномов Чебышева это уравнение сведено к вполне или квазивполне регулярной бесконечной системе. Здесь же обсуждены многие частные случаи и произведен их численный анализ. Эта же задача исследуется в случае двух одинаковых стрингеров или периодической системы стрингеров. Дано построение решений задачи о взаимодействии стрингера конечной длины с полуплоскостью, когда концентрация напряжений на концах участка контакта отсутствует. Излагаются другие методы решения задачи о взаимодействии накладки конечной длины с полуплоскостью. Именно, используются асимптотические методы и метод специальных ортонормировап-  [c.11]


Смотреть страницы где упоминается термин Анализ системы уравнений и ее решение : [c.114]    [c.322]    [c.192]    [c.66]    [c.139]    [c.170]    [c.102]    [c.116]    [c.123]    [c.31]    [c.231]   
Смотреть главы в:

Лазеры на динамических решетках  -> Анализ системы уравнений и ее решение



ПОИСК



АНАЛИЗ РЕШЕНИЯ

Анализ возможности решения бесконечной системы уравнений

Анализ уравнений

Решение системы

Решения уравнения (системы)

Система анализ



© 2025 Mash-xxl.info Реклама на сайте