Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задачи. на применение уравнений равновесия

Задачи на применение уравнений равновесия  [c.74]

ЗАДАЧИ НА ПРИМЕНЕНИЕ УРАВНЕНИЙ РАВНОВЕСИЯ  [c.75]

Задачи на равновесие системы твердых тел, находящихся под действием произвольной плоской системы сил, решаются путем применения уравнений равновесия твердого тела, разобранных в 2 (уравнения (1 ) или (2 ), или (3 )).  [c.64]

Непосредственное применение условий равновесия в геометрической форме дает наиболее простое решение для системы трех сходящихся сил. При наличии в системе четырех и более сил рациональнее применять аналитический метод, который является универсальным и применяется чаще всего. При аналитическом методе решение этих задач выполняется на основе уравнений равновесия по следующему  [c.19]


Для решения температурной задачи можно воспользоваться тем же методом, который был применен при расчете цилиндра на действие внутреннего и внешнего давлений. При этом уравнение равновесия (16.1) не изменится. Геометрические соотношения (16.2) и  [c.452]

Удобство применения рычага Жуковского при решении задач на равновесие плоских многозвенных механизмов заключается в том, что в уравнение равновесия не входят силы реакций идеальных связей.  [c.408]

Следует помнить, что равновесие, о котором идет речь в формулировке принципа Даламбера, условное. Силы инерции не приложены к материальной точке, на которую действуют силы Р и Я. Поэтому это равновесие следует рассматривать как фиктивное. Этим и объясняется, почему при формулировке принципа Даламбера слово уравновешивается взято в кавычки. Само понятие о таком равновесии есть лишь способ для введения особой методики решения задач динамики, заключающейся в применении в динамических задачах уравнений равновесия статики. Собственно в этом и заключается практическое значение принципа Даламбера. Принцип Даламбера дает возможность формально сводить решение задач динамики к решению задач статики.  [c.421]

Для решения статически неопределимых задач, помимо применения метода сечений и, следовательно, использования уравнений равновесия, известных из статики, приходится составлять дополнительные уравнения, основанные на рассмотрении условий и характера деформации системы. Эти уравнения называют у равнениями перемещений. Их количество зависит от того, насколько число неизвестных усилий больше числа независимых уравнений статики или, как говорят, от степени статической неопределимости системы. Здесь  [c.233]

Для решения статически неопределимых задач помимо применения метода сечений и, следовательно, использования уравнений равновесия, известных из статики, приходится составлять дополнительные уравнения, основанные на рассмотрении условий и характера деформации системы. Эти уравнения называют уравнениями перемещений. Их количество зависит от того, насколько число неизвестных усилий больше числа независимых уравнений статики или, как говорят, от степени статической неопределимости системы. Здесь ограничимся рассмотрением систем, в которых число неизвестных лишь на единицу больше числа уравнений статики (один раз статически неопределимые системы). Методику их расчета рассмотрим на примерах,  [c.208]


В статике твердого тела (отдел первый) были выведены уравнения равновесия твердого тела, заключающиеся в равенстве нулю сумм проекций приложенных к телу сил на оси координат и сумм моментов этих сил относительно тех же осей.. При решении задач статики реакции связей не выделялись из общего числа приложенных к телу сил, что соответствовало применению принципа освобождаемости.  [c.319]

Геометрическая статика, рассмотренная в первом разделе курса теоретической механики, позволила нам установить необходимые и достаточные условия равновесия абсолютно твердого тела. Применение геометрической статики к определению условий равновесия системы тел требует, как ранее указывалось, расчленения системы на отдельные тела и составления уравнений равновесия для каждого из тел, рассматривая его как свободное. С увеличением числа тел в системе решение такой задачи методом расчленения значительно усложняется.  [c.766]

В монографии отдается предпочтение аналитическим решениям типичных задач теории оболочек, составляющим золотой фонд этой науки. Авторы являются решительными противниками подмены фундаментальной дисциплины — теории оболочек — одним из разделов прикладной математики. Эта достойная сожаления тенденция является побочным эффектом интенсивного внедрения универсальных численных методов (таких, как методы конечных разностей и конечных элементов). На страницы журналов (да и монографий) лавиной хлынули работы с описанием численных экспериментов, реализованных порой с применением стандартных пакетов прикладных программ. Теория при этом используется лишь для того, чтобы выписать исходную систему уравнений. Возможные вопросы по формированию последней упреждаются дежурной фразой типа Уравнения равновесия берем в самом общем виде .  [c.3]

В целях пояснения применения этих двух методов Эйлер останавливается на задаче о цепной линии. Для цепи, подвешенной в двух точках А я В (рис. 21), можно получить кривую ее равновесия, воспользовавшись прямым методом . При этом мы рассматриваем силы, действующие па бесконечно малый ее элемент тп, и составляем уравнения равновесия этих сил. Из этих уравнений выводится требуемое дифференциальное уравнение цепной линии. Но той же цели мы можем достигнуть и методом конечных причин , подходя к задаче из соображений о потенциальной энергии сил тяжести. Из всех геометрически возможных кривых провеса искомая должна быть такой, для которой эта потенциальная энер-  [c.44]

В настоящей работе описан численный метод решения задач плоского пластического течения с кинематическими граничными условиями. Напряжения исключаются из уравнений равновесия с помощью ассоциированного закона течения. В результате этого расчет пластического течения сводится к решению системы из двух нелинейных дифференциальных уравнений для функции тока и вихря. Применение метода иллюстрируется на примере решения задач прессо ания и прошивки прямоугольным гладким пуансоном.  [c.54]

Иногда в задачах статики приходится рассматривать равновесие не одного, а нескольких тел, связанных между собой и образующих неизменяемую систему. Силы, действующие на такую систему со стороны других тел, не входящих в нее, называются внешними, силы взаимодействия между сочлененными телами системы — внутренними. В этом случае для плоской системы сил число уравнений, которые можно составить, больше трех. Соответственно может быть больше и количество неизвестных, которое нужно определить. Для каждого тела, входящего в систему, можно составить три уравнения равновесия, если действующая на него система сил является плоской. Каждое тело или группу тел системы можно выделить и рассматривать в состоянии равновесия под действием приложенных к этой части системы внешних и внутренних сил. Такой прием решения задач на равновесие системы тел называется методом расчленения. Иногда при рассмотрении равновесия системы сочлененных тел удобно составлять уравнения равновесия не только для отдельных частей системы, но и для всей системы в целом. Ниже приводим пример, поясняющий применение метода расчленения.  [c.33]


Вариационные уравнения принципов возможных изменений деформированного состояния, напряженного состояния и одновременного возможного изменения напряженно-деформированного состояния сами по себе не уменьшают сложности решения конкретных задач. Действительно, вариационное уравнение (3.31) или (3.39) эквивалентно полной системе дифференциальных уравнений теории пластического течения (3.36) или (3.40). Вариационное уравнение принципа возможных изменений деформированного состояния и возможных изменений напряженного состояния эквивалентны соответственно решению дифференциальных уравнений равновесия в скоростях и решению уравнений неразрывности деформации, записанных в напряжениях. Вариационные уравнения удобны для построения приближенных решений задач. С помощью прямых методов вариационного исчисления [10, 67, 109] сводят вариационные уравнения к системам алгебраических (во всяком случае конечных) или обыкновенных дифференциальных уравнений. Рассмотрим прямые методы, нашедшие применение для решения технологических задач с помощью указанных выше трех принципов. Начнем с принципа возможных изменений деформированного состояния. Основной отличительной чертой почти всех имеющихся в теории обработки металлов давлением решений [163, 164 и др.] является приближенное представление функционала, которое основано на допущении  [c.96]

Задачи на равновесие встречаются не только в технической механике, но и в других дисциплинах. Для их решения используют различные методы аналитический, основанный на уравнениях равновесия, графический и графоаналитический, основанные на применении геометрического условия равновесия. Использование геометрического условия равновесия дает наиболее простое решение для системы трех сходящихся сил. При наличии в системе четырех и более сил рациональнее применять аналитический метод, который является самым универсальным и применяется чаще всего. При аналитическом методе решение всех задач ведется по следующему плану первый этап — выделяют объект равновесия — тело или точку, где пересекаются линии действия всех сил, т. е. точку, равновесие которой в данной задаче следует рассмотреть  [c.44]

Постановка задачи и вывод уравнения. Рассмотрим (см рисунок) плоский слой однородного материала толщиной /г, ограниченный двумя абсолютно черными бесконечными плоскостями, температуры которых То и Тк То > Тн- Пусть С есть полный поток энергии, падающий на левую границу. Здесь же поместим начало координат. Материал слоя характеризуется следующими физическими константами К— коэффициентом теплопроводности п — показателем преломления (предполагается не зависящим от длины волны и температуры) — спектральным показателем поглощения (предполагается не зависящим от температуры). Постулируя, как обычно, наличие в среде локального термодинамического равновесия, так что становится возможным применение законов излучения Планка и Кирхгофа, получаем следующее выражение для спектральной плотности излучения [18]  [c.304]

Рассмотрим применение этого условия на примере тонкой бесконечной пластинки с круглым отверстием (рис. 339), окружность которого нагружена равномерно распределенной радиальной растягивающей нагрузкой. В данном случае имеет место плоское напряженное состояние с главными напряжениями Ор, а , принимающими на окружности отверстия при р — 1 2с1 значения и На большом удалении от отверстия, т. е. при р — со, Ор = а , == 0. Решение этой задачи требует рассмотрения уравнений перемещений и уравнений равновесия составляющих напряжения. В зоне упругости главные на-  [c.503]

В задачах этого Tiina, так же как и в задачах типа [II, имеем шесть уравнений равновесия. Кроме связей, рассмотренных в задачах предыдущего типа, здесь находят применение сферические подшипники (рис.73, г) и опоры в виде стержней, имеющих на концах сферические шарниры (рис. 73, д).  [c.115]

Вторая, так сказать, классическая задача— Это расчет симметричной трехстержневой системы. Начинать ре.шение следует с применения метода сечений — вырезания узла, в котором сходятся стержни, и сост звления уравнений равновесия для действующих на него сил. При этом выясняется степень статической неопределенности системы. Заметим, что если какие-либо из стержней сжаты, то сразу же следует правильно направить продольные силы. Если сжимающую продольную силу при составлении уравнений равновесия принять растягивающей, то в  [c.87]

В последующем задаче об изгибе балки уделяли много внимания крупные ученые, в числе которых были Мариотт, Лейбниц, Варньон, Яков Бернулли, Кулон и др.. Пишь в 1826 г. с выходом в свет лекций по строительной механике Навье был завершен сложный путь исканий решения задачи об изгибе балки, затянувшийся во времени почти на двести лет. Навье дал правильное решение этой задачи, им впервые введено понятие напряжения. Им же сделан существенный шаг в направлении упрощения составления уравнений равновесия, состоявший в том, что Навье отметил малость перемещений и возможность относить уравнения равновесия к начальному недеформированному состоянию. Это очень широко используемое положение иногда называют принципом неиз жнности начальных размеров. В истории развития механики деформируемого твердого тела важную роль сыграли такие крупные ученые, как Лагранж, Коши, Пуассон, Сен-Венан. Особо следует отметить заслуги Эйлера, впервые определившего критическое значение сжимающей продольной силы, приложенной к прямолинейному стержню (1744). Решение этой задачи во всей полноте тоже заняло по времени почти двести лет Дело в том, что решение Эйлера было ограничено предположением о линейно-упругом поведении материала, что накладывает ограничение на область применимости полученной Эйлером формулы. Применение эюй формулы за границами ее достоверности и естественное в этом случае несоответствие ее экспериментальным данным на долгое время отвлекло интерес инженеров от этой формулы и лишь в 1889 г. Энгессером была предпринята попытка получить теоретическое решение задачи об устойчивости за пределом пропорциональности. Он предложил 1аменить в формуле Эйлера модуль упругости касательным модулем i = da/di. Однако обоснования этому своему предложению не дал. В 1894 г. природу потери устойчивости при неизменной продольной силе правильно объяснил русский ученый Ясинский и лишь в 1910 г. к аналогичному выводу пришел Карман. Поэтому исторически более справедливо назвать его решением Ясинского —Кармана, предполагая, что Карман выполнил это исследование независимо от Ясинского.  [c.7]


Помещенные в данном разделе задачи на определение давления в жидкости могут быть решены применением не более трех физических соотношений, а именно закона распределения давления в покояш,ейся жидкости, уравнения равновесия твердого тела, находящегося под воздействием жидкости, и уравнения сохранения объема жидкости в системе.  [c.10]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]

Хотя проблемы, которые мы будем изучать, являются главным образом статическими, мы обобщим излагаемые методы на случай применения их к динамическим задачам путем использования принцица Даламбера, т. е. добавления, кроме действительных сил, которые воздействуют на тела и обусловлены действием других тел либо путем контакта, либо действием на расстоянии, еще так называемых инерционных сил - и трактовки их как действительных сил, каковыми они, конечно, не являются. Таким образом, при обсуждении уравнений равновесия будет в дальнейшем подразумеваться, что в них включены и уравнения движения, а в число действующих сил будут включаться с помощью принципа Даламбера инерционные силы.  [c.13]

Как отмечалось в 5.2 при обсуждении уравнений (5.18а) (эти уравнения представляют собой разрешающие соотношения для пластин, соответствующие уравнению (7.13д) для цилиндрических оболочек), эти уравнения совпадали с уравнением (4.19) равновесия в поперечном направлении для тонких пластин = если прогиб И эаменялся на 3(1 — v ) (tz —Ьг)/(2 ). Интересно и вместе с тем важно отметить, что уравнения (7.13д) аналогичным образом относятся "к полученным нами наиболее точным уравнениям (6.36) равновесия в поперечном направлении для тон1й)стенных цилиндрических оболочек. Иэ сравнения уравнения (6.36), записанного для случая действия боковой нагрузки, с уравнениями (7.13д) видно, что если прс/гиб w заменить на выражение (i /2 )V4 (такое соответствие устанавливается при удержании первого члена в выражении для функции Wj(z=o) = м , которое приводится ниже), то видно, что два уравнения остаются неизменными, за исключением членов, обозначенных в таблице 6.7 через i и s, и малого отличия в членах, обозначенных через С2 и s. Как уже отмечалось при обсуждении таблицы 6.7, члены, обозначенные через i и i, а также точные значения членов вида са и С5 = С2 — 2 являются несущественными в задачах, где применяются классические теории, основанные на применении гипотезы Кирхгофа — Лява (но, разумеется, ими нельзя пренебрегать в задачах о толстостенных цилиндрах, которые сейчас нами рассматриваются).. ,  [c.550]

В книге приводится методологически последовательная постановка геометрически и физически нелинейных задач механики деформируемого твердого тела, в том числе задачи о потере устойчивости и контактных взаимодействиях тел. Уравнения формулируются относительно скоростей или приращений неизвестных величин. Приводятся слабые формы уравнений и вариационные формулировки задач. Рассматривается применение метода конечных элементов к решению квазистатических и динамических задач. Используются следующие модели материалов изотропная линейно-упругм, несжимаемая нелинейно-упругая Муни — Ривлина, упругопластическая, термоупругопластическая с учетом деформаций ползучести. Приводятся процедуры численных решений нелинейных задач, основанные на пошаговом интегрировании уравнений равновесия (движения). Рассматриваются особенности процедур численного решения задач о потере устойчивости и контакте тел.  [c.2]

Выше указана только часть публикаций по нелинейным-проблемам эластомерного слоя и конструкций. Перечень работ можно бы продолжить, но это не меняет общей оценки состояния вопроса. Если создание линейной теории слоя можно считать завершенным и ее значение можно сравнить со значением классической теории оболочек для соответствующих краевых задач, то создание общей нелинейной теории слоя находится в-началь-. ной стадии. Опубликованных результатов мало, и они не достоверны даже в отношении интегральных упругих характеристик констукций, не говоря уже о полях перемещений и напряжений, В то же время только теоретические исследования и расчеты с последующей экспериментальной проверкой позволяют пороз11ь оценить влияние геометрической и физической нелинейности и решить такие важные вопросы, как пределы применения закона-Гука и выбор упругого потенциала. Лелать упор на физическую нелинейность при умеренных деформациях < 50%, по убеждению автора, неправильно. Есть три источника появления нели-. нейности задачи — формулы Коши, связывающие деформации с перемещениями, уравнения равновесия и закон упругости, которые, вообще говоря, независимы.  [c.23]


Для установления дифференциальных уравнений равновесия воспользуемся принципом возможных перемещений [207]. Вариационные принципы открывают естественный путь для сведения трехмерных задач механики сплошных сред к двумерным задачам теории пластин и оболочек. Их использование позволяет установить систему обобщенных внутренних усилий, соответствующую независимым обобщенным кинематическим параметрам конечносдвиговой слоистой оболочечной системы и получить корректные уравнения ее равновесия. Вместе с ними устанавливаются кинематические и естественные граничные условия задачи. Дифференциальные уравнения и краевые условия получаются из вариационного принципа путем применения формальной математической процедуры, что важно, поскольку корректное использование формального аналитического метода позволяет избежать ошибочных формулировок, которые могли бы возникнуть при составлении уравнений равновесия и краевых условий методами элементарной статики. Анализ публикаций, посвященных неклассическим моделям деформирования многослойных оболочек, выявляет многочистенные примеры таких формулировок [8, 9, 215, 250, 253 и др.]. Укажем также и на известный [301 ] классический пример такого рода — условие Пуассона на свободном крае.  [c.47]

Эйри проявлял неизменный интерес к применениям математики в решении технических задач. Он принимал непосредственное участие в сооружении больших трубчатых мостов и показал Фейрбейрну, каким образом можно определять необходимые размеры поперечных сечений этих мостов по результатам, полученным из испытаний моделей (стр. 193). Занявшись теорией изгиба балок, он представил в 1862 г. доклад на эту тему в Королевское общество ). Рассматривая балку прямоугольного сечения как объект двумерной задачи, Эйри получает дифференциальные уравнения равновесия  [c.273]

Метод Ритца был применен также и в сочетании с принципом наименьшей работы ). При этом установлено, что если дано тело с действующими на него поверхностными силами и рассматриваются такие изменения компонент напряжения, что это не отражается ни на уравнениях равновесия, ни на краевых условиях, то истинными значениями этих компонент напряжения будут те, при которых вариация энергии деформации обращается в нуль. Например, в двумерной задаче с функцией напряжения <р энергия деформации выразится двойным интегралом  [c.479]

Задача имеет следующую особенность. Параметры, описывающие физико-механические и геометрические характеристики пластины, перфорированной системой отверстий, являются разрывньщи функциями координат. Вводится сплошная модель пластины, изгибная жесткость которой рассматривается как переменная функция координат. Переход к сплошной модели оказывается возможным благодаря применению импульсивных функций нулевого порядка. Поведение такой модели пластины с отверстиями изучается на основе дифференциального уравнения равновесия в частных производных четвертого порядка с переменными коэффициентами для пластин с неоднородной жесткостью. Решение уравнения находится с помощью метода Бубнова. Для критического усилия сдвига йолучено решение в замкнутом виде (в виде окончательной зависимости), позволяющее находить его числовые значения для различных вариантов пластин. Для осуществления процедуры вычисления критического усилия сдвига на ЭВМ при различных форме выреза, числе вырезов и положении центра отверстий разработана программа.  [c.297]

Хотя описанный выше подход, основанный на записи би-гармонического уравнения, представляется плодотворным при решении плоской упругопластической задачи, однако при вычислении перемещений возникают некоторые трудности, так как в процессе вычисления требуется производить численные дифференцирования, что может привести к значительйБш ошибкам и противоречивости результатов. Более непосредственно задача формулируется при помощи уравнений равновесия Навье в перемещениях. Общие уравнения даны в работе [4], применение этих соотношений для решения нескольких различных задач описано в [16].  [c.100]

Ускоренное прогрессирующее разрушение стержневых систем в связи с влиянием сжимающих нормальных усилий изучалось, в частности, Девисом [107, 108]. Майер [164] предложил учесть изменение геометрии в основных теоремах о приспособляемости путем введения геометрического члена в уравнения равновесия. Последний определяется как произведение матрицы жесткости, соответствующей некоторой (принимаемой за начальную) конфигурации при нагружении, и вектора перемещений от дополнительной, изменяющейся во времени нагрузки. Несмотря на ограниченность данного подхода, он приводит к существенному усложнению задачи. К сожалению, какие-либо конкретные примеры его применения пока неизвестны. Предложенный Майером подход распространен Корради и Донато [98, 99] на динамические задачи теории приспособляемости в статической и кинематической формулировках. -  [c.29]

При решении инженерных задан поляризационно-оптическим методом, например, таких, как определение усилий в сечениях элементов машин и конструкций, оценка усталостной прочности и т. ц., имеется необходимость в определении величин напряжений не только на новерхности элемента, но и по его сечениям. Фундаментальным методом разделения напряжений в точках объема модели элемента является метод В. М. Краснова. Этим методом нормальные напряжения в точке находят по их разностям, полученным из поляризационно-оптических исследований модели, и одному из нормальных, напряжений, которое определяют интегрированием соответствующего уравнения равновесия при известных из измерений на модели величинах касательных напряжений. Метод В. ]У1. Краснова является унидерсальным, но требует выполнения большого объема экспериментальных исследований. Поэтому в частных случаях, когда на основании предварительного рассмотрения напряженного состояния элемента известны качественные (и некоторые количественные) зависимости напряжений от граничных условий задачи, применение этого метода не всегда целесообразно. В таких случаях разделение напряжений в точках объема модели выполняется или способами, в которых используются определяемые экспериментальным путем величины (поперечные деформации, сум ма нормальных напряжений), или способами, основанными на других зависимостях теории упругости  [c.53]

Решение. Определение усилий ведется на основе применения метода сечений ферма рассекается на. две части и для сил, приложенных к остановленной части, составляют уравнение равновесия. В отличие от предыдущей задачи здесь при определении усилий в раскосах и стойках нельзя применять урарнение моментов, так как моментная точка находится в бесконечности (точка пересечения параллельных поясов).  [c.308]

Первые крупные исследования по общей теории упругих оболочек созревают к началу сороковых годов. Освоению и анализу теории оболочек способствовало применение ведущими учеными страны тензорной символики для записи основных соотношений теории. Уравнения совместности деформации впервые вывел А, Л. Гольденвейзер (1939) А, И. Лурье (1940) и А. Л. Гольденвейзер (1940) ввели в теорию оболочек функции напряжения, через которые определяются усилия и моменты, тождественно удовлетворяющие уравнениям равновесия. А, Н. Кильчевский (1940) указал способы построения теории оболочек и решения ее задач на основе теоремы о взаимности. Уравнения в перемещениях геометрически нелинейной теории были опубликованы X. М. Муштари (1939) — изложенный им вариант теории является обобщением упрощенной нелинейной теории пластинок Кармана на оболочки произвольного очертания.  [c.229]

Применение упрощенной системы уравнений типа Кармана в рассмотренных на практике случаях достаточно удовлетворительно обосновано и целесообразно. Однако интегрирование даже этой системы представляет большие трудности. В настоящее время естественной предпосылкой для решения задач нелинейной теории оболочек является использование вычислительной техники, инициаторами чего у нас были А. Ю. Биркган и А. С. Вольмир (1959). Вместе с тем прогресс в этом направлении не столь велик, как можно было ожидать. В качестве примера можно указать на задачу об осесимметричных формах равновесия сферического купола, привлекающую до сих пор внимание многих видных исследователей (В. И. Феодосьев, 1963 М. С. Корнишин, 1966 И. И. Ворович и В. Ф. Зипалова, 1966). Если общее математическое обеспечение вычислительной техники в ближайшее время значительно улучшится, на что можно надеяться, то многие трудности решения нелинейных задач теории оболочек будут устранены с помощью создания универсальных программ (как это имеет место в настоящее время в линейной алгебре). Однако на исключено, что в некоторых случаях будет целесообразно разработать специфические для задач теории оболочек расчетные алгоритмы. Одна из таких процедур предложена М. С. Корнишиным и X. М. Муштари (1959). Небольшой обзор применения вычислительных методов в теории оболочек дан И. В. Свирским (1966).  [c.234]


Значительное число частных задач теории упругой устойчивости решено на основе уравнений нейтрального равновесия типа (4.6) и (4.7). Решение задач сводится к отысканию собственных значений и выбору среди них тех, которые соответствуют переходу от устойчивости к неустойчивости. При этом применяются разнообразные методы — как заимствованные из математической физики, вычислительной математики, теории колебаний, так и более специализированные приемы строительной механики, теории оболочек и т. п. Среди них важное место занимают вариационные методы метод Рейли — Ритца (1873, 1889, 1908 гг.), метод Бубнова (1911 г.) и др. Применение этих методов широко освещено в книгах  [c.337]

Во-первых, общие уравнения нелинейной теории упругости используются для обоснованного вывода уравнений устойчивости для тонких и тонкостенных тел. Работы этого направления (В. В. Новожилов, 1940, 1948 В. В. Болотин, 1956, 1965 А. И. Лурье, 1966, и др.) уже обсуждались в 3. Во-вторых, решения задач, полученные на основе теории упругости, могут быть использованы для оценки точности и установления границ применения известных приближенных решений. К этому направлению относятся работы Л. С. Лейбензона (1917) и А. Ю. Ишлинского (1954). Заметим, что в этих работах в качестве уравнений для описания форм равновесия, смежных с невозмущенной формой, предлагалось использовать классические уравнения теории упругости внешние силы входили при этом только в возмущенные граничные условия. Этот подход обсуждался недавно А. Н. Гузем (1967). В-третьих, необходимость в привлечении уравнений теории упругости возникает в задачах об устойчивости пластин и оболочек, находящихся в контакте с упругим материалом пониженной жесткости. Применительно к слоистым пластинам с мягким наполнителем этот подход развивался А. П. Вороновичем (1948), В. Н. Москаленко (1964) и другими. Устойчивость цилиндрических оболочек с мягким упругим ядром рассматривалась А. П. Варваком (1966). Типичным для этих задач является применение теории пластин и оболочек к несущим слоям и трехмерной теории упругости — к заполнителю.  [c.346]

При решении динамических задач механики жестких тел, т. е. задач, связанных с определением сил инерции, так же как и при решении статических задач сопротивления материалов, применяются два метода. Первый из них аналогичен геометро-физико-статическому методу (см. 6). Здесь попутно с геометрическим рас- смотрением деформаций связей тела необходимо учесть кинематические условия движения тела, затем применить физические законы механики и, наконец, составить уравнения условного статического равновесия с учетом сил инерции. Второй метод основан на применении энергетических теорем.  [c.452]


Смотреть страницы где упоминается термин Задачи. на применение уравнений равновесия : [c.24]    [c.12]    [c.502]    [c.204]    [c.269]   
Смотреть главы в:

Курс теоретической механики Том1 Изд3  -> Задачи. на применение уравнений равновесия



ПОИСК



Полярные координаты объемное расширение и вращение в---------68 компоненты деформации в---------, 68 уравнение равновесия применение —— в теории деформации—имеющей особые точки, 211 ---в задаче о деформации шара, 234 -в задаче о колебаниях полого шара

Уравнения равновесия сил

Уравнения равновесия уравнения



© 2025 Mash-xxl.info Реклама на сайте