Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Импульс волны электромагнитной

Импульс волны электромагнитной 168 Инверсия населенностей 93, 443 Индикатриса рассеяния 117 Интенсивность света 32, 67, 120 Интерференция 202, 218  [c.509]

Плотность импульса электромагнитной волны. Электромагнитная волна обладает не только энергией, но и импульсом. В теории электричества и магнетизма бЫло показано, что плотность импульса С электромагнитной волны связана с плотностью потока энергии 8 в ней соотнощением  [c.28]


При рассмотрении второй фазы приходится учитывать силы, под действием которых происходит удаление расплавленного металла. К таким силам могут быть отнесены силы термического происхождения и электрического характера. К первым относятся механические силы ударной волны, возникающей при быстром испарении части металла. Ко вторым относятся пондеромоторные силы электростатического и электромагнитного происхождения, которые обязаны своим происхождением наличию электрического поля в промежутке и тока в импульсе. Расчеты показывают, что электростатические пондеромоторные силы на 3—4 порядка меньше электромагнитных сил и сил ударной волны. Электромагнитные силы зависят от плотности тока, поэтому величина их в течение импульса меняется синхронно с изменением тока. В начальной фазе импульса (первые 10—15 мк-сек) эти силы незначительны, и выброс металла из зоны разряда осуществляется силами ударной волны, выбрасывающей до 5% металла от общей величины за один импульс. С ростом тока электромагнитные силы возрастают, и при максимальном значении тока осуществляется выброс значительной части металла, так как к этому моменту в промежутке выделяется уже около 50% энергии импульса.  [c.68]

Лазер — генератор электромагнитных волн оптического диапазона, излучающий когерентный световой поток с малым углом расхождения за счет перехода атомов с высшего энергетического уровня, на который они переводятся под действием мощных импульсов света или электри-ческого разряда, на более низший в газовых лазерах используется, например, смесь атомов гелия и неона, а в твердотельных лазерах — кристаллы некоторые типы лазеров могут работать в непрерывном режиме излучения, но их средняя мощность излучения меньше, чем в импульсе 19].  [c.146]

В этой вводной главе прежде всего необходимо ввести основные определения и охарактеризовать свойства рассматриваемых волн оптического диапазона. Изложение начинается с анализа уравнений Максвелла и вытекающего из них волнового уравнения. При этом отмечается, что система уравнений Максвелла является следствием законов электрического и магнитного полей, обобщенных и дополненных гениальным создателем этой теории. Таким образом, сразу вводится понятие электромагнитной волны, возникающей в качестве решения волнового уравнения, и проводится рассмотрение ее свойств. При этом выявляется кажущееся противоречие между результатами экспериментальных исследований и решением волнового уравнения в виде монохроматических плоских волн. Данная ситуация может быть понята с привлечением принципа суперпозиции и спектрального разложения, базирующегося на теореме Фурье. В рамках этих представлений можно истолковать особенности распространения свободных волн в различных средах и определить понятия энергии и импульса электромагнитной волны, формулируя соответствующие законы сохранения. Рассмотрение излучения гармонического осциллятора, которым заканчивается глава, позволяет принять механизм возникновения излучения, облегчает модельные представления о законах его распространения и открывает возможность рассмотрения более сложных условий эксперимента, которое проводится в последующих главах.  [c.15]


Б наших рассуждениях мы исходим из того, что на опыте обычно измеряется групповая скорость U. Это действительно так практически все приемники света реагируют на усредненное значение квадрата напряженности электрического поля <Е >. Более того, детальный анализ любого эксперимента по определению скорости электромагнитных волн показывает, что в опыте тем или иным способом образуется импульс света, который затем регистрируется. Наиболее ясно это выявляется при изучении различных способов, основанных на прерывании света (метод Физо, Майкельсона и т. д.). Следует также указать, что все радиолокационные установки в диапазоне УКВ работают на принципе эхо , регистрируя отраженный сигнал и измеряя т = 2R/U, где R — расстояние до исследуемого объекта. Так как в воздухе t/ = ц = с, то Я = сх/2. Многократная проверка правильности показаний локаторов и свидетельствует о том, что в этом случае U = с.  [c.50]

Если волна распространяется в вакууме (скорость ее будет с), то за 1 с через единичную площадку пройдет вся энергия, сосредоточенная в прямоугольнике, основание которого равно 1 см , а ребро численно равно с. Следовательно, произведение Af на At = 1 с будет соответствовать импульсу поля, сосредоточенному в объеме, численно равном с см . Поэтому средняя плотность импульса электромагнитного поля  [c.111]

Электромагнитная теория света, заменившая старую волновую теорию, позволила существенно упростить постановку задачи. Но при ее применении к проблеме интерференции возникают трудности, связанные с тем, что в оптике, как правило, имеют дело не с монохроматическими волнами, а с импульсами, или волновыми пакетами. "Синусоидальная идеализация", которая оказалась вполне пригодной для описания широкого класса явлений, рассмотренных в предыдущих разделах, требует видоизменения при истолковании более тонких интерференционных эффектов.  [c.175]

Электромагнитное излучение всех длин волн обусловливается колебаниями электрических зарядов, входящих в состав вещества, т. е. электронов и ионов. При этом колебания ионов, составляющих вещество, соответствуют излучению низкой частоты (инфракрасному) вследствие значительной массы колеблющихся зарядов. Излучение, возникающее в результате движения электронов, может иметь высокую частоту (видимое и ультрафиолетовое излучение), если электроны эти входят в состав атомов или молекул к, следовательно, удерживаются около своего положения равновесия значительными силами. В металлах, где много свободных электронов, излучение последних соответствует иному типу движения в таком случае нельзя говорить о колебаниях около положения равновесия свободные электроны, приведенные в движение, испытывают нерегулярное торможение, и их излучение приобретает характер импульсов, т. е. характеризуется спектром различных длин волн, среди которых могут быть хорошо представлены и волны низкой частоты.  [c.682]

Процессы, происходящие в твердых телах, связанные с колебаниями атомов кристаллической решетки, выглядят особенно просто, если обратиться к одному из самых фундаментальных обобщений квантовой механики. В основе этого обобщения лежит идея французского физика Луи де Бройля о том, что каждой волне с частотой со и волновым вектором к можно сопоставить частицу с энергией E—Htd и импульсом p = ftk. Так, световые (электромагнитные) волны можно рассматривать как квантовые осцилляторы излучения или считать, что они состоят и частиц — квантов, называемых фотонами. Каждый фотон имеет энергию Й.0). Аналогично, если обратиться к формуле (5.70) для энергии квантового осциллятора, то звуковую волну с волновым вектором к и поляризацией s можно рассматривать как совокупность ге(к, s) квантов с энергией Йсо(к, s) каждый и плюс энергия основного состояния /2Й<в(к, s). Эти кванты (или частицы звука) звуковой волны называют фононами. Величина ft. o(k, ь), очевидно, представляет собой наименьшую порцию энергии возбуждения над основным уровнем АЛ (к, s). Так как фонон несет наименьшую энергию, его рассматривают как элементарное возбуждение. Сложное возбуждение есть просто возбуждение, содержащее много фононов. Коллективные движения атомов в кристалле представляют собой звуковые волны, а соответствующие им возбуждения — кванты звука, или фононы.  [c.161]


Если бы мы имели дело только с монохроматическим излучением, то понятия фазовой скорости было бы достаточно для описания всех явлений, связанных с распространением электромагнитных волн. Однако монохроматическая волна, представляющая собой безграничную и бесконечно длящуюся синусоиду, неосуществима. На самом деле излучение распространяется в виде импульсов, ограниченных во времени и в пространстве (см. 1.7). Скорость распространения такого импульса можно отождествить со скоростью распространения какой-либо его точки, например точки максимальной напряженности поля. Однако при этом надо предполагать, что импульс, распространяясь, сохраняет свою форму или во всяком случае деформируется достаточно медленно. Для того чтобы судить об этом, можно представить импульс как наложение бесконечно большого числа близких по частоте монохроматических волн (представление импульса в виде интеграла Фурье). Если все эти монохроматические волны разной длины распространя-  [c.86]

В эксперименте всегда измеряется групповая скорость света, поскольку, как уже указывалось, практически все приемники света реагируют на усредненное значение квадрата напряженности электрического поля < >. Кроме того, в любом опыте ио определению скорости электромагнитных волн тем или иным способом формируется импульс света, который затем регистрируется. В отличие от групповой скорости света фазовую скорость нельзя измерить непосредственно. Эту величину определяют из соотношения v = n.  [c.89]

Однако в отличие от опытов Герца при торможении электронов на аноде отсутствует колебание тока, и поэтому Стокс представил рентгеновское излучение в виде электромагнитного импульса. Окончательное выяснение природы рентгеновских лучей как электромагнитных волн стало возможным в 1912 г., когда М. Лауэ предложил опыты по дифракции рентгеновских лучей, не только доказавшие их волновую природу, но и позволившие измерять длину волны.  [c.48]

Квантовые процессы характерны существенным проявлением и волновых, и корпускулярных (т. е. присущих частицам) свойств. Для частиц квантовыми являются волновые свойства. Для волновых процессов, таких как электромагнитные или звуковые волны, квантовыми свойствами будут, наоборот, корпускулярные. Поэтому волновые процессы носят неквантовый характер в тех случаях, когда энергии и импульсы, вычисленные по формулам (1.20), (1.21), ничтожно малы по сравнению с энергией и импульсом всей волны. Таким образом, в этом случае волна образована громадным количеством частиц.  [c.17]

Человек — существо макроскопическое. Разрешающая способность его органов чувств на много порядков ниже той, которая нужна для непосредственного познавания элементарных частиц, атомных ядер и даже гораздо более крупных агрегатов — атомов и молекул. Поэтому все наблюдения над событиями микромира — косвенные. Непосредственно мы не видим, не слышим и не ощущаем, как устроено атомное ядро. Но этим трудности опытного изучения микромира далеко не исчерпываются. Не видим мы и магнитного поля. Но изучать атомное ядро гораздо труднее, чем магнитное поле, из-за влияния квантовых свойств. Видим мы через посредство электромагнитных волн. Но с помощью волн можно увидеть лишь предмет, не меньший длины волны. Поэтому для изучения очень малых предметов надо брать очень короткие волны. Но чем короче волна, тем сильнее сказываются ее корпускулярные свойства, т. е. тем больше импульсы и энергии отдельных частиц — квантов излучения. При переходе к микромиру энергии и импульсы этих квантов настолько возрастают, что они становятся снарядами, расшвыривающими и разрушающими изучаемые объекты.  [c.27]

Одним из наиболее эффективных методов определения характеристик нестабильных уровней является измерение угловых корреляций при каскадном испускании ядром v-квантов. Угловой корреляцией называется угловое распределение N (О) импульса одного каскадного кванта относительно другого (обычно предшествующего первому). Таким образом, в корреляционном опыте необходимо регистрировать по схеме совпадений (см. гл. IX, 6) два кванта, последовательно вылетающих из одного и того же ядра под различными относительными углами между их импульсами. Техника таких измерений сейчас разработана достаточно детально. Появление нетривиальной корреляционной зависимости связано с тем известным из теории электромагнитного излучения обстоятельством, что проекция т полного момента v-кванта на его импульс может принимать (разумеется, в единицах U) только значения m = 1. Значение т = О исключено условием поперечности электромагнитных волн. Поэтому, если, например, ядро на уровне с мо-  [c.266]

В металлах многие электроны являются свободными. Поэтому в этом случае нельзя говорить о колебаниях около центров равновесия. Электроны движутся и при этом испытывают нерегулярное торможение. Вследствие. этого излучение металлов приобретает характер импульсов и имеет волны различной частоты, в том числе волны низкой частоты. Помимо волновых свойств излучение обладает также и корпускулярными свойствами. Корпускулярные свойства состоят в том, что лучистая энергия испускается и поглощается веществами не непрерывно, а отдельными дискретными порциями — квантами света или фотонами. Испускаемый фотон — частица материи, обладающая энергией, количеством движения и электромагнитной массой. Поэтому тепловое излучение можно рассматривать как фотонный газ.  [c.361]

Прохождение фотонов через вещество есть процесс поглощения и последующего испускания энергии фотонов атомами и молекулами этого вещества. Таким образом, излучение имеет двойственный характер, так как обладает свойствами непрерывности поля электромагнитных волн и свойствами дискретности, типичными для фотонов. Синтезом обоих свойств является представление, согласно которому энергия и импульсы сосредоточиваются в фотонах, а вероятность нахождения их в том или ином месте пространства — в волнах. Соответственно этому излучение характеризуется длиной волны (X) или частотой  [c.361]


Эта порция, или квант энергии тепловых колебаний решетки, называется фононом. хю аналогии с квантом электромагнитного излучения — фотоном. Эта аналогия прослеживается и. далее. С точки зрения квантовой теории равновесное тепловое излучение рассматривается как газ, образованный квантами света — фотонами, обладающими энергией Е — hv = Н(л и импульсом р = йи/с = = к/Х, где с — скорость света. Точно так же поле упругих волн, заполняющих кристалл, можно трактовать как газ, образованный квантами нормальных колебаний решетки — фононами, обладаю-Щ.ИМИ энергией = hv = Лю и импульсом  [c.131]

Обработка металлов давлением импульсного магнитного поля высокой напряженности представляет новый и пока еще мало распространенный метод формообразования импульсным напряжением. Принципиальная схема установки электромагнитного формообразования представлена на рис. 1 и состоит из батареи конденсаторов С, которая заряжается от высоковольтной сети постоянного тока, разрядника Р, необходимого для придания токовому импульсу нужной крутизны фронта при короткой волне. После разрядника Р располагается рабочая нагрузка Н, которая выполнена в виде соленоида-индуктора.  [c.306]

Высокая точность и разрешающая способность достигается остронаправленными антеннами, которые излучают импульсы электромагнитных колебаний с длиной волны 3 см, длительностью 0,5 мксек.  [c.265]

С открытием лазеров как источников коротких импульсов излучения в оптическом диапазоне электромагнитных волн появилась возможность наблюдения фотонного эха [67], являющегося оптическим аналогом спинового эха, а также свободного распада электронной поляризации [68] и других эффектов [69-71], обусловленных сложением фаз, т. е. когерентностью атомного ансамбля. Как мы увидим ниже, эволюция во времени недиагональных элементов матрицы плотности примесного центра определяет свободное затухание поляризации, различные типы фотонного эха и некоторые другие нелинейные явления. Эти эффекты получили название переходных. Их можно наблюдать лишь после возбуждения образца достаточно короткими световыми импульсами. Среди переходных эффектов наибольший интерес в настоящее время вызывает фотонное эхо, превратившееся в главный инструмент для исследования фазовой и энергетической релаксации электронных состояний примесных центров в твердых растворах. Достижениям теории в области описания фотонного эха и посвящена в основном данная глава.  [c.195]

Показано, что в нестационарных задачах с ударными волнами, ионизующими находящийся в электромагнитном поле газ, впереди ударной волны может распространяться электромагнитная волна. При этом оказывается [1], что если за ударной волной известна, например, скорость движения газа (задача о поршне), то граничных условий на ударной волне, выражающих непрерывность касательной составляющей электрического поля, а также потоков вещества, импульса и энергии, недостаточно для одновременного определения интенсивности ударной волны и интенсивности излученной электромагнитной волны. Рассмотрение структуры ударных волн такого типа дает дополнительное соотношение, связывающее величины до и после ударной волны. Это соотношение, а следовательно, изменение всех величин на ударной волне существенным образом зависят от отношений диссипативных коэффициентов (вязкости, теплопроводности и магнитной вязкости) друг к другу в переходной зоне.  [c.215]

Перейдем, так же как и в случае равновесного электромагнитного излучения, к корпускулярной картине, в которой каждому нормальному колебанию (или, что то же самое, каждой стоячей волне) сопоставляется квантовый осциллятор с энергией М1 +l/2)/гv/. При этом квантовые числа каждого осциллятора N1 интерпретируются как числа особых квазичастиц — фононов, имеющих энергию e/ = /гv, и импульс р1 = /г/,- / 2лг.  [c.256]

Всякое движение заряда с ускорением цриводит к излучению электромагнитных волн. Электромагнитные волны уносят энергию и импульс. Поэтому система движущихся с ускорением зарядов пе является замкнутой в ней не сохраняются энергия и импульс. Такая система ведет себя как механич. система нри наличии сил трения (диссипативная система), к-рые вводятся для описания факта несохранения энергии в системе вследствие ее взаимодействия со средой. Совершенно так же передачу эпергии (и импульса) заряженной частицей электромагнитному полю излучения можно описать как лучистое трение . Зная теряемую в единицу времени энергию (т. е. интенсивность излучения), можно определить силу трения. В случао электрона, движущегося в ограниченной области со скоростью, малой в сравнении со скоростью спета с, интенсивность излучения составляет  [c.383]

В.Д. Нацик [16] предположи г, что существует аналогия между изучением звуковых волн и движущимися дислокациями при переходе границы двух сред с разными модулями упругости и процессом излучения электромагнитных волн движущимися зарядами при переходе границы двух сред, различающихся ди-элек1рическими постоянными. Это позволило предсказагь возникновение звуковых сигналов при переходе дислокации через плоскость разрыва модулей упругости (например, при переходе дислокаций через границу зерна в поли-кристаллическом металле или при выходе дислокации на поверхность) и зависимость интенсивности звукового импульса переходного излучения от скорости, с которой дислокация выходит на поверхность.  [c.258]

Высокочастотные электромагнитные колебания в телевиаиол-ном нередатчике модулируются сигналом импульса, полученного на выходе передающей трубки, и подаются на антенну передатчика. Антенна излучает электромагнитные волны..  [c.257]

Значение принятой идеализации (т = оо) велико именно потому, что любой импульс можно представить в виде суммы (конечной или бесконечной) гармонических функций вида oi os(fiiii — 9j). Существуют серьезные основания, в силу которых разложение по гармоническим функциям представляется с точки зрения физика наиболее целесообразным по сравнению с любой другой возможной математической операцией. Мы еще вернемся к вопросу о разложении излучения в спектр (см. 1.6), а сейчас имеет смысл выяснить степень монохроматичности излучения тех или иных источников электромагнитных волн и указать основные способы монохроматизации радиации (т. е. уменьшения интервала частот Av).  [c.33]

Если мы имеем дело только с монохроматичеким излучением, то проблема полностью исчерпана и понятия фазовой скорости достаточно для описания всех явлений, связанных с распространением электромагнитных волн. Но на самом деле радиация распространяется в виде импульсов, представляющих собой совокупность различных монохроматических волн. При движении в реальных средах импульс деформируется и невозможно охарактеризовать происходящие при этом сложные процессы лишь одним значением и = uj/k. Приходится вводить новые, более сложные понятия. Проанализируем экспериментальные данные.  [c.45]

Как общий вывод из проведенно1-о рассмотрения природы светового давления следует законность введения понятия импульса электромагнитного поля g, непрерывно распределенного по всему объему, где отличен от нуля вектор плотности потока электромагнитной энергии S. Действительно, будем исходить из формулы (2.32), которая для единичной площадки, перпендикулярной направлению распространения волны п, имеет вид  [c.110]


В квантовой теории реальное свободчое электромагнитное ноле рассматривается как система фотонов (световых квантов) и каждой плоской волне отвечает один фотон с энергией и импульсом = hk . Между энергией и импульсом существует известная  [c.254]

На микроскопическом масппабе невозможно достоверно определить, чем является материя - волной или частицей. Например, свет при распространении в пространстве ведет себя как волна (явления отражения, дифракции, интерференции), при контакте же с большим количеством конденсированного вещества - как поток частиц (явление фотоэффекта). Элементарные частицы при столкновении могут аннигилировать с выделением энергии -электромагнитного излучения определенной частоты. Согласно принципу неопределенности Гейзенберга, в пределах атома невозможно одновременно точно определить Местоположение и импульс электрона. Он ведет себя подобно волне, распространяющейся внутри сферы с радиусом, равным радиусу атома. С другой стороны, на больших масштабах все конденсированное вещество состоит из элементарных частиц, и они ведут себя, как и положено частицам.  [c.138]

В действительности мы всегда имеем более или менее сложный импульс, ограниченный во времени и в пространстве. При наблюдении такого импульса мы можем выделять какое-нибудь определенное его место, например, место максимальной напряженности того электрического или магнитного поля, которое представляет собой электромагнитный импульс. Скорость импульса можно отождествить со скоростью распространения какой-либо его точки, например, точки максимальной напряженности поля. При этом, однако, надо предполагать, что импульс нащ сохраняет при распространении свою форму или во всяком случае деформируется достаточно медленно или периодически восстанавливается. Для выяснения этого обстоятельства мы можем представить импульс как наложение бесконечно большого числа близких по частоте монохроматических волн (представление импульса в виде интеграла Фурье). Если, например, все эти монохроматические волны разной длины распространяются с одной и той же фазовой скоростью (среда не имёет дисперсии), то с той же скоростью перемещается и импульс как целое, сохраняя неизменной свою форму.  [c.428]

Световая волна в вакууме представляет собой переменное электромагнитное поле высокой частоты, распространяющееся с постоянной скоростью (с = 2,9979-10 см/с), не зависящей от частоты. Последнее обстоятельство может считаться установленным с большой степенью достоверности наблюдениями над астрономическими явлениями. Так, исследование затмения удаленных двойных звезд не обнаруживает никаких аномалий в спектральном составе света, доходянщго до нас в начале н конце затмений. Между тем затмение звезды или выход ее из тени своего спутника означает обрыв или начало распространения светового импульса, далеко не монохроматического и могущего рассматриваться как результат наложения многих монохроматических излучений. Если бы скорость этих излучений в межпланетном пространстве была различна, то импульс должен был бы дойти до нас значительно деформированным. Например, предположим для простоты, что этот импульс можно уподобить двум почти монохроматическим группам, синей и красной , и примем, что скорость распространения красной группы больше, чем синей мы должны были бы наблюдать при начале затмения изменение цвета звезды от нормального к синему, а при окончании его — от красного к нормальному. При огромных расстояниях, отделяющих от нас двойные звезды, даже ничтожная разница в скоростях должна была бы дать заметный эффект. В действительности же такой эффект не имеет места. Так, наблюдения Aparo над переменной звездой Алголь привели его к заключению, что разность между скоростью распространения красного и фиолетового излучения во всяком случае меньше одной стотысячной величины самой скорости. Эти и подобные наблюдения заставляют признать, что дисперсия света в межпланетном пространстве ) отсутствует. При  [c.538]

Из формулы для дифференциального сечения, которую мы не приводим из-за ее сложности, следует, что электроны, освобождающиеся при фотоэффекте, распределены симметрично (по закону os ф) относительно направления электрического вектора Е падающей электромагнитной волны (рис. 82, а). Для неполяризованного излучения (или при круговой поляризации) это приводит к такому угловому распределению, которое пол> -чается вращением рис. 82, а вокруг направления распространения фотонов (пунктирная кривая на рисунке). Из рисунка видно, что электроны могут иметь отрицательную величину проекции импульса на направление распространения фотонов. Очевидно, что это не противоречит закону сохранения импульса, так как фотоэффект идет на электроне, связанном с атомом, который уносит дополнительный импульс.  [c.243]

Итак, на рубеже XIX и XX столетий было установлено, что для распространения электромагнитных, в частности световых, волн не нужна какая-то специальная среда. Волны сами по себе являются материальной сущностью , об-ладаюш,ей энергией и импульсом, и могут распространяться в вакууме. Тем самым понятие волна приобретало новое содержание. Физикам приходилось расставаться с привычкой рассматривать волновое движение обязательно в т-кой-то среде.  [c.34]

Об импульсе фотона. Как уже отмечалось, Эйнштейн предполагал, что наблюдаемое в отсутствие излучения распределение (3.2.5) сохраняется и при наличии излучения. В работе К квантовой терии излучения Эйнштейн показал, что это предположение имеет интересный физический смысл. Он рассмотрел два разных механизма спонтанного испускания 1) излучение испускается в виде расходящейся от атома во все стороны сферической электромагнитной волны, и тогда импульс атома-излучателя на меняется 2) излучение испускается в виде кванта света, и тогда атом-излучатель получает всякий раз импульс отдачи, причем у разных атомов эти импульсы будут иметь случайное направление. Оказывается, что равновесие системы атомов, взаимодействующих с излучением, не нарушается только при условии, что имеет место второй из указанных механизмов спонтанного испускания и при этом импульс кванта света равен iiail . Таким образом, Эйнштейн привел дополнительное подтверждение существования световых квантов, характеризующихся наряду с энергией 1ъи> также импульсом Асо/с.  [c.73]

С классической точки зрения волна, коттэрая удовлетворяет этому дисперсионному соотношению, может иметь любую амплитуду (в пределах выполнения закона Гука). В то же время для колебаний решетки, как и для квантов электромагнитного излучения, характерен корпускулярно-волновой дуализм. Корпускулярный аспект колебаний решетки приводит к понятию фонона, и прохождение волны смещения атомов в кристалле можно рассматривать как движение одного или многих фононов. При этом каждый фонон переносит энергию Ксй, где Ь = Ь/2я= 1,0546-эрг-с Н — постоянная Планка, и импульс Ьк. Теплопроводность, рассеяние электронов и некоторые другие процессы в твердых телах связаны с возникновением и исчезновением фононов, т. е. корпускулярный аспект таких процессов- так же важен, как и волновой. Проявление дискретной (корпускулярной) природы энергии возбуждения в других явлениях зависит от того, насколько велико количество термически возбужденных фононов.  [c.36]

Обсуждается жспернмеитальное доказательство правильности формул, связывающих энергию и импульс фотона с частоюй и волновым вектором электромагнитных волн.  [c.24]

Электромагнитные волны, или кванты, обладают не только энергией, но и импульсом, абсолютная величина которого для кванта равна hvj .  [c.274]

Электромагнитные волны, или кванты, обладают не только энергией, но и импульсом hvl .  [c.401]

Погрешность, обусловленная влиянием акустического контакта, исключается при использовании бесконтактных способов излучения и приема акустических волн. Для этой цели применяют электромагнитно-акустические преобразователи, широкополос-ность которых позволяет формировать импульсы полуволновой длительности, что важно для достижения высокой точности. ЭМА-преобразователи легче возбуждают поперечные, а не продольные волны. Это также удобно для измерения скорость распространения поперечных волн меньше, чем продольных, измеряемый интервал времени увеличивается и соответственно уменьшается погрешность Небольшая чувствительность ЭМА-преобразователей не препятствует использованию этого способа в приборах групп А и В, характеризующихся высокой амплитудой  [c.403]

Угол отклонения маятника 1 со стальным шаром на конце строго фиксирован На конце маятника можно закреплять стальные шары различной массы для изменения параметров ударного импульса при соударении с мерным стержнем 2, подвешенным на тягах 3 маятникового подвеса. На свободном торце мерного стержня закреплен ударный акселерометр 4. Электрический сигнал, пропорциональный ударному ускорению на свободном торце стержня, с выхода акселерометра через предварительный усилитель 5 поступает на первый вход двухлуче-вого электронного осциллографа 6. HajBTopoft вход осциллографа поступает электрический сигнал, пропорциональный пе )емещению частиц стержня при воздействии прямой и отраженной ударной волн, с тензодатчиков. закрепленных на поверхности мерного стержня и включенных в мостовую схему 7. Питаются тензодатчики и электромагнитное устройство, удерживающее маятник в исходном положении, от источника питания S. Для установления соответствия показаний ударного акселерометра показаниям  [c.367]


Необходимо отметить, что энергия излучения испускается веществом не непрерывно в виде бесконечной электромагнитной волны, а в виде определенных порций, так называемых квант0(в энергии излучения. По современным представлениям носителями этих порций (квантов) электромагнитной энергии являются элементарные частицы излучения или фотоны. Фотоны обладают свойствами движущихся частиц, имеют определенные частоту, запас энергии, определяемый их частотой и равный кванту, импульс, спин и нулевую массу покоя.  [c.9]

Свободному электрону в твердом теле соответствует электромагнитная волна, способная распространяться в любом направлении. Однако поведение электрона изменяется, если он находится в области твердого тела, ограниченной потенциальными барьерами, примером которой может являться квантовый шнур с ограниченными размерами сечения. В этом случае в поперечных направлениях могут распространяться только волны с длиной, кратной геометрическим размерам структуры. При этом соответствующие им электроны могут иметь только определенные фиксированные значения энергии, тогда как вдоль шнура могут двигаться электроны с любой энергией. Запирание электрона хотя бы в одном из направлений сопровождается увеличением его импульса. Данное явление называется квантовым ограничением и приводит, с одной стороны к увеличению минимальной энергии электрона, а с другой - к дополнительному квантованию энергетических уровней, вследствие чего свойства наноразмерных структур будут отличаться от свойств материала, из которого они сформированы.  [c.150]


Смотреть страницы где упоминается термин Импульс волны электромагнитной : [c.251]    [c.116]    [c.264]   
Оптика (1986) -- [ c.168 ]



ПОИСК



Волны электромагнитные

Волны электромагнитные (см. Электромагнитные волны)

Световое давление. Импульс электромагнитной волны

Электромагнитные

Электромагнитный импульс



© 2025 Mash-xxl.info Реклама на сайте