Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Связь тензора напряжений с тензором скоростей деформации

Воспользуемся связью тензора напряжений с тензором скоростей деформации (законом трения Стокса) в виде  [c.15]

Связь тензора напряжений с тензором скоростей деформации 15  [c.313]

В этой главе будем рассматривать вязкую жидкость, для которой связь тензора напряжений с тензором скоростей деформаций дается формулами (2.28) гл. VI, установленными на основе закона трения Ньютона. Будем предполагать, что жидкость подчиняется закону теплопроводности Фурье (см. (4.1) гл. VI). Будем рассматривать жидкости без внутреннего момента. Й этом случае уравнение моментов (учитывая, что пн = т 0 удовлетворяется автоматически.  [c.86]


Удельная мощность напряжений связи, определяемая сверткой тензора напряжений с тензором скорости деформации О по (2.7.12), (1.10.10), (1.13.10), равна  [c.255]

Третий член правой части уравнения (295) представляет собой воздействие на частицы потока сил трения, вызываемых вязкостью. В дальнейшем, в процессе интегрирования уравнений (294)—(298), придется найти связь напряжений трения т,-/ с полем скоростей потока. Возвращаясь к формуле (286), можно ее трактовать как закон пропорциональности одной из касательных компонент тензора напряжения компоненте тензора скоростей деформаций. Обобщая закон Ньютона на случай произвольного движения жидкости или газа, будем предполагать, что тензор напряжений в движущейся жидкой или газообразной среде есть линейная функция тензора скоростей деформаций. Для большинства рабочих агентов энергетических машин эта гипотеза хорошо оправдывается на опыте и ее можно было бы назвать обобщенным законом Ньютона. Численное выражение искомой линейной связи можно легко написать, если дополнительно считать движущуюся среду изотропной, т. е. такой, у которой физические свойства не зависят от особых, заданных наперед направлений в пространстве. При этом коэффициенты линейной связи между тензором напряжений Р и тензором скоростей деформаций S должны быть скалярами и искомая связь будет иметь вид  [c.167]

В основе М. лежат три закона Ньютона. Первые два справедливы по отношению к т, н. инерциальной системе отсчёта. Второй закон даёт осн. ур-ния для решения задач динамики точки, а вместе с третьим — для решения задач динамики системы материальных точек. В М. сплошной среды, кроме законов Ньютона, используются закона, отражающие свойства данной среды и устанавливающие для неё связь между тензором напряжений и тензорами деформаций или скоростей деформаций. Таковы Дука закон для линейно-упругого тела и закон Ньютона для вязкой жидкости (см. Вязкость). О законах, к-рым подчиняются др. среды, см. в ст. Пластичности теория. Реология.  [c.127]

В соответствии с рассмотренным опытом можно вывести связь между тензором напряжений и тензором скоростей деформаций в общем случае.  [c.72]


Действительно, при самой общей постановке задачи пластического формоизменения тела, в мысленно выделенной его материальной частице не представляется возможным установить определенной связи между напряжениями и деформациями или между напряжениями и скоростями протекания деформации. Если, как это следует из современного учения о конечной пластической деформации, направления главных осей и вид напряженного состояния выделенной материальной частицы в большинстве реальных случаев деформации совпадают с направлениями главных осей и видом тензора (определенной совокупности векторов) скорости деформации, то интенсивность напряженного состояния частицы зависит не только от интенсивности скорости деформации, но и от интенсивности итоговой (за весь предшествующий процесс) деформации, от степени деформации и от температуры.  [c.202]

Такое представление компонентов тензора скоростей деформации нам понадобится при установлении их связи с тензором напряжений.  [c.49]

Из вышеизложенного следует, что степень зависимости пластичности от схемы напряженного состояния для различных металлов и сплавов будет различной в зависимости от типа кристаллической решетки, наличия примесей, фазового состава, температуры и скорости деформации, структуры и ряда других факторов, воздействующих на пластичность. Однако независимо от степени влияния гидростатического давления на пластичность металла (сплава) пластичность увеличивается с алгебраическим уменьшением шаровой части тензора напряжения, т. е. с уменьшением величины k= jT — коэффициента жесткости схемы напряженного состояния. В связи с этим для установления количественной связи пластичности с величиной k (или для построения диаграмм Лр—не обязательно проводить испытания в камерах высокого давления. Достаточно знать величины Лр при растяжении ( =1 т/"3), кручении ( =0) и сжатии k——1 . у З).  [c.519]

Ц в е л о д у б И. Ю. О формах связи между тензорами напряжений и скоростей деформаций ползучести в изотропных устойчивых средах.— Проблемы прочности, 1979, № 9, с. 27—30.  [c.330]

Особенно сильные и явные нарушения соотношения (1.1) возникают при наличии трехмерных эффектов, когда становятся существенными все компоненты тензора напряжений Рейнольдса. В этом случае невозможно с помощью указанной простейшей связи компенсировать различие направлений главных осей тензоров напряжения и скоростей деформации. Поэтому естественно попытаться включить в определяющие соотношения для тензора напряжений Рейнольдса дополнительные слагаемые, устраняющие этот дефект.  [c.577]

Вторая дополнительная связь следует из требования совместимости разработанных здесь определяющих соотношений с соотношением (1.1), которое используется для расчета простых двумерных сдвиговых течений (в пограничных слоях, трубах и каналах, в струях и следах). Как уже отмечалось, для таких течений существенна только одна компонента тензора напряжений Рейнольдса — (1 11 2) и тензора скоростей деформации 812 Для обеспечения указанной совместимости необходимо выполнить условие  [c.580]

Так как в трехмерной пристеночной струе уровень турбулентной вязкости, рассчитанный по оригинальной версии модели С-А оказался вблизи стенки заниженным, пришлось увеличить роль слагаемого, связанного с ее порождением. Для этого при вычислении порождения турбулентности учитывались дополнительные анизотропные слагаемые в связи тензора напряжений Рейнольдса с тензором скоростей деформации. Эта модификация описывается соотношениями (4.5). Наконец, в диффузионном слагаемом в уравнении для г/ также были внесены уточнения, связанные с анизотропией коэффициентов переноса (слагаемые с (72 = 3 в (4.4)).  [c.587]

В заключение отметим, что не все формы определяющих соотношений равноправны. В формировании определяющих соотношений должны участвовать объективные тензоры напряжений и деформаций и объективные скорости этих тензоров. Только после этого можно выписывать альтернативные формы определяющих соотношений с несимметричными тензорами напряжений и деформаций и их скоростями, пользуясь формулами связи, представленными в этой главе.  [c.108]


МОСТИ могут служить вектор перемещения и тензор самих деформаций, тогда как для жидкой деформируемой среды, частицы которой обладают большей подвижностью, такие меры деформируемости не могут быть пригодными и вместо них используются вектор скорости перемещения и тензор скоростей деформаций. Для упругой среды напряжённое состояние в каждой точке ставится в зависимость от тензора самих деформаций. Для жидкости и газа в этом отношении дело обстоит совершенно иначе. Во-первых, при равновесии жидкости и газа под действием внешних сил или при наличии замкнутого сосуда напряжённое состояние характеризуется только одним давлением и вопрос о распределении деформаций даже и не возникает. Во-вторых, при движении жидкостей и газов взаимодействие частиц осуществляется преимущественно с помощью давления, величина которого не ставится в прямую связь с состоянием деформаций в данной точке, а ставится в зависимость в некоторых случаях от плотности и температуры. И только в отношении дополнительных сил взаимодействия частиц жидкости и газа при их движении, которые именуются напряжениями вязкости, дело обстоит примерно так же, как и с упругими напряжениями в упругой среде. Различие состоит лишь в том, что тензор напряжений вязкости ставится в зависимость не от тензора самих деформаций, а от тензора скоростей деформаций.  [c.10]

Действительно, первые три уравнения в (3.36) — это уравнения равновесия, только напряжения выражены с помощью физических уравнений через скорости. Остальные шесть уравнений объединяют физические уравнения состояния и геометрические уравнения связи скорости течения с компонентами тензора скорости деформации.  [c.93]

При изучении плоских контактных задач теории упругости с нелинейным износом и процессов квазистатического взаимодействия твердых тел с тонким покрытием, реологические свойства которого описываются уравнениями установившейся нелинейной ползучести со степенной связью между интенсивностями тензоров напряжений и скоростей деформаций, приходят к необходимости решения интегрального уравнения  [c.133]

Система уравнений, описывающая течение смазки в УГД контакте, выводится с учетом ряда допущений (их обсуждение см., например, в [5, 7, 32]) из уравнений гидродинамики, теплопереноса и теории упругости. Основные допущения заключаются в следующем толщина слоя смазки существенно меньше радиусов контактирующих тел, силы вязкого трения значительно больше инерционных, локально контактирующие тела заменяются полупространствами. Связь между тензором скоростей деформации и тензором напряжений, т.е. реологическая модель среды, является заданной. Зависимости свойств смазки — вязкости, плотности, теплопроводности, теплоемкости — от давления и температуры полагаются известными. Известными являются физические свойства твердых тел. При исследовании микро-УГД смазки задается топография поверхности. Система УГД уравнений замыкается начально-краевыми условиями.  [c.499]

С другой стороны, надо было понять теорию Сен-Венана-Треска, что было связано с интерпретацией физических опытов и теоретических расчетов. Это очень интересно с методологической точки зрения. Действительно, в опытах по нагружению (плоская деформация) внутренним давлениям отверстия в материале наблюдали линии скольжения (их потом стали называть линии Людерса-Чернова). Это были линии реального разрыва, а Сен-Венан рассчитывал, что так же должны выглядеть и площадки максимальных касательных напряжений. Это позволило ему ввести гипотезу о соосности тензоров (девиаторов) напряжений и деформаций (скоростей деформаций). Конечно, это предложение отвечало идеям Навье и было принято современниками, но надо подчеркнуть, что кроме упомянутой аналогии между полями линий скольжения и линиями максимальных касательных напряжений в плоском случае других фактов не было обобщение этих идей и их распространение на трехмерную ситуацию, к счастью, не связано с обсуждаемым материалом и пришло много позже.  [c.40]

Наличие в жидкости вязких напряжений связано с диссипацией энергии. При установлении определяющих соотношений для жидкостей в общем случае считают, что тензор вязких напряжений Тц является функцией тензора скоростей деформации Оц. Если эта функциональная связь нелинейна, что символически можно выразить формулой  [c.229]

Система трех уравнений (3.11) содержит шесть составляющих Оу, ху1 ух тензора напряжения. Следующей нашей задачей является установление связи этих составляющих с деформациями, а тем самым — и с составляющими и, V, ю скорости. Прежде чем вывести эту связь, что мы сделаем в 4 настоящей главы, остановимся подробнее на деформированном состоянии.  [c.59]

В этих уравнениях по-прежнему компоненты тензора гидродинамического напряжения связаны с компонентами тензора скоростей деформации по формулам (5.5). Плотность пондеромоторных сил I можно представить через эквивалентный ей тензор магнитных напряжений. В самом деле, из тождества  [c.154]

В дифференциальные уравнения (3,8) входят три вектора осреднённого по времени тензора напряжений р ., Ру и р . Для установления связи этого тензора напряжения с вектором скорости осреднённого движения используется вторая гипотеза, согласно которой линейное соотношение между тензором напряжений и тензором скоростей деформаций остаётся справедливым и при турбулентном движении, т. е. для полного турбулентного движения имеют место равенства  [c.455]


В реальных условиях перечисленные случаи обтекания встречаются как в отдельности, так и в различных сочетаниях. Чтобы определить характеристики во всех точках потока, обтекающего поверхность, необходимо при заданных граничных условиях рещить уравнения Навье-Стокса для ламинарного или уравнения Рейнольдса для турбулентного потоков совместно с уравнением неразрывности и с учетом гипотез относительно связи тензора напряжений с тензором скоростей деформации. Решение этой задачи затруднительно, и конечный результат может быть получен лишь для ряда простых случаев.  [c.74]

В упругой области напряжения не зависят от пути деформации и ее скорости и связаны только с величиной упругой деформации. Поэтому естественно, что некоторые направления создания сходных законов для пластической области также основывают (после работ Хенки, 1924 г.) на связи между компонентами тензора напряжений и тензора полной пластической деформации, обычно называемой теорией малых упругопластических деформаций [12], иногда теорией конечных или полных деформаций [45], или деформационной теорией пластичности [10].  [c.131]

К двадцатым годам по справедливости нужно отнести и начало систематических экспериментальных исследований в связи с вопросами теории пластичности. В 1926 г. опубликовали результаты своих опытов М. Рош и А. Эйхингер, а двумя годами позднее появилась фундаментальная работа В. Лоде ). В обоих случаях испытывались образцы в виде тонкостенных трубок, а одной из главных целей эксперимента было сравнение условий текучести Треска и Мизеса для более широкого набора напряженных состояний, чем простое растяжение и чистый сдвиг. Лоде, кроме того, ввел в рассмотрение параметр, характеризующий вид (отношение диаметров кругов Мора) двухвалентного симметричного тензора, и изучал в своих опытах связь между i r и ig — параметрами Лоде соответственно тензора напряжения и тензора скорости деформации. На плоскости, отнесенной к координатам jia, [Ле-, диаграмма этой связи, по данным опытов Лоде, имеет характерный вид, всегда получавшийся и в более поздних опытах такого типа и позволяющий сделать важные выводы относительно конструкции определяющих соотношений.  [c.82]

Рассмотрение связи тензоров фазовых напряжений с тензорами деформаций и скоростей имеет смысл только при иостроеиии моделей для конкретных сред. Это было сделано, в частности, прн изучении деформирования водонасыщен-иых грунтов Я. И. Френкелем, В. Н. Николаевским и др. [10], а для композитных сред — М. Хлавачеком [11—14], а также в работах [15—18 и др.].  [c.37]

Р1зображение тензора инерции в форме эллипсоида не является чем-то специфическим для тензора инерции. Аналогичные интерпретации возможны и для всех других симметричных тензоров второго ранга. Так, тензору напряжений ( 36) можно было бы сопоставить эллипсоид напряжений, тензору деформаций ( 78) эллипсоид деформаций, тензору скоростей деформаций— эллипсоид скоростей деформаций ( 78). Происхождение названия сферический тензор для тензора, обладающего изотропией, т. е. такого, что все его диагональные компоненты в данной точке равны между собой (единичный тензор, тензор напряжений в идеально текучей жидкости), связано с тем, что в геометрической интерпретации такому тензору соответствует сфера.  [c.286]

При исследовании гетерогенных сред необходимо учитывать гот факт, что фазы присутствуют в виде макроскопических (по отношению к молеку [ярным размерам) включений или среды, окружающей эти включения. Поэтому деформация каждой фазы, определяющая ее состояние и реакцию, связана, в отличие от гомогенной смеси (см. (1.1.31)),не только со смещением внешних границ (описываемым полем скоростей Vj, которое прежде всего может существенно отличаться от ноля среднемассовых скоростей v) выделенного объема, но и со смещением межфазных поверхностен внутри выделенного объема смеси. Учет этого обстоятельства при определении тензоров напряжений Oi требует привлечепия условий совместного деформирования и движения фаз, условий, учитывающих структуру составляющих среды (форма и размер включений, их расположение и т. д.). Заметим, что в тех случаях, когда эффекты прочности не имеют значения (газовзвеси, эмульсии, суспензии, жидкость с пузырьками, твер дые тела при очень высоких давлениях), условия совместного деформирования являются существенно более простыми, чем в общем случае. Они по существу сводятся к уравнениям, определяющим объемные содержания фаз а,. Наиболее часто встречающимися такого рода уравнениями является условие равенства давлений фаз или несжимаемости одной нз фаз.  [c.27]

Гидродинамика изучает законы движения большого класса жидкостей, у которых компоненты тензора напряжения связаны с компонентами тензора скоростей деформации линейно по закону, называемому обобщенным зарсоном Ньютона.  [c.69]

На основании общих физических представлений о поведении материала под нагрузкой его сопротивление деформированию определяется мгновенными условиями нагружения (температурой, скоростью деформации и другими ее производными в момент регистрации), а также структурой материала, сформированной в процессе предшествующего деформирования, который в п-мерном пространстве характеризуется траекторией точки, проекции радиуса-вектора которой — составляющие тензора напряжений (или деформаций) и время (начальная температура является параметром, характеризующим исходное состояние материала, и изменяется в соответствии с адиабатическим характером процесса деформирования). Специфической особенностью процессов импульсного нагружения является сложный характер нагружения (составляющие тензора напряжений меняются непропорционально единому параметру) и влияние времени. Невозможность экспериментального исследования материала при различных процессах нагружения (траекториях точки указанного выше л-мерного пространства) вынуждает исследователей использовать упрощенные модели механического поведения материала. Это обусловило развитие исследований по разработке теорий пластичности, учитывающих температурновременные эффекты [49, 213, 218] наряду с изучением физических процессов скоростной пластической деформации [5, 82, 175, 309]. Так, для первоначально изотропного материала исходя из гипотезы изотропного упрочнения связь тензоров напряжений и деформаций полностью определяется связью их инвариантов соответственно Ei, Ег, Ез и Ii, h, h- С учетом упругого характера связи средних напряжений и объемной деформации для металлических материалов (а следовательно, независимость от истории нагружения первых инвариантов тензоров напряжений и деформаций Ei, А) процесс нагружения определяется связью четырех оставшихся инвариантов и величины среднего давления. В классической теории пластичности  [c.11]

Анализируя различные подходы к решению геометрически и физически нелинейных задач теории оболочек, выбираем вариационный подход. При построении вариационного уравнения термоползучести используем допущения технической теории гибких оболочек, успещ-но применяемой в расчетах упругих пологих оболочек, и физические соотношения в форме связи тензоров скоростей изменения деформаций и напряжений с учетом ползучести материала. Вариационное уравнение смешанного типа, в котором независимому варьированию подвергаются скорости изменения прогиба и функции усилий в срединной поверхности, позволяет использовать для описания реологических свойств материала хорошо обоснованные теории ползучести типа течения и упрочнения. Задачи мгновенного деформирования решаем методом последовательных нагружений, а задачи ползучести — методом шагов по времени.  [c.13]


Одних только уравнений движения сплошной среды в напряжениях и уравнений несжимаемости недостаточно для нахождения поля скоростей (или поля смещений). Для определенности задачи необходимо еще охарактеризовать соотношение между компонентами тензора скоростей деформации (или тензора деформации или, в общем случае, некоторого кинематического тензора, построенного с помощью этих тензоров) и компонентами тензора напряжений, причем эти соотношения должны обладать некоторыми свойствами, определяемыми тензорностью величин. Связь между напряжениями, деформациями и их производными по времени называется уравнением (функцией) реологического состояния. Важным частным случаем уравнения состояния является уравнение течения, которое определяет собой зависимость между скоростями деформаций и напряжениями. Ниже рассматриваются, во-первых, задачи в условиях простого напряженного состояния, когда существует лишь одна составляющая тензора напряжений и соответствующая ей составляющая тензора скоростей деформаций, во-вторых (за исключением, когда это особо не оговаривается), только те случаи, когда скорость деформации — непрерывная однозначная 12  [c.12]

Результаты. многочисленных экспериментов показывают, что большинство твердых тел способно выдержать, без разрушения большие всесторонние напряжения. В то же врекя значительно мень-пше по величине напряжения сдвига вызывают разрушение тела. В связи с этим разделение тензора напряжений на шаровой тензор la и девиатор существенно облегчает рассмотрение напряженного состояния тела, йоскольку тензор Ti , вызывающий дилатацию может быть связан с шаровым тензором деформаций или шаровым тензором скоростей деформаций, а тензор D , вызывающий дистор-сию, соответственно с девиаторами деформаций или скоростей деформаций. Выделение давления полезно еще и тем, что позволяет строить уравнение состояния вещества, непрерывно переходящее в уравнение состояния жидкости в условиях, когда компоненты тензора девиатора напряжений становятся пренебрежимо малы по сравнению с Р.  [c.16]

Путем наложения некоторых связей в уравнениях обобщенного вариационного принципа можно получить сформулированные относительно скоростей уравнения вариационного принципа Хилла для упругих и упругопластических тел при произвольной величине деформаций [47, 73, 78, 79, 81]. Рассмотрим уравнения (3.6). Предположим, что варьируемые поля скоростей перемещений й принимают заданные значения на границе qSu, т.е. выполнены кинематические граничные условия в (3.6). В этом случае исчезает последний член в правой части (3.8). Далее предполагаем, что материальная производная тензора градиента деформации не является произвольной варьируемой величиной, а выражается через материальную производную тензора градиента перемещения с помощью четвертого равенства (3.6). Тогда исчезает второй член в правой части (3.8). Предположим также, что материальная производная первого тензора напряжений Пиола — Кирхгофа не является независимой варьируемой величиной, а выражается через материальную производную тензора градиента деформации с помощью последней формулы (3.6), т.е. определяющие соотношения предполагаются заданными. В этом случае вариационное уравнение (3.7) преобразуется в следующее  [c.117]

Для монотонных процессов деформирования, когда главные панравлеппя тензора напряжений или скоростей деформаций совпадают в любой момент времени с одними и теми же материальными волокнами, определяющие соотношения могут быть записаны в терминах главных компонент путем прямого обобщения соответствующих видов реологических законов для малых деформаций [71, 138]. Такие соотношения соответствуют связи между напряжениями, деформациями и их скоростями в прямоугольном ортонормироваином базисе главных направлений, который совершает жесткое вращение относительно неподвижного пространства наблюдателя. Типичным представителем этого класса дефор-мацнй тел является осесимметричное деформирование тонких оболочек вращения в рамка.х обобщенных гипотез Кирхгофа [91, 190], когда на срединной поверхности меридиональное, окружное и перпендпкулярпое к ним нанравления по толщине оболочки в любой момент времени остаются главными нанравлениями для напряжений и деформаций [81, 82].  [c.21]

Вязкопластические уплотняемые тела (9]. Как показывают эксперименты, сопротивление металлических порошковых материалов и пористых тел при повышенных температурах существенно зависит от скорости деформирования [19], что свидетельствует о вязком характере течения. Вместе с тем течение этих материалов носит пороговый характер, т. е. необратимые деформации возникают только после того, как напряжения достигают некоторого уровня. В связи с этим для описания деформации таких материалов предлагается использовать известную модель вязкопластического тела Малверна—Соколовского, обобщенную на случай необратимо уплотняемых сред. При этом достаточно предположить, что функция нагружения зависит от первого инварианта тензора напряжений (ст),  [c.122]

В ранее разобранных случаях пластического деформирования мы имели право постулировать существование выраженных в конечной форме зависимостей между составляющими тензоров напряжения и деформацпи или скоростей деформации, так как при этом всегда предполагалось, что с возрастанием деформации главные осп напряжений сохраняют постоянные углы относительно элементов материала. Теперь мы обратимся к интегрированию бесконечно малых приращений упругой и пластической деформации для случая, когда тензор напряжения, хотя и сохраняет свое постоянное значение на пределе текучести, но направления главных осей в элементах материала изменяются. Это имеет место, когда на тело, подвергающееся под действием нагрузки пластической деформации, налагаются некоторые кинематические условия, которые определяются жесткими связями с другими телами, не позволяющими данному телу деформироваться так, как это происходило пы при той же системе напряжений, если бы его границы могли свободно перемещаться. С подобным случаем мы встречаемся, например, тогда, когда результирующие деформации по границе тела заданы, иными словами, когда они ограничены в своем развитии заданными граничными условиями.  [c.483]

Элементы матрицы (3.15а) образуют систему составляющих симметричного-тензора, называемого тензором скоростей деформации. Математические свойства этого тензора аналогичны свойствам тензора напряжений, также симметричного. Из теории упругости [ ], [ ], а также из тензорной алгебры [Щ известно, что с каждым симметричным тензором можно связать три взаимно ортогональные главные оси, которые определяют три взаимно ортогональные главные плоскости, образующие привилегированную декартову систему координат. В этой систвхме координат вектор напряжения в каждой главной плоскости (или мгновенное движение в такой плоскости) нормален к ней, т. е. параллелен одной из главных осей. Когда применяется такая специальная система координат, матрицы (3.10) или (3.15а) содержат одни  [c.64]

Полученные таким путем шесть величин образуют симметричный тензор напряжений, существование которого обязано движению, так как для покоящейся жидкости все составляющие этого тензора тождественно равны нулю. Из сказанного ранее следует, что составляющие полученного девиатора тензора напряжений связаны исключительно с составляющими тензора скоростей деформации, т. е. с составляющими и, V, ю скорости и с составляющими т , завихренности. Это равносильно тому, что мгновенное смещение элемента жидкости [составляющие движения (а)], а также его мгновенное вращение как твердого тела [составляющие движения (б)] не вызывает появления в дополнение к уже имеющимся составляющим гидростатического давления — поверхностных сил па элементе жидкости. Предыдущее утверждение представляет собой, очевидно, только краткую локальную формулировку общего случая, когда конечный объем жидкости совершает произвольное движение, неразличимое от эквивалентного движения твердого тела. Следовательно, выражения составляющих а , а , а ,. . ., девиатора тензора напряжений могут содержать в себе только градиенты скорости ди дх,. . ., дюШг в соответствующих комбинациях, определением которых мы сейчас и займемся.  [c.65]


Смотреть страницы где упоминается термин Связь тензора напряжений с тензором скоростей деформации : [c.192]    [c.627]    [c.88]    [c.139]    [c.153]    [c.151]    [c.111]    [c.16]    [c.224]   
Методы и задачи тепломассообмена (1987) -- [ c.313 ]



ПОИСК



597 — Деформации и напряжения

Деформации скорость

Деформации скорость тензор

Деформация Связь с напряжениями

Напряжения. Тензор напряжений

Обобщение закона Ньютона на случай произвольного движения среды. Закон линейной связи между тензорами напряжений и скоростей деформации

Связь тензора напряжений с тензором

Скорости деформаций и напряжения

Тензор деформаций

Тензор напряжений

Тензор скорости

Тензор скорости напряжений

Тензоры деформации и скоростей деформации



© 2025 Mash-xxl.info Реклама на сайте