Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Инверсия населенностей

Рабочее тело (вещество), состоящее из ансамбля атомов или молекул, для которых может быть создана инверсия населенности.  [c.120]

Кванты света поглощаются, а частицы переходят из состояния с энергией Ео в состояние с энергией Е2. Такое заселение уровня 2 получило название оптической накачки. Инверсия населенности здесь может быть получена либо между уровнями 2 и El (т. е. П2>П]), либо между уровнями 1 и о( 1> о)- В первом случае усиление возникает на переходе Ет Еи во вто- Рис. 9.9. Трехуровневая ром — на переходе Ei- Eo. Ясно, что для схема переходов создания инверсной населенности между  [c.317]


Принцип работы лазера в режиме модуляции добротности состоит в следующем. Допустим, что внутрь оптического резонатора помещен затвор. Если затвор закрыт, то генерация не возникает и, следовательно, инверсия населенности может достигнуть очень высокого значения. При достаточной мощности накачки на метастабиль-ном уровне можно накопить почти все частицы активного вещества. Однако условие генерации выполняться не будет, так как потери резонатора слишком велики. Если быстро открыть затвор, то усиление в лазере будет существенно превышать потери и накопленная энергия выделится в виде короткого интенсивного импульса света. Поскольку в данном случае добротность резонатора изменяется от низких до высоких значений, то такой режим называется режимом модуляции добротности резонатора. При быстром открывании затвора (за время, которое короче времени развития лазерного импульса) выходное излучение состоит из одного гигантского импульса. При медленном же открывании затвора может генерироваться много импульсов.  [c.283]

Таким образом, для генерации вынужденного излучения должны быть созданы условия, при которых N2 > т. е. должна наблюдаться инверсия населенности уровней. В ином случае поглощение будет преобладать над излучением.  [c.62]

Наличие системы энергетических уровней в примесных атомах, позволяющей осуществлять. инверсию населенностей.  [c.218]

Энергетические уровни газов могут быть представлены характерной упрощенной диаграммой, приведенной на рис. 19. Большая часть известных лазерных переходов сосредоточена в области, обозначенной на диаграмме буквой А, где существуют относительно большие расстояния между соседними уровнями. В верхней части диаграммы, выше области А, уровни расположены весьма близко друг к другу. Переход с одного уровня на другой в этой области происходит весьма быстро, функции возбуждения каждого отдельного уровня малы, и ни на одном из них не может возникнуть инверсия населенности по отношению к другим. В области А верхние уровни обладают значительно большим временем жизни, чем нижние, что и обеспечивает возможность инверсии между ними.  [c.35]

Здесь vl — частота излучения лазера Р — мощность непрерывного излучения — A i) — инверсия населенности рабочих уровней Av — ширина полосы резонатора, определяемая формулой  [c.218]

Атомы неона переходят именно на уровень 25 согласно условию минимального изменения общей внутренней энергии системы. Эти переходы приводят к значительной инверсии населенностей уровней 25 и 2Р, в результате чего между ними возникает индуцированное излучение. Существует большое количество примеров получения индуцированного излучения.  [c.507]

Однако для получения достаточно большой эффективной мощности генерированного излучения необходимо, помимо инверсии населенности энергетических уровней, выполнять ряд соответствующих условий. Активное вещество помещается в объемный резонатор — своего рода ящик с отражающими стенками. Как известно, для эффективного усиления колебаний определенной частоты резонатор должен иметь размеры порядка длины волны. Однако в оптическом диапазоне длин волн резонатор, настроенный на одну единственную волну, будет иметь слишком малые размеры.  [c.507]


Рассмотрим задачу о том, каким образом в данной среде можно получить инверсию населенностей. На первый взгляд может показаться, что инверсию можно было бы создать при взаимодействии среды с достаточно сильной электромагнитной  [c.15]

Таким образом, используя только два уровня, невозможно получить инверсию населенностей. Естественно, возникает вопрос можно ли это осуществить с использованием более чем двух уровней из неограниченного набора состояний данной атомной системы Мы увидим, что в этом случае ответ будет утвердительным и можно будет соответственно говорить о трех-и четырехуровневых лазерах в зависимости от числа рабочих уровней (рис. 1.4). В трехуровневом лазере (рис. 1.4, а) атомы каким-либо способом переводятся с основного уровня 1 на уровень 3. Если выбрана среда, в которой атом, оказавшийся в возбужденном состоянии на уровне 3, быстро переходит на уровень 2, то в такой среде можно получить инверсию населенностей между уровнями 2 и 1. В четырехуровневом лазере (рис. 1.4,6) атомы также переводятся с основного уровня (для удобства будем называть его нулевым) на уровень 3. Если после этого атомы быстро переходят на уровень 2, то между уровнями 2 и 1 может быть получена инверсия населенностей.  [c.16]

Мы показали, каким образом можно использовать три или четыре энергетических уровня какой-либо системы для получения инверсии населенностей. Будет ли система работать по трех- или четырехуровневой схеме (и будет ли она работать вообще ), зависит от того, насколько выполняются рассмотренные выше условия. Может возникнуть вопрос зачем использовать четырехуровневую схему, если уже трехуровневая оказывается весьма эффективной для получения инверсии населенностей Однако дело в том, что в четырехуровневом лазере инверсию получить гораздо легче. Чтобы убедиться в этом, прежде всего заметим, что разности энергий между рабочими уровнями лазера (рис. 1.4) обычно много больше, чем kT, и в соответствии со статистикой Больцмана [см., например, формулу (1.8)] почти все атомы при термодинамическом равновесии находятся в основном состоянии. Если мы теперь обозначим число атомов в единице объема среды как Nt, то в случае трехуровневой системы эти атомы первоначально будут находиться на уровне 1. Переведем теперь атомы с уровня 1 на уровень  [c.17]

Тогда с этого уровня атомы будут релаксировать с переходом на более низкий уровень 2. Если такая релаксация происходит достаточно быстро, то уровень 3 остается практически незаселенным. В этом случае, для того чтобы населенности уровней 1 и 2 сделать одинаковыми, на уровень 2 нужно перевести половину атомов Nt, расположенных первоначально на основном уровне. Инверсию населенностей будет создавать любой атом, переведенный на верхний уровень сверх этой половины от общего числа атомов. Однако в четырехуровневом лазере, поскольку уровень 1 первоначально был также незаселенным, любой атом, оказавшийся в возбужденном состоянии, будет давать вклад в инверсию населенностей. Эти простые рассуждения показывают, что по возможности следует искать активные среды, работающие по четырехуровневой схеме. Для получения инверсии населенностей возможно, разумеется, использование н большего числа энергетических уровней.  [c.17]

Лазерный резонатор состоит из двух зеркал с коэффициентами отражения / 2 = 1 и / 1 = 0,5. Длина активной среды I = 7,5 см, а сечение перехода а = 3,5-lQ- см . Вычислите пороговую инверсию населенностей.  [c.24]

Рассмотрим случай, когда переход 2->-1 усиливает излучение, а не поглощает его. Предположим, что среда ведет себя как четырехуровневая система (рис, 2.17) и что инверсия населенностей между уровнями 2 и 1 создается благодаря некоторому процессу накачки.  [c.77]

Явление суперлюминесценции нельзя путать с усиленным спонтанным излучением (УСИ), которое часто встречается при работе многих лазеров с высоким коэффициентом усиления, таких, как азотных, эксимерных или лазерных усилителей, скажем на красителе или на неодимовом стекле. Нели в этих лазерах инверсия населенностей достигает критического значения, то в пределах телесного угла Q вокруг оси  [c.83]

В случае когда газ возбуждается током, текущим поперек оси резонатора (например, если оба электрода расположены вдоль оси резонатора см, рис. 3.16,6), надежное определение пространственного распределения скорости накачки становится затруднительным. Действительно, на распределение влияют форма электродов, тип и геометрическое расположение иногда используемых дополнительных источников ионизации, а также характеристики потока газовой смеси в разрядной трубке. Экспериментальные измерения результирующей инверсии населенностей свидетельствуют о довольно неоднородном и асимметричном распределении накачки при таком виде разряда (обычно наблюдается 50 %-ное изменение скорости накачки от центра разрядного канала к периферии).  [c.150]


W v В стационарных условиях инверсия населенностей No всегда равна критической инверсии N . Чтобы лучше уяснить физический смысл данного утверждения, предположим, что скорость накачки возрастает от критического значения Wzv>. При Wp=W p мы имеем, очевидно, N = N и о = 0.  [c.247]

Полагая в уравнении (5.246) = 0, пороговую инверсию населенностей можно записать в виде  [c.250]

В подавляющем большинстве газовых лазеров инверсия населенностей создается в электрическом разряде. При этом электроны разряда возбул<дают газ, создавая инверсию населенностей уровней энергии ионов, нейтральных атомов, устойчивых и неустойчивых молекул. Газоразрядный метод применим для возбуждения лазеров как в непрерывном, так и в импульсном режиме. Электрический разряд в газе бывает самостоятельным и несамостоятельным. Несамостоятельные разряды могут быть получены в газах высокого давления и больших объемах. Переход к несамостоятельным разрядам позволил резко поднять мощность и энергию излучения прежде всего таких лазеров с большим КПД, как С02-ла-зеры.  [c.895]

Хорошо разработан метод создания несамостоятельного разряда с использованием пучка электронов высокой энергии. Электронные пучки применяются также, наряду с импульсными лампами, для инициации химических реакций. При химическом возбуждении инверсия населенностей создается в результате химических реакций, при которых образуются возбужденные атомы, радикалы, молекулы. К химическим можно отнести и лазеры, инверсия населенностей в которых достигается с помощью фотодиссоциации. Как правило, это быстропроте-кающие реакции, инициируемые импульсной световой вспышкой.  [c.895]

Инверсия населенностей для перехода с энергией fi o возникает при условии F = F —F-j>h(si> Eg, где f- и Fv — квазиуровнн Ферми для электронов и дырок соответственно g — ширина запрещенной зоны. На практике часто энергия фотона меньше номинального значения ширины запрещенной зоны, что связано с появлением при сильном легировании примесных зон на краю запрещенной зоны.  [c.946]

Коэффициенты р , б т, ст , р и т т для газового лазера рассчитаны Лэмбом ). При расчете предполагалось, что активная среда может рассматриваться как двухуровневая система, обладающая инверсной населенностью. Величины коэффициентов, входящих в соотношения (11.4.8), зависят от собственных частот резонатора от степени инверсии населенности, от времени релаксации верхнего и нижнего рабочих уровней и от ширины линии поглощения. С учетом (11.4.8) укороченные уравнения для амплитуды и фазы я-й моды лазера примут вид  [c.362]

Двухуровневая система. Выясним некоторые особенности активированного диэлектрика, допустив вначале, что он обладает двумя уровнями энергии 1 2 и Wi, эти уровни будем считать простыми, невырожденными в отличие от них энергетические уровни, которым может соответствовать несколько различных волновых функций, называют вырожденными. Переход 2 1 сопровождается выделением, а / - 2 — поглощением энергии. Излучение энергии будет преобладать над поглощением, если населенность > iVj (для простых невырожденных уровней), т. е. если на верхнем уровне излучательного перехода находится большее число частиц, чем на нижнем. Переходы с поглощением (/ - 2) и с выделением (2 /) энергии наблюдаются непрерывно возбужденные состояния не являются устойчивыми. Средняя продолжительность пребывания частиц в возбужденном состоянии называется временем жизни т метастаб ильного состояния. Такое состояние, когда > N , достигается особыми методами — инверсией населенности. Под этим понимают процесс образования избыточной концентрации частиц (населенности) на высоких уровнях с возможностью переходов на низшие уровни. Энергии квантов на высших уровнях, например, на уровне IFj распределены в некотором интервале значений F. Плотность распределения частиц по энергии  [c.215]

Классификация материалов и требования к ним. Получение инверсии населенностей возможно при определенном сочетании энергетических уровней активиросанного вещества от его структуры зависит также возможность подбора частоты перехода, близкой к требуемой, поэтому выбор активированных материалов для квантовых приборов является серьезной проблемой. Помимо активированных для ОКГ необходимы и обычные диэлектрики (пассивные), из коюрых выполняется электрическая изоляция активного элемента и других частей квантового прибора. В качестве активированных диэлектриков используют твердые кристаллические и аморфные, жидкие и газообразные диэлектрики, содержащие активирующие примеси. В спектрах  [c.218]

Твердые вещества имеют широкие полосы поглощения и для накачки целесообразно использовать газоразрядные лампы с широким спектром излучения. Газообразные вещества имеют относительно узкие и весьма интенсивные линии поглощения и возбуждаются нередко с помощью газового разряда в самой активной среде, — т. е. в газе. Для газовой смеси удается получить высокую инверсию населенности при определенном режиме газового разряда. К таким средам относятся смеси гелия и неона, гелия и ксенона, неона и кислорода, аргона и кислорода и др. Обычно газовая среда состоит из двух газов, в которой активным является один из газов, а второй лишь используется для не-, редачи энергии накачки к частицам активного газа например, в ге-лийнеоновом ОКГ в состав смеси входит гелий Не и неон Ne в соотношении 10 I давление составляет 1 мм рт. ст. Источником стимулированного излучения служат атомы неона. Возбуждение достигается либо с помощью высокочастотного генератора, либо с помощью тлеющего разряда в трубке при высоком постоянном напряжении. Возбужденные атомы гелия с большим временем жизни, 1000 мксек, передают при столкновениях свою энергию атомам неона. В смеси азота с углекислым газом излучательные переходы совершаются между уровнями молекул СОз, а возбужденные атомы азота лишь передают свою энергию углекислому газу. В генераторах на аргоне генерация возникает при дуговом разряде в аргоне. Возможно использование и других газов. —  [c.223]


Импульсные ионные лазеры на несамоограниченных переходах составляют довольно большую группу. В них инверсия населенности получается на короткое время при мощном импульсном электрическом разряде. Она осуществляется между некоторыми возбужденными уровнями образовавшихся в разряде ионов. Импульсные ОКГ имеют в принципе такую же конструкцию, как и лазеры, работающие в непрерывном режиме, но катод выполняется более мощным. Блок питания обеспечивает токи в импульсе до нескольких килоампер при напряжениях до сотен киловольт. При высоких напряжениях предусматривается повышение электрической прочности устройств. Мощности при этом достигают нескольких мегаватт. В импульсном режиме возможна генерация в ультрафиолетовом диапазоне, которая возникает в большинстве случаев на переходах многозарядных ионов.  [c.50]

Ионы Сг +, находящиеся на уровне 2, сохраняют свою энергию в течение небольщого промежутка времени, после чего переходят на уровень 1. Вероятность этого перехода (линия А21) меньще вероятности перехода с уровня / на уровень 3. Таким образом, оптическая подкачка приводит к инверсии населенностей уровней 1 н 2 н создает условия для возникновения индуцированного излучения. Переходя с уровня 2 на уровень 1, ионы Сг + излучают свет. Уровень 2 фактически разделяется на два уровня Е и 2А, которые характеризуются переходами и Я2 соответственно.  [c.506]

СПОСОБНОСТЬ [вращательная — отношение угла поворота плоскости поляризации света к расстоянию, пройденному светом в оптически активной среде излучательная — отношение светового потока, испускаемого светящейся поверхностью, к площади этой поверхности и к интервалу частот, в котором содержится излучение отражательная — отношение отраженной телом энергии к полной энергии падающих на него электромагнитных волн в единичном интервале частот поглощательная— отношение поглощенного телом потока энергии электромагнитного излучения в некотором интервале частот к потоку энергии падающего на него электромагнит-, ного излучения в том же интервале частот разрешающая прибора — характеристика способности прибора (оптического давать раздельные изображения двух близких друг к другу точек объекта спектрального давать раздельные изображения двух близких друг к другу по длинам волн спектральных линий) тормозная — отношение энергии, теряемой ионизирующей частицей на некотором участке пути в веществе, к длине этого участка пути] СРЕДА [есть общее наименование физических объектов, в которых движутся тела или частицы и распространяются волны активная — вещество, в котором осуществлена инверсия населенностей уровней энергии и в результате чего может быть достигнуто усиление электромагнитных волн при их прохождении через вещество анизотропная — вещество, физические свойства которого неодинаковы по различным направлениям гнротронная — среда, в которой существует естественная или искусственная оптическая активность диспергирующая — вещество, фазовая скорость распространения волн в котором зависит от их частоты изотропная — вещество, физические свойства которого одинаковы по всем выбранным в нем направлениям конденсированная—твердая или жидкая среда]  [c.279]

ВОЛНОЙ частоты v, определяемой выражением (1.1). Поскольку при термодинамическом равновесии уровень 1 заселен больше, чем уровень 2, поглощение преобладает над вынужденным излучением, т. е. под действием падающей волны происходит больше переходов 12, чем переходов 2->-1, и можно надеяться осуществить таким путем инверсию населенностей. Однако нетрудно заметить, что такой механизм работать не будет (по крайней мере в стационарных условиях). Когда наступят условия, при которых населенности уровней окажутся одинаковыми (N2 = N )y процессы вынужденного излучения и поглощения начнут компенсировать друг друга и в соответствии с (1.7) среда станет прозрачнойВ такой ситуации обычно говорят о двухуровневом насыщении.  [c.16]

Если первоначально в верхнем состоянии находилось такое число атомов, что возникла инверсия населенностей, то излучение может принять форму кооперативного процесса, в котором излучение одного атома влияет на излучение других атомов. Данный процесс приводит к явлениям сверхизлучения [8] и су-перлюминесценции [9]. Вновь отсылая читателя для подробного рассмотрения этих явлений к оригинальным работам [8, 9], укажем здесь лишь на несколько относяш,ихся к делу особенностей этих явлений 1) суш,ествует вполне определенный порог возникновения кооперативного эффекта 2) длина активной среды I должна быть меньше некоторой характеристической длины 1с, значение которой зависит от начального уровня инверсии 3) интенсивность излучаемого света не изменяется теперь во времени по экспоненциальному закону вместо этого она имеет вид колоколообразной кривой, характерная длительность которой при большом уровне начальной инверсии может быть много меньше, чем Тспонт 4) в случае стержневой формы  [c.81]

Пять перечисленных выше свойств характерны как для суперлюминесценции, так и для сверхизлучения. Различие между этими двумя явлениями трудноуловимо и зависит от способа, каким была получена исходная инверсия населенностей. Если se /uwii/veme В момент времени / = о фазы ос-  [c.82]

Из выражений (2.151) и (2.150) с дальнейшим предположением, что т Яг Тспонт (как в общем случае было бы применимо к хорошему лазерному усилителю), видно, что для заметного эффекта УСИ критическая инверсия населенностей N должна быть такой, чтобы выполнялось следующее равенство  [c.84]

Из приведенного выше рассмотрения эффекта УСИ становится очевидным, что порог для УСИ, строго говоря, не существует. Однако поскольку мощность Р УСИ быстро увеличивается с инверсией населенностей приблизительно как [ехр(огоЛ 20]/(о оЛ 20 см. (2.150) , то, когда пороговые условия, определяемые выражениями (2.153) и (2.153а), превзойдены, УСИ становится преобладающим механизмом релаксации для активной среды. Поэтому отсутствие истинного порога — это особенность, которая отличает УСИ от суперлюминесцснции. Другой отличительной особенностью является то, что если для суперлюминесценции длина активной среды должна быть меньше критической кооперативной длины 1с, то для УСИ такого ограничения не существует. Еще одна характерная особенность УСИ состоит в том, что телесный угол в этом случае устанавливается из геометрических соображений и, как правило, он много больше, чем для суперлюминесценции, для которой этот угол определяется дифракцией. Наконец, заметим, что преимуществом УСИ является то, что его можно использовать для получения достаточно хорошо направленного излучения в некоторых лазерах (генераторах) с высоким усилением (например, в азотных, или эксимерных лазерах), и в то же время УСИ может вызывать нежелательный эффект в лазерных усилителях с высоким усилением (например, в эксимерных лазерах, лазерах на красителях или на неодимовом стекле), поскольку оно снимает имеющуюся инверсию населенностей.  [c.85]

П. Цилиндрический стержень из Nd YAG диаметром 6,3 мм и длиной 7,5 см накачивается мощной импульсной лампой. Значение сечения лазерного перехода в максимуме линии с длиной волны 1,06 мкм равно сг = = 3,5 10 см , а показатель преломления равен п= 1,82. Найдите критическую инверсию населенностей, соответствующую началу процесса усиления спонтанного излучения (УСИ) (предполагается, что на оба торца лазерного стержня нанесены идеальные просветляющие покрытия, т. е. они не отражают свет). Кроме того, вычислите максимальное количество энергии, которая может быть запасена в этом стержне, если необходимо избежать воз-инкновення процесса УСИ,  [c.104]

Эксперименты показали, что теория Шотки справедлива для лазеров на инертных газах, в том числе на нейтральных атомах, а также для ионных лазеров на инертных газах высокого давления (которые работают в импульсном режиме). Интересно также заметить, что радиальная зависимость электронной плотности в виде функции Бесселя была использована для точного вычисления радиального распределения инверсии населенностей в СОг-лазере [19], где, как мы видели, предположение о максвелловском распределении выполняется плохо.  [c.149]


Если получены явные выражения для В и Тс и можно считать, что рассмотренные выше приближения справедливы, то уравнения (5.1) описывают как установившиеся, так и динамическое поведение четырехуровневого лазера. Следует заметить, что уравнения принято записывать не через населенность верхнего уровня N2, а через инверсию населенностей  [c.243]

Если данное неравенство не выполняется, то работа лазера возможна в импульсном режиме лишь при условии, что длительность импульса накачки короче времени жизни верхнего уровня или сравнима с ним Возникнув, лазерная генерация будет продолжаться до тех пор, пока число атомов, накопившихся на нижнем уровне, не станет достаточным для снятия инверсии населенностей. Поэтому такие лазеры называются лазерами наса-моограниченных переходах.  [c.246]

Рассмотрим сначала пороговое условие генерации лазера. Предположим, что в момент времени = 0 в резонаторе вследствие спонтанного испускания присутствует некоторое небольшое число фотонов Qi. При этом из уравнения (5.186) следует, что для того, чтобы величина q была положительной, должно выполняться условие VaBN > 1 /тс. Следовательно, генерация возникает в том случае, когда инверсия населенностей N достигнет некоторого критического значения N , определяемого выражением  [c.246]

Если же Wp > W p, то как следует из (5.29), до линейно возрастает с ростом Wp, в то время как инверсия населенностей No остается постоянной и равной критической. Иными словами, когда скорость накачки выше критической, в резонаторе лазера увеличивается число фотонов (т. е. увеличивается электромагнитная энергия в резонаторе), а не инверсия населенностей (т. е. энергия, запасенная в активной среде). Это поясняется на рис. 5.3, на котором представлены зависимости величин N и q от скорости накачки Wp. Заметим, что при накачке ниже пороговой 9 = 0, и из уравнения (5.18а) получаем N = [Wpx/ - -- -Wpx)]Ni. Но поскольку обычно выполняется условие No = = N < Ni, из формулы (5.27) мы находим, что Wept 1, т. е. Wpi <С 1 и увеличивается с Wp практически линейно. В качестве второго замечания укажем, что с учетом формул (5.27) и (5.29а) выражение (5.296) можно записать в эквивалентном  [c.247]


Смотреть страницы где упоминается термин Инверсия населенностей : [c.194]    [c.290]    [c.224]    [c.245]    [c.14]    [c.15]    [c.84]    [c.116]    [c.219]    [c.245]   
Принципы лазеров (1990) -- [ c.14 ]

Лазеры сверхкоротких световых импульсов (1986) -- [ c.53 , c.188 ]

Оптика (1986) -- [ c.93 , c.443 ]

Введение в нелинейную оптику Часть2 Квантофизическое рассмотрение (1979) -- [ c.175 , c.244 , c.312 ]

Материаловедение Технология конструкционных материалов Изд2 (2006) -- [ c.510 ]

Лазерное дистанционное зондирование (1987) -- [ c.165 , c.166 ]



ПОИСК



Инверсия

Инверсия атомных населённосте

Инверсия населенностей и усиление света

Инверсия населенностей критическая (пороговая)

Инверсия населенностей снятие

Инверсия населенностей частичная

Населенность

Плотность инверсии населенностей

Пороговая инверсия населенностей

Создание инверсии населенностей путем оптической накачки



© 2025 Mash-xxl.info Реклама на сайте