Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод конечных разностей при численном

Используя полученные значения (4-2-71), В. А. Алексашенко [Л. 4-91 методом конечных разностей произвел численный расчет г,.. Отметим, что постоянная С1 определялась в конце расчета при = 0. Результаты расчетов приведены на рис. (4-3)—(4-5). По оси ординат отложена величина у, а по оси абсцисс  [c.304]

Эта конечноэлементная модель применялась, чтобы смоделировать 36-часовую откачку воды аналогично тому, как это делалось методом конечных разностей. При этом параметры водоносного пласта в обоих случаях были одинаковыми. Результаты расчета на ЭВМ, представленные на рис. 6.11, показывают общее согласование между двумя численными методами. Наибольшее расхождение наблюдается в начале периода откачки. Из-за отсутствии точного решения задачи трудно сказать, какое из двух численных решений более достоверно.  [c.198]


Как следует из схемы, представленной на рис. В.1, информация о НДС является ключевой для анализа прочности и долговечности элементов конструкций. Поэтому правильность оценки работоспособности той или иной конструкции в первую очередь зависит от полноты информации о ее НДС. Аналитические методы позволяют определить НДС в основном только для тел простой формы и с несложным характером нагружения. При этом реологические уравнения деформирования материала используются в упрощенном виде [124, 195, 229]. Анализ НДС реальных конструкций со сложной геометрической формой, механической разнородностью, нагружаемых по сложному термо-силовому закону, возможен только при использовании численных методов, ориентированных на современные ЭВМ. Наибольшее распространение по решению задач о НДС элементов конструкций получили следующие численные методы метод конечных разностей (МКР) [136, 138], метод граничных элементов (МГЭ) [14, 297, 406, 407] и МКЭ [32, 34, 39, 55, 142, 154, 159, 160, 186, 187, 245]. МКР позволяет анализировать НДС конструкции при сложных нагружениях. Трудности применения МКР возникают при составлении конечно-разностных соотношений в многосвязных областях при произвольном расположении аппроксимирующих узлов. Поэтому для расчета НДС в конструкциях со сложной геометрией МКР малоприменим. В отличие от МКР МГЭ позволяет проводить анализ НДС в телах сложной формы, но, к сожалению, возможности МГЭ ограничиваются простой реологией деформирования материала (в основном упругостью) [14]. При решении МГЭ упругопластических задач вычисления становятся очень громоздкими и преимущество метода — снижение мерности задачи на единицу, — практически полностью нивелируется [14]. МКЭ лишен недостатков, присущих МКР и МГЭ он универсален по отношению к геометрии исследуемой области и реологии деформирования материала. Поэтому при создании универсальных методов расчета НДС, не ориентированных на конкретный класс конструкций или вид нагружения, МКЭ обладает несомненным преимуществом по отношению как к аналитическим, так и к альтернативным численным методам.  [c.11]

Одним из эффективных численных методов решения задач теории упругости и пластичности является метод конечных разностей. Идея этого метода состоит в замене основных дифференциальных уравнений задачи уравнениями в конечных разностях. При этом задача сводится к решению системы алгебраических уравнений.  [c.144]

В связи с широким использованием ЭВМ для приближенных вычислений появилась возможность решить ряд задач о кавитационных течениях, не имеющих аналитических решений. Одним из численных методов, применяемых при расчете кавитационных течений, является метод конечных разностей. Для иллюстрации применения этого метода рассмотрим осесимметричное кавитационное обтекание тела по схеме с зеркалом в потоке, ограниченном твердыми стенками (рис. V.1, а) [75].  [c.186]


Существенным достоинством МКЭ является возможность составления программ численного расчета полей в областях сложной геометрической конфигурации, которые проще по логической структуре и по заданию исходных данных, чем программы, реализующие метод конечных разностей для таких областей. В данном подразделе рассмотрим в качестве примера структуру программы для решения двумерной задачи (4.1), (4.2) в областях произвольной формы при треугольных элементах разбиения.  [c.147]

Очевидно, чем меньше разме]зы элементов, тем больше точность полученного решения, но тем больше и объем вычислений. Поскольку методом конечных разностей могут быть рассчитаны температуры не во всех точках тела, а только в узлах пространственно-временной сетки, в этом смысле численный метод подобен экспериментальному исследованию, при котором численные значения искомых величин в заданных точках определяются путем измерений. Поэтому численное решение называется еще математическим экспериментом. Заметим, что аналитический метод позволяет найти общее решение, зависящее от параметров задачи, для любой точки тела.  [c.188]

Наиболее распространенным численным методом является метод конечных разностей, или метод сеток. В этом методе рассматриваемое тело разбивается на несколько объемов ДУ конечных размеров [но не дифференциально малых (IV, как это делалось при вы-122  [c.122]

Дальнейший расчёт возможен, если известно распределение электрич. и магн. полей. При заданных краевых условиях поля вычисляются с помощью ур-ния Лапласа или с помощью ур-ния Пуассона при учёте влияния пространственного заряда. Аналитич. решение найдено лишь в нек-рых простейших случаях. Поэтому для аппроксимации экспериментально измеренных полей предложен ряд функций. Однако большинство задач решается численными методами с помощью ЭВМ. Широко используются методы сеток с прямоугольными (метод конечных разностей) и с треугольными (метод конечных элементов) ячейками. В обоих случаях вычисляют потенциалы при помощи сетки, наложенной на рассчитываемую область поля, включая границы, и формул, связывающих потенциал текущей точ-  [c.546]

Как было нами показано ранее [6], при использовании сугубо приближенного метода уравнения Прандтля в устойчивой области могут быть численно неустойчивыми. Это происходит в том случае, если аппроксимация дифференциальных уравнений приводит к неустойчивой форме приближенных уравнений. Поэтому представляется необходимым провести более точные исследования методом конечных разностей.  [c.285]

Численное решение этих уравнений по методу конечных разностей [142] оказывается слишком громоздким даже при использовании счетных машин. Излагаемое ниже решение прямых задач двумерного потока в турбомашинах строится путем последовательных приближений в естественной системе координат или близкой к естественной с использованием уравнений неразрывности и вихрей в интегральной, форме. Описываемые методы были проверены в практике технических расчетов и оказались достаточно эффективными.  [c.274]

Численный метод сеток [метод конечных разностей (МКР), конечных элементов (МКЭ) и т.д.] применяется в тех же случаях, что и метод точного или приближенного аналитического решения уравнений, но при более сложных формах рассчитываемых областей.  [c.624]

Хотя при решении задач механики разрушения используется целый ряд численных методов, в частности методы конечных разностей, конечных элементов и граничных элементов, в этой главе для моделирования треш,ин применен только метод конечных элементов.  [c.180]

Наряду с такими способами решения задач, как вариационный метод, МКЭ, метод конечных разностей, применялись и другие подходы. В работах Е. Р. Мирошниченко [13.3] и Е. С. Кононенко [78] решены задачи о сжатии между жесткими плитами без скольжения цилиндра и параллелепипеда. Решение осуществлялось методом Филоненко — Бородича в функциях напряжений. Вид решения при и — 0,5 и для низких элементов не исследовался. Б. Головня [222] методом динамических релаксаций для уравнений упругости численно определил зависимость эффективного модуля сжатия от фактора формы плоского элемента при разных отношениях С/К. Расчеты показали, что внутри слоя развивается состояние, близкое к гидростатическому, причем чем тоньше слой, тем меньше вклад краевого эф-  [c.15]


В монографии отдается предпочтение аналитическим решениям типичных задач теории оболочек, составляющим золотой фонд этой науки. Авторы являются решительными противниками подмены фундаментальной дисциплины — теории оболочек — одним из разделов прикладной математики. Эта достойная сожаления тенденция является побочным эффектом интенсивного внедрения универсальных численных методов (таких, как методы конечных разностей и конечных элементов). На страницы журналов (да и монографий) лавиной хлынули работы с описанием численных экспериментов, реализованных порой с применением стандартных пакетов прикладных программ. Теория при этом используется лишь для того, чтобы выписать исходную систему уравнений. Возможные вопросы по формированию последней упреждаются дежурной фразой типа Уравнения равновесия берем в самом общем виде .  [c.3]

Метод МЛВ имеет преимущества по сравнению с другими численными методами [72]. Отметим некоторые из них. С точки зрения потребностей памяти ЭВМ МЛВ оказывается примерно вдвое экономичнее градиентного, хотя уступает градиентным методам в скорости счета. Методы динамического программирования уступают МЛВ как по числу операций при счете, так и по объему хранимой информации. Метод Ньютона, успешно используемый при удачно выбранных начальных приближениях, для задач устойчивости с существенно неоднородным докритическим напряженно-деформированным состоянием недостаточно эффективен. Широко используемый метод конечных разностей становится неэффективным при  [c.201]

Основным библиографическим источником аналитических решений, функций Грина и т. д. для уравнения диффузии (называемого также уравнением теплопроводности) является известная книга Карслоу и Егера [1]. Существует также обширная литература по численным решениям, которая может быть классифицирована (безотносительно к использованному при этом методу решения МГЭ, МКЭ, метод конечных разностей и т. д.) по принципу, основанному на обращении с зависящим от времени членом, входящим в уравнение.  [c.245]

Для реальных задач построить аналитическое решение зачастую не удается. Даже когда определяющие дифференциальные уравнения в частных производных линейны, область R может оказаться неоднородной, геометрия—нерегулярной, а граничные условия — трудно описываемыми простыми математическими функциями. В таких случаях, используя численные методы, при помощи вычислительных машин можно найти приближенное решение. Численные методы решения краевых задач можно разделить на два отчетливых класса класс, который требует использования аппроксимаций во всей области R, и класс, который требует использования аппроксимаций только на границе С. В первый класс входят методы конечных разностей и конечных элементов, во второй — методы граничных элементов.  [c.10]

Решение подобных задач в математическом плане представляет собой определенную сложность, даже при использовании численных методов, таких, как метод конечных элементов или метод конечных разностей. Большие погрешности при этом могут возникать при выборе размеров и формы элементов, на которые разбивается исследуемая область.  [c.110]

Решение поставленных задач аналитическими методами невозможно, так как они относятся к классу нелинейных задач, реализация которых осуществима лишь приближенными методами. Самыми простыми являются численные методы типа метода конечных разностей или метода конечного элемента. Достоинством этих методов является простота реализации на ПЭВМ и формализация вычислительного процесса на различных этапах решения, а основным недостатком — высокая погрешность при укрупнении временных и пространственных шагов в случае их уменьшения для увеличения точности расчетов увеличивается время счета. Возникают также проблемы с устойчивостью и сходимостью решений.  [c.306]

При любом типе загружения эту задачу можно решить также и методом конечных разностей (см. 83). Численные значения таблиц 44 и 45 получены в основном этим методом.  [c.243]

В настоящей работе представлено основанное на численном методе исследование распространения плоских продольных волн в одном классе нелинейных вязкоупругих материалов. Определяющие уравнения и уравнения сохранения в форме Лагранжа аппроксимируются системой уравнений в конечных разностях при помощи явной схемы первого порядка. В разд. 2 обсуждаются определяющие уравнения, используемые в данной работе. Поведение материала описывается при помощи переменных состояния и ориентации и соответствующих дифференциальных уравнений [4, 5]. Такой способ описания весьма удобен для применения численных методов, поскольку легко допускает переход к конечным разностям.  [c.150]

Математические модели называют функциональными, если они отражают процессы, протекающие в объекте при его функционировании, или структурными, если они отражают топологические или геометрические свойства объекта. Типичными функциональными моделями на микроуровне являются дифференциальные уравнения в частных производных с заданными краевыми условиями. Для их решения в САПР применяют методы конечных разностей или конечных элементов. Функциональные модели на макроуровне представляют собой обыкновенные дуфференциальные уравнения. Наибольшее распространение для их решения получили неявные или комбинированные методы численного интегрирования. Для моделирования на метауровне наравне с обыкновенными дифференциальными уравнениями используют модели массового обслуживания и логические уравнения.  [c.80]


Послойный метод характеристик занимает промежуточное положение между классическим методом характеристик и методом конечных разностей. Действительно, в этом случае положение рассчитываемого узла заранее известно, а значение искомых функций вычисляют с помощью условий совместности, рассматриваемых на характеристике. Такая схема объединяет положительные свойства метода характеристик и метода конечных разностей и обладает некоторыми свойствами методов сквознога счета. Поэтому численные схемы с характеристической сеткой обратного типа получили широкое применение при решении конкретных задач.  [c.125]

Для численного решения задач теплопроводности широко при-меняетс-я метод конечных разностей, или метод сеток. Область непрерывного изменения аргументов х, у, 2, т в этом методе заменяется сеткой — конечным (дискретным) множеством точек, называемых узлами. Разности значений одних и тех же аргументов для двух смежных узлов Ал , Ai/, Аг, Ат называются шагами изменения этих аргументов. Шаги могут быть как постоянными, так и переменными.  [c.84]

Численные методы. Метод конечных разностей. Аналитическое решение задач теплог[роводности может быть получено далеко не для всех случаев. Уравнение теплопроводности не всегда возможно решить аналитически для тел сложной геометрической формы или при сложных краевых условиях.  [c.115]

Точные аналитические методы решения уравнения теплопроводности позволяют решать тoльFio сравнительно простые задачи. Сложные задачи теплопроводности решаются численными методами или методом аналогий. Универсальным численным методом решения дис х )еренциальных уравнений и их систем является метод конечных разностей, или метод сеток. При этом температура определяется не в любой точке тела и не в любой момент времени, а только в определенных точках и в определенные моменты времени—в  [c.187]

Хотя предложенный метод является приближенным для N < оо, в принципе погрешность можно сделать сколь угоднО малой при достаточно большом числе N и достаточно близких друг к другу значениях Хг. Это следует из свойства полноты системы интегрируемых с квадратом функций, в рядах Дирихле [87]. На практике, однако, точность обращения ограничивается гладкостью изображений по Лапласу. Ошибки за счет округления, неизбежные при любых численных представлениях, и погрешности при интерполяции, например при 1юлучении ассоциированного упругого решения методами конечных разностей или конечных элементов, определяют нижнюю границу погрешности для квадратичного отклонения [19, 84, 87]. Оказывается, что для принятых численных значений изображений Лапласа при сближении Хг квадратичная ошибка сначала уменьшается, а затем увеличивается. Этот рост отражает перемену знака возрастающих членов в функции Д/с(0-  [c.146]

Анализируя рассмотренные выше построения, следует указать, что метод весовой линии имеет несомненные преимущества по сравнению с другими графическими методами. В первую очередь это простота и точность, так как отпадает двойственность построения, присущая другим методам. Операции с параллельными и пересекающимися векторами (силами) следует простому закону сложения краевых и параллельных составляющих. Вычисление центров масс стержневых систем и механизмов, по методу весовой линии значительно проще, чем по существующим способам. Упрощается также исследование давлений в кинематических парах механизмов и определение реакций опор в стержневых системах. Методом весовой линии весьма просто производится бесполюсное интегрирование и дифференцирование, так как закон распределения сил соответствует закону изменения функции q = f (х). При этом первообразная функция (вес фигуры, заключенной между кривой q = f [х) и координатными осями) представляет собою интеграл. В дискретном анализе понятие бесконечно малая величина" заменяется понятием конечно малая величина со всеми вытекающими отсюда представлениями о производной в конечных разностях и численным интегрированием (вычислением квадратур). Полигоны равновесия узлов в стержневых системах, построенные по методу весовой линии, проще диаграмм Л. Кремоны, так как позволяют вычислять усилие в заданном стержне не прибегая к определению усилий в других стержнях, необходимых для построения диаграмм Кремоны. Графическое решение многочленных линейных уравнений (многоопорные валы и балки, звенья, имеющие форму пластин, и т. д.) производится по опорным весам или коэффициентам при неизвестных. Такой путь наиболее прост и надежен для проверки правильности решения. Впервые в технической литературе. дано графическое решение дифференциальных уравнений для балки переменного сечения на упругом основании и для круглых пластин с отверстиями, аналитическое решение которых требует сложного математического аппарата. В заключение отметим предельно простое решение дифференциальных уравнений теории упругости (в частных производных) указанным методом.  [c.150]

Методы математической физики, в частности методы интегральных преобразований, позволяют эффективно решать сравнительно узкий круг задач теории переноса. При рассмотрении систем дифференциальных урав1нений с весьма общими краевыми условиями точные методы решения наталживаются на большие трудности, которые становятся непреодолимыми при ра10смотреиии нелинейных задач. В этих случаях приходится обращаться к тем или иным численным методам решения. Важно отметить, что использование численных методов зачастую позволяет отказаться от упрощенной трактовки математической модели процесса. В настоящее время практически наиболее ценным методом приближенного решения уравнений тепло- и массопереноса является метод конечных разностей, или, как его еще называют, метод се-  [c.85]

Для подобластей 2, 3 и 4 производные определялись по уравнениям состояния методом конечных разностей, причем точность итерации и значения приращений при численном дифференцировании выбирались та-1СИМ образом, чтобы погрешность расчета производных лежала в пределах нескольких десятых процента, что с запасом удовлетворяет требованиям практики. Выбор оптимальных значений приращений и точности итерации потреб01вал специальных весьма трудоемких ра1Счетов, поскольку они существенно различны для разных производных и областей параметров состояния.  [c.5]

Задачи температурных режимов элементов конструкций. Этот класс задач объединяет стационарные и нестационарные, плоские и пространственные задачи распространения теплоты в твердых телах при наличии фильтрации при существовании фронтов реакций, источников и стоков теплоты и массы при произвольных граничных условиях на поверхности. Наиболее широко для решения задач данного класса используется метод конечных разностей в сочетании с методом прогонки и методом расщепления [44, 1051. Подробно эти методы рассмотрены выше. Существующие аналитические решения стационарных и нестационарных задач данного класса охватывают только канонические формы (пластина, цилиндр, шар). Нестационарные решения таких задач содержат ряды с использованием тригонометрических функций, функций Бесселя, Грина и др. Такая форма представления решений для определения численных значеннй температурного поля требует использова1н, я  [c.188]


Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]

Расчет составных пластин, а также пластин сложной геометрии при произвольных законах изменения внешней нагрузки и различных траничных условиях проводится с помощью численных методов, ориентированных на щшользование ЭВМ методов конечных разностей, конечных элементов, граничных элементов, и др.  [c.128]

Уравнения (3.3) с граничными условиями (3.4) решались численно методом конечных разностей [7] с использованием программы [8]. Расчеты проводились при следуюгцих числовых параметрах для дозвуковых течений  [c.692]

В 1978 г. Каннинен [3] провел критическую оценку численных методов, используемых в динамике разрушения. При сравнении методов конечных разностей и конечных элементов Каннинен пришел к выводу, что метод конечных элементов в силу той простоты, с которой моделируются необходимые сингулярности, оказывается более пригодным для исследования стационарных трещин в условиях динамического нагружения, в то время как метод конечных разностей оказывается более удобным, чем метод конечных элементов при исследовании развивающихся трещин. В последующие годы были достигнуты колоссальные успехи в конечно-элементном моделировании динамического развития трещин. В этой главе приведено краткое изложение этих достижений.  [c.268]

Уравнение распространения (2.3.35)-нелинейное дифференциальное уравнение с частными производными, которое, вообще говоря, нельзя решить аналитически, за исключением некоторых частных случаев, когда для решения применим метод обратной задачи рассеяния [27]. Поэтому часто для изучения нелинейных эффектов в световодах необходимо численное моделирование. Для этой цели можно использовать множество численных методов [31-38], которые можно отнести к одному из двух классов 1) разностные методы и 2) псевдоспектральные методы. Вообще говоря, псевдоспектральные методы на порядок или даже более быстрее при той же точности счета [39]. Одним из наиболее широко используемых методов решения задачи распространения импульсов в нелинейной среде с дисперсией является фурье-метод расщепления по физическим факторам (SSFM) [33, 34]. Относительно большая скорость счета этим методом по сравнению с большинством методов конечных разностей достигается благодаря использованию алгоритма быстрого фурье-преобра-зования [40]. В этом разделе кратко описывается фурье-метод с расщеплением по физическим факторам, а также его применение для задачи распространения импульсов в волоконном световоде.  [c.49]

В настоящее время большое внимание уделяется созданию адекватных моделей нелинейных процессов деформирования, связанных с большими деформациями, неупругим поведением материала и нелинейными динамическими волновыми явлениями в слоистых и композиционных материалах. Построение общих сложных моделей, как правило, сочетается с необходимостью разработки достаточно простых, но в то же время эффективных моделей описания процессов с требуемой точностью, выделением главных или ведущих параметров рассматриваемых процессов деформирования и созданием экономичных программ их численной реализации. При решении задач механики сплошных сред и деформирования элементов конструкций достаточно универсальными и широко распространенными являются метод конечных элементов (МКЭ), метод граничных элементов (МГЭ), вариационно-разностные методы (ВРМ), метод конечных разностей (МКР) в различных вариантах и сочетаниях с другими методами. В основу этих методов положено дискретное представление функций непрерывного аргумента и областей их определения, ориентированное на использование современных ЭВМ с дискретным способом обработки информацш, включая вычислительную технику новой архитектуры с векторными и параллельными процессорами. В механике, в частности в строительной, дискретное представление тел или конструкций в виде набора простых элементов имеет глубокие исторические корни, которые в свое время и послужили отправной точкой развития и обобщений МКЭ.  [c.5]

Эту систему можно решить методом конечных разностей, который эффективен при получении численных решений эллиптических уравнений в частных производных [4]. При использовании этого метода область непрерывного материала заменяется системой дискретных точек, где должны определяться дискретные значения зависимых переменных задачи. Уравнения в частных производных выражаются в каждой точке материала в пределах выбранной области в виде алгебраических уравнений, в которых частные производные аппроксимируются конечно-разностными операторами. В работе [3] для точек материала внутри выбранной области использовались центральноразностные операторы, тогда как для точек, попадаюших на границы области, применялись восходящие и нисходящие разностные операторы. Когда уравнения в частных производных и граничные условия записаны в приближенной форме, как конечно-разностные уравнения, получается линейная неоднородная система алгебраических уравнений, число которых равно произведению числа точек материала в выбранной области и числа зависимых переменных. Записывая в память ЭВМ только те элементы матрицы коэффициентов системы, которые попадают в пределы полуширины ненулевых коэффициентов, можно использовать метод исключения Гаусса для решения системы алгебраических уравнений с максимальной экономией памяти ЭВМ. Типичные матрицы коэффициентов размером 1200 х 1200 с полушириной порядка 60—80 решались на компьютере IBM 360-65 в 1969 г. при мерно за 2 мин.  [c.16]


Как общее правило, при анализе напряженного состояния пластинок этого типа следует рекомендовать использование косоугольной системы координат, назначая в ней угол между осями в соответствии с углом скоса пластинки. Однако в отдельных частных случаях для исследования косых пластинок известные удобства может представить и прямоугольная система координат, причем наиболее многообещающим методом здесь является, по-видимому, метод конечных разностей. Таким именно путем были получены нижеприводимые численные данные, относящиеся к равномерно загруженным косым пластинкам >). Полагаем, что при свободном опираиии по всему контуру (рис. 164, а) выражениям для прогибов и моментов в центре такой пластинки можно приписать вид  [c.356]


Смотреть страницы где упоминается термин Метод конечных разностей при численном : [c.37]    [c.160]    [c.114]    [c.254]    [c.121]    [c.4]    [c.210]    [c.83]    [c.557]    [c.179]    [c.126]   
Прикладная газовая динамика. Ч.2 (1991) -- [ c.0 ]



ПОИСК



Me численные (см. Численные методы)

Конечные разности

Метод конечных разностей

Методы численные

Методы численные (см. Численные методы)

Разность фаз

Численное интегрирование уравнений для прогибов методом конечных разностей

Численное решение дифференциальных уравнений в частных производных методом конечных разностей

Численные методы решения задач сопротивления материалов и теории упругости Метод конечных разностей

Численные результаты. Метод конечных разностей



© 2025 Mash-xxl.info Реклама на сайте