Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Покрытия тонкие

Алюминиевые прутки (d = 24-4 мм), покрытые тонким слоем флюса.  [c.103]

Для получения большего светового эффекта Вуд изготовил пластинку, оптическая толщина четных и нечетных зон которой отличалась на Х/ 2. С этой целью стекло было покрыто тонким слоем лака и на нем соответствующим образом была выгравирована  [c.127]

Основная схема интерферометра Майкельсона изображена на рис. 7.2. Пучок от источника Ь падает на пластинку Р1, покрытую тонким слоем серебра или алюминия. Луч АВ, прошедший через пластинку Рх. отражается от зеркала 5х и, попадая опять на пластинку Рх, частично проходит через нее, а частично отражается по направлению АО. Луч АС отражается от зеркала 5 и, попадая на пластинку Рх, частично проходит также по направлению АО. Так как обе волны 1 и 2, распространяющиеся по направлению АО, представляют собой расчлененную волну, исходящую из источника Ь, то они когерентны между собой и могут интерферировать друг с другом. Так как луч 2 пересекает пластинку Рх три раза, а луч 1 — один раз, то на его пути поставлена пластинка Р , идентичная Рх, чтобы скомпенсировать добавочную разность хода, существенную при работе с белым светом.  [c.134]


Зеркало представляет собой просто пластинку стекла, не покрытую тонким слоем металла, в противоположность зеркалам, применяемым в быту. Наличие металлического слоя испортило  [c.375]

Рис. 145. Схема прибора изображена на рис. 145 И — источник нейтронов ЛЦ — латунный цилиндр, наружная поверхность которого покрыта тонким слоем делящегося вещества U БЦ — бакелитовый цилиндр большего диаметра. Рис. 145. <a href="/info/293655">Схема прибора</a> изображена на рис. 145 И — <a href="/info/13681">источник нейтронов</a> ЛЦ — латунный цилиндр, наружная поверхность которого покрыта тонким слоем делящегося вещества U БЦ — <a href="/info/227989">бакелитовый цилиндр</a> большего диаметра.
Для регистрации спонтанного деления изготовили специальную многослойную камеру деления (рис. 170), пластины которой были покрыты тонким слоем окиси урана (10—  [c.397]

Излучение, возникающее при переходах с верхних уровней на нижние, является спонтанным. В среде с инверсной населенностью это спонтанное излучение индуцирует дополнительные переходы. Для того чтобы создать квантовый генератор, в среде с инверсной населенностью необходимо обеспечить условия автоколебательного режима. Такой режим достигается за счет помещения активной среды, т. е. вещества, в котором создается инверсная населенность, -В резонатор, выполняющий роль положительной обратной связи. Резонатор обеспечивает также пространственную и временную когерентность излучения. Простейший резонатор представляет собой два плоскопараллельных зеркала, одно из которых является полупрозрачным. В рубиновом лазере резонатором служат отполированные торцы рубинового стержня, покрытые тонким слоем металла, в полупроводниковом инжекционном лазере на арсениде галлия— это тщательно полированные боковые грани, перпендикулярные плоскости р-и-перехода.  [c.318]

Конструктивно газоразрядный счетчик представляет собой тонкостенную, обычно стеклянную герметичную камеру цилиндрической формы. С внутренней стороны камера покрыта тонким слоем металла, который служит катодом. Анодом служит тонкая (диаметром около 0,05 мм) металлическая нить, протянутая по оси цилиндра. Такая резкая асимметрия геометрии электродов приводит к тому, что электрическое поле очень велико в малой области вокруг анодной нити и мало в остальном пространстве внутри счетчика. Ниже мы увидим, что именно этой асимметрией обусловлены основные особенности процессов в газоразрядных счетчиках.  [c.495]


Технологичность сборки контейнеров. Слоистые панели соединяются с помощью продольных балок и угловых стоек таким образом, чтобы внешние нагрузки передавались на всю конструкцию. Структура композиционного материала — сердцевина из материала с низкой плотностью, покрытая тонким облицовочным слоем, усложняет сборку, поэтому особое внимание должно уделяться соединительным узлам конструкции. Хорошая сопротивляемость сердцевины сжимающим напряжениям позволяет  [c.212]

ОДНОГО ИЗ вариантов пленочной сверхпроводящей ячейки памяти. На свинцовой подложке I, покрытой тонким слоем диэлектрика, нанесены оловянные пленки в виде петель 2, соединенные в группы цифровым проводом 3. На оловянную пленку через слой диэлектрика напыляются свинцовые пленки X и У. При записи информации через цифровой провод пропускают ток. Одновременно по проводам X и V пропускают токи, которые в сумме создают магнитное поле Я, способное разрушить сверхпроводящее состояние на участ-. ке оловянной петли, расположенном под ними. Вследствие этого ток течет только по верхней части петли. Это состояние сохраняется и после выключения тока в проводах X и Y, хотя оловянная пленка становится полностью сверхпроводящей. Если теперь через цифровой провод пропустить импульс тока, то в петле сформируется циркулирующий незатухающий ток, хранящий поданную информацию (рис. 7.20, б). Для считывания этой информации по проводам X п Y пропускают суммарный ток, разрушающий сверхпроводимость на том же участке оловянной петли, что и ранее. Это приводит к уничтожению тока в петле и наведению в цифровом проводе смыслового импульса (рис. 7.20, в). Такая память обладает рядом замечательных свойств и позволит конструировать запоминающие устройства емкостью до миллиарда ячеек памяти с быстродействием порядка 10- —10- с.  [c.207]

Формулы для расчета распределения потенциала и тока по поверхности контактирующих металлов, покрытых тонким слоем электролита, приведены в табл. 3.17, где указаны также номера рисунков и таблиц, содержащих результаты численных расчетов для наиболее типичных случаев.  [c.184]

Равномерность покрытия важна еще и потому, что при неоднородности покрытия на поверхности могут функционировать коррозионные элементы типа покрытый участок — непокрытый (пора, дефект) или участок, покрытый тонким слоем, — участок с более толстым слоем лакокрасочного покрытия. На рис. 6.2 показано возникновение тока в паре металл с покрытием — металл без покрытия. В этой паре окрашенный электрод является катодом, неокрашенный — анодом.  [c.107]

При заращивании покрытием тонких непроводящих волокон образование пустот маловероятно, как, например, для композиций никель—стекло и никель—муллит. Конечно, и более толстые волокна при достаточно больших расстояниях между ними будут зарастать сплошным слоем покрытия.  [c.232]

Трубки после закалки покрыты тонким слоем окалины.  [c.94]

Поверхности трения как бронзового, так и стального образца были покрыты тонким слоем меди.  [c.100]

Поверхность покрыта тонким слоем меди  [c.180]

Наличие огранки (но не величина ее) может быть выявлено с помощью кольца или полукольца с диаметром, равным диаметру вала, покрытого тонким слоем краски.  [c.467]

Ударное движение в эталонной установке Импульс-1 возникает при механическом соударении рабочего тела с молотом. Максимальное ударное ускорение измеряют, применяя упруго-контактный метод по диаметру отпечатка, создаваемого сферической поверхностью молота на плоской поверхности рабочего тела, которое покрыто тонким слоем выявляющего состава. Возникающие наложенные колебания, измеряемые ударным акселерометром, устраняют фильтром нижних частот.  [c.373]

Заполнение фундамента бетоном должно производиться равномерно по всему сечению в горизонтальной плоскости и без перерыва. В случае вынужденного перерыва перед продолжением бетонирования поверхность уложенного бетона должна быть тщательно очищена от мусора, промыта водой и покрыта тонким слоем раствора с тем же соотношением цемента к песку, что и в составе основного бетона.  [c.58]

В концентрационных элементах два одинаковых электрода контактируют с растворами разных составов. Существуют два типа концентрационных элементов. Первый называется солевым концентрационным элементом. Например, если один медный электрод погружен в концентрированный раствор сульфата меди, а другой — в разбавленный (рис. 2.3), то при замыкании такого элемента медь будет растворяться с электрода, находящегося в разбавленном растворе (анод) и осаждаться на другом электроде (катоде). Обе реакции ведут к выравниванию концентрации растворов. Другой тип концентрационного элемента, имеющий большое практическое значение, — элемент дифференциальной аэрации. Примером может служить элемент из двух железных электродов, погруженных в разбавленный раствор Na l, причем у одного электрода (катода) электролит интенсивно насыщается воздухом, а у другого (анода) — деаэрируется азотом. Различие в концентрации кислорода сопровождается возникновением разности потенциалов, что обусловливает протекание тока (рис. 2.4). Возникновение элемента этого вида вызывает разрушения в щелях (щелевая коррозия), образующихся на стыках труб или в резьбовых соединениях, поскольку концентрация кислорода в щелях ниже, чем снаружи. Этим также объясняется язвенное разрушение под слоем ржавчины (рис. 2.5) или коррозия на границе раздела раствор—.воздух (рис. 2.6). Доступ кислорода к участкам металла, покрытым ржавчиной или другими твердыми продуктами коррозии, затруднен по сравнению с участками, покрытыми тонкими пленками или свободными от них.  [c.25]


Дальнейшее повышение к. п. д. при прочих равных условиях достигается применением селективных покрытий на застекленной поверхности опреснителя, благодаря чему она становится изоляцией. Стеклянная пластина, покрытая тонким слоем определенного материала, например двуокисью олова, несколько хуже пропускает солнечное излучение в области спектра 0,3—2,5 мкм, но зато почти полностью отражает длинноволновое излучение (область спектра 4—20 мкм) [204]. На рис. 8-37 приведены спектральные характеристики пропускания и отражения системы стекло-Ьпленка SnOa—F .  [c.225]

Теоретический расход холода (тепла) в этом случае должен равняться тепловыделениям (теплопоглощению) человека, что должно дать экономию в мощности по крайней мере в 5 раз. Однако практически невозможно осуществить поверхность, не поглощающую тепловых лучей. Поглощенное тепло отводится от поверхностей путем конвекции к воздуху комнаты. Это является первым источником теплопотерь. Кроме того, необходимость смены воздуха в помещении (проветривание) требует охлаждения (нагрева) приточного воздуха. Поэтому практически экономия холода (тепла) получается меньшей. Одноэтажный дом, в котором была осуществлена опытная установка кондиционирования воздуха, имел следующие показатели общая площадь 168 м объем 460 м площадь наружных стен 149 м площадь остекления 56 м . Стены — бревенчатые (0150 мм) с обшив кой из красного дерева, пол — бетонный по земле, крыша— плоская с изоляцией войлоком. Стены и потолок были оклеены внутри тисненными обоями из плотной бумаги, покрытой слоем алюминиевой фольги толщиной 0,01 мм. Фольга в свою очередь была покрыта тонким слоем (1 мкм) подкрашенного лака, прозрачного в инфракрасной области спектра, но поглощающего тепловое излучение в видимой части спектра. Цвета этого лака подбирались так, чтобы, создав приятное для глаз восприятие, не уменьшать значительно отражательную  [c.238]

Трение является сложным физическим явлением, а значение силы трения Р зависит от многих факторов, в частности от наличия на трущихся поверхностях смазки. Сухое трение наблюдается при отсутствии промежуточного с.юя смазки такой вид трения в механиз.мах встречается весьма редко. Если слой смазки полностью разделяет трущиеся поверхности, такой вид трения называют жидкостным, -[асто в механизмах встречается трение, при которо.м слой смазки лишь частично разделяет труигиеся поверхности. Такой вид трения называется полусухи.и и встречается во фрикционных передачах, клиновых соединениях и т. д. Наконец, при граничном трении толщина слоя смазки не превышает 0,1 мкм при этом поверхности покрыты тонким молекулярным слоем смазки.  [c.70]

Опыт Винера со стоячими световыми волнами. Первый опыт со стоячими световыми волнами был выполнен в 1890 г. Винером. Схема установки Винера представлена иа рис. 5.4. Плоское металлическое (покрытое серебряным слоем) зеркало освещалось нормально падающим параллельным пучком монохроматического света. Плоская тонкая стеклянная пластинка П, поверхность которой покрыта тонким слоем (толщиной, меньшей V20 полуволны падающего света) прозрачной фотографической эмульсии, расположена на металлическом зеркале под небольшим углом ф к его поверхности. Отраженный от зеркала 3 лучок интерферирует с падаюидим в результате получается система стоячих световых волн. Согласно теории отражения света от металлической поверхности, первый ближайший к зеркалу узел электрического вектора расположится на поверхности зеркала, так как при таком отражении именно электрический вектор меняет свою фазу на противоположную. Следовательно, первый узел магнитного вектора расположится на расстоянии в четверть длины световой волны от зеркала. Таким образом, перед зеркалом будет наблюдаться система узлов (и пуч-  [c.97]

Вну "пенияя поверхность стеклянного баллона электронно-лучевой трубки против анода покрыта тонким слоем кристаллов,  [c.174]

Простейшим прибором, работающим иа основе пспользования фотоэффекта, явл гется вакуумный фотоэлемент. Вакуумный фотоэлемент состоит из стеклянной колбы, снабженной двумя электрическими выводами. Внутренняя поверхность колбы частично покрыта тонким слоем металла. Это покрытие служит катодом фотоэлемента. В центре баллона расположен анод. Выводы катода и анода подключаются к источнику постоянного напряжения. При освещении катода с его поверхности вырываются электроны. Этот процесс называется внешним фотоэффектом. Электроны движутся под действием электрического поля к аноду. Б цепи фотоэлемента возникает электрический ток, сила тока пропорциональна мощности светового излучения. Таким образом фотоэлемент преобразует энергию светового излучения в энергию электрического тока.  [c.304]

Красивую наглядную иллюстрацию второго начала термодинамики дает детская игрушка Птичка Хоттабыча (рис. 13). Она представляет собой стеклянную, наглухо запаянную фигурную ампулу на металлической оси. Ампула наполнена легко испаряющейся жидкостью. В равновесии ствол птнчки 01 клонен на несколько градусов от вертикали. Головка и клюв покрыты тонким слоем ваты. Если немного увлажнить головку, опустив.  [c.85]

Перейдем теперь к формулировке граничных условий в задачах электроупругости. Здесь необходимо различать условия для механических составляющих электроупругого поля и условия электростатики. Если же на поверхности электрического тела заданы внешние силы, то компоненты тензора механических напряжений должны удовлетворять условиям (1.3). Граничные условия, обусловленные наличием электрического поля, зависят существенно от способа возбуждения пьезоэлектрического тела, поверхность которого может быть покрыта тонкими проводящими электродами или граничить с вакуумом. Механическая деформация и возбуждение колебаний пьезоэлектрика осуществляется с помощью задания разности электрических потенциалов, созданной на части электроднрованной поверхности 5 тела. В этом случае выполняется условие  [c.255]


Второе предложение можно назвать принципом поперечной подачи массы. Состоит он в перекачке влаги с одной грани сплошной секции на другую [59]. Секции тепломассомера изготовляются одинаковыми по технологии слоистого тепломера, но на одну из заготовок, покрытую тонким слоем загустевшей эпоксидной смолы, навивается нить к нити стекловолокно или другой материал с высокой капиллярной силой и малой усадкой. Заготовка завора-  [c.60]

Делительная камера представляет собой ионизационную камеру (часто многослойную), электроды которой покрыты тонким слоем окиси UgOg изотопа урана Под действием нейтронов уран  [c.519]

Если поверхность кристалла покрыта тонким слое оксидов (пленка на алюминии), то возникает сопротив ление выходу дислокации на поверхность при этом возни кает заметное поверхностное упрочнение. В результат можно ожидать значительного изменения механически свойств. Так, А. X. Коттрелл отмечает, что для некотс рых мягких металлов возможно повышение предела т( кучести втрое.  [c.52]

Хорошо защиш,ают от потускнения и одновременно повышают износостойкость серебра эпоксидные покрытия. Тонкая пленка КПЭЦ, состоящая из 25 %-ной канифоли, 20 %-ного синтетического церезнна, 30 %-ного полистирола и 25 %-нон эпоксидной смолы ЭД-6, хорошо защищает серебро от потускнення и не желтеет от времени.  [c.29]

Титановый анод вследствие образования при анодной поляризации плотной окнсиой пленки не проводит электрический ток. Покрытый тонким елеем платины он работает нормально, так как окисная пленка формироваться не может, причем платинированные титановые аноды остаются работоспособными даже при наличии пористого платинового слоя. Основная трудность при получении платинированного титана заключается в том, что поверхность титана даже в обычных условиях покрыта толстым слоем окислов, препятствующим получению прочно сцепленного покрытия.  [c.77]

Никель. Серебристо-белого цвета металл — Ni с температурой плавления 1452 С выпускается нескольких марок с содержанием до 99,99% Ni при использовании электровакуумной плавкп. В интервале 25— 600 С значение ТК1 = 1,55-10 Иград. Электрические свойства отожженного никеля р = 0,0683 ом-мм 1м, TKR = 6,8-10 Иград. Никель применяют в качестве оснований (кернов) оксидных катодов, которые активируют окислами в. основном щелочноземельных металлов (ВаО, SrO), с целью снижения работы выхода. Для упрочнения никеля-используют присадку марганца (2,3—5,4%) из марганцовистого никеля изготовляют прочные сетки и траверсы небольших приемно-усилительных ламп. Алюминированный никель в виде ленты, покрытой тонким слоем алюминия (8—15 мкм), обладает высоким коэффициентом теплового излучения (до 0,8) такую ленту используют для анодов небольших электронных ламп. Допустимая для никеля температура в вакууме составляет 800° С.  [c.299]

В структуре сплава ниже комплексного покрытия выделяется диффузионная зона с мелкодисперсной упрочняющей у -фазой. Внутренняя зона покрытия в отличие от традиционно столбчатого вида в случае одноступенчатого хромоалитирования состоит из более мелких фаз, ориентированных перпендикулярно поверхности и имеющих менее выраженную столбцатость, что объясняется повышенной концентрацией никеля в объеме, участвующем в формировании наружной зоны покрытия. Тонкая дисперсная прослойка, состоящая из мелких округлых включений, расположена между наружной и внутренней зонами покрытия. В нарун<ной зоне наблюдается большое количество у -фазы. -  [c.174]

С привлечением описанных методик нами исследовались триботехнические характеристики различных покрытий тонкого ионноплазменного, струйно-плазменного, само( )люсующегося, магнитоэлектрического.  [c.101]

Склонность титановых сплавов к горячесолевому растрескиванию обычно определяют двумя путями а) устанавливают длительность до разрушения (или пороговые напряжения при заданной базе длительности нагружения) напряженных при данной температуре образцов, покрытых тонким слоем соли, б) определяют механические свойства образцов при 20 С после их длительного (100 — 1000 ч) нагружения при повышенных (250 — 500 0 температурах. В первом случае наблюдается прямое коррозионное растрескивание, во втором— влияние солевой коррозии на пластичность и прочность. >  [c.44]

В качестве возможных катализаторов для очистки выхлопных газов автомобилей испробованы практически все элементы периодической таблицы. В типовых устройствах катализатор состоит из пористых гранул опорного материала, которые покрыты тонким слоем активного вещества. В качестве опорного материала используются термостойкие неорганические окислы, например окись алюминия, двуокись кремния или кальцинированная глина. Активное вещество, как правило, металл или окисел металла, наносится на гранулы опорного материала в виде пленки толщиной в несколько молекулярных слоев. Столь малая толщина покрытия необходима для того, чтобы исключить забивание пор поверхности опорного материала. Высокая пористость играет полезную роль, поскольку она увеличивает контактную поверхность катализатора, однако необходимо найти оптимум между яористостью и механической прочностью. У каталитической засыпки массой 20 кг эффективная площадь составляет около 10 м (около 100 га).  [c.66]

Пример 1.12. Найдем распределение потенциала и TOKia контактной коррозии для системы из двух контактирующих бесконечно протяженных плоских электродов (рис. 1.27), покрытых тонким слоем коррозионной среды.  [c.68]

Матовая поверхность никеля, осаждаемого из электролита Уоттса, после полирования становится блестящей. Полировка способствует уменьшению пористости тонкого слоя покрытия. На никеле, подверженном атмосферному воздействию, образуется тусклая серовато-коричневая патина. Она защищает металл, но отрицательно сказывается на внешнем виде изделия, поэтому поверхность металла следует систематически полировать. Сохранение декоративных качеств обеспечивается нанесением на никелевое покрытие тонкого слоя хрома, устойчивого  [c.46]

Нижний образец был изготовлен из стали 45, верхний — из бронзы БрОЦС. В ванну для смазки был налит технический глицерин. Нагрузку на рычаг добавляли по 1 даН через каждый час работы машины. Испытание продолжалось 10 ч, после чего образцы были сняты. Исследования показали, что поверхность трения стального образца покрыта тонким слоем меди, выделившейся из бронзового образца цвет бронзы золотистый, а цвет пленки на стальном образце медно-красный). Бронзовый образец за этот период не приработался полностью, он работал только узкой полоской. Взвешивание образцов показало весьма малую потерю массы бронзового образца и увеличение массы стального почти на такую же величину.  [c.100]

При рассмотрении этих рисунков можно заметить, что у бронзы БрОФ в отличие от бронзы БрАЖМц имеется явно выраженный период приработки. Износостойкость бронзы БрОФ и сопряженной стальной поверхности очень высокая. Масса стального образца за 1000 ч уменьшилась на 0,005 г. Это произошло не за счет износа труш,ейся поверхности, а вследствие растворения окисных пленок на поверхности стали, омываемой глицерином. За все время испытаний трущаяся стальная поверхность была покрыта тонким слоем меди, который и предотвращал износ. Б начальный период эта пленка была тонкой, что не сказалось на изменении массы стального образца.  [c.103]

Анализ состояния поверхностей трьния, работавших при удельных нагрузках, не превышающих критических, показал, что поверхности трения бронзовых втулок имеют высокий класс шероховатости (9—10-й), а рабочие участки втулок, испытывающие нагрузку, покрыты тонким слоем меди. На стальных поверхностях валиков наличие меди наблюдалось только на кадмированных поверхностях, на хромированные поверхности медь не переносилась, что согласуется с результатами исследований в работе [12]. При этих удельных нагрузках пара трения бронза—сталь имеет малую интенсивность изнашивания трущихся деталей, причем наблюдается износ только бронзовых подшипниковых втулок, стальные валики при этом практически не изнашиваются.  [c.183]


На проверяемую поверхность нак.тадывают и слегка перемещают специальную чугунную плиту (или деталь перемещают по контрольной плите), покрытую тонким слоем краски.  [c.479]

Разновидностью метода 7-дефектоскопии является ксерорадиография, при которой исследуемое изделие устанавливается перед медной пластинкой, покрытой тонким слоем селена, предварительно заряженного электричеством при помощи коронного разряда. Когда на селеновый слой падает пучок 7-лучей, электропроводность пластинки возрастает и освещаемое место начинает разряжаться со скоростью, зависящей от интенсивности облучения. После экспозиции на селеновом слое получается скрытое изображение, плотность которого будет зависеть от неравномерного поглощения исследуемым телом проходящих через него 7-лучей. Пластинку затем проявляют, помещая в камеру, в которую через сопло вдувают пыль, заряженную электричеством того же знака, что и заряд селеновой пластинки. Пылинки в меньшем количестве оседают на те места, где плотность электричества больше, и здесь появляется изображение, обнаруживающее дефекты просвеченного изделия. После просмотра изображения пыль с селенового слоя удаляется щеткой, и пластинку можно использовать вновь.  [c.6]


Смотреть страницы где упоминается термин Покрытия тонкие : [c.329]    [c.342]    [c.388]    [c.342]    [c.159]    [c.452]   
Справочник по специальным работам (1962) -- [ c.190 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте