Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материальная система и уравнения движения ее точек

ВОЗМОЖНОСТЬ изучить движение несвободной материальной системы рассмотреть отдельно каждую ее точку и применить к ней уравнение mw==F- -N, причем в общем случае неясно, как в дальнейшем исключить все неизвестные реакции связей, без чего нельзя интегрировать эти уравнения. В применении к твердому телу это значило бы, что его надо разбить на элементарные частицы, для каждой из них написать указанное уравнение и каким-то образом исключить силы взаимодействия частиц тела друг с другом. Уравнения (10.5), (10.11) полностью решают поставленную задачу для случая свободного твердого тела указанные силы взаимодействия частиц тела друг с другом исключены и вместо бесчисленного множества уравнений для каждой точки тела мы получили шесть уравнений, определяющих движение тела в целом найдя это движение, мы сможем найти и движение каждой точки тела.  [c.258]


Какие добавочные силы, помимо центробежной силы, нужно приложить к материальной точке, чтобы уравнения движения ее во вращающейся плоскости приняли ту же форму, что и в инерциальной системе неподвижной плоскости Целесообразно ввести комплексные переменные х - - iy в неподвижной плоскости и + гг/ во вращающейся плоскости.  [c.327]

Однако при практическом исследовании движения очень часто нет необходимости изучать систему (1), а достаточно знать изменение со временем некоторых величин, общих для всей материальной системы и являющихся функциями координат и скоростей точек системы (и, быть может, времени). Если такая функция при движении системы остается постоянной, то она называется первым интегралом уравнений движения (1). Использование первых интегралов позволяет упростить задачу исследования движения системы, а иногда и решить ее до конца.  [c.156]

Общее уравнение динамики. Рассмотрим систему N материальных точек Pi, и = 1, 2,..., N). Состояние системы в некоторой неподвижной прямоугольной декартовой системе координат задается радиусами-векторами и скоростями Vi, ее точек. Система предполагается свободной или несвободной со связями вида (1), (2) из 3 главы 1. Импульсивное движение возникает из-за того, что к точкам системы прикладываются ударные импульсы 1 , либо накладываются новые связи, либо снимаются некоторые (или все) из старых связей, либо из-за того, что и то, и другое, и третье осуществляется одновременно.  [c.435]

Задача об устойчивости заданного движения материальной системы может рассматриваться с различных точек зрения. Речь может идти, во-первых, о разыскании оценок отклонений обобщенных координат и обобщенных скоростей от их значений в опорном движении в любой момент времени, когда начальные возмущения достаточно малы. Об основывающемся на этом воззрении определении устойчивости движения по Ляпунову кратко говорилось в п. 11.10, а составлению уравнений возмущенного движения — уравнений в вариациях — были посвящены пп. 11.14—11.17. Во-вторых, может рассматриваться лишь орбитальная устойчивость, когда вопрос о протекании во времени возмущенного движения отодвигается на второй план, а изучаются лишь траектории возмущенного движения и устанавливаются критерии их близости к опорной траектории. При этом часто, ограничивая постановку задачи, рассматривают только консервативные возмущения — такие, при которых на возмущенных траекториях сохраняется то же самое значение постоянной энергии /г, что и на опорной траектории. Принцип стационарного действия Лагранжа оказывается при этой постановке задачи наиболее приспособленным методом исследования орбитальной устойчивости, поскольку траекториями как опорного, так и возмущенного движений являются геодезические линии многообразия / элемента действия, т. е. простейшие геометрические  [c.721]


Получили систему из п векторных уравнений. Проецирование этих уравнений на оси декартовых координат приводит к Зп дифференциальным скалярным уравнениям движения системы. Эти уравнения позволяют в принципе, как и в динамике точки, решать две основные задачи определять силы по заданному движению системы и определять движение системы по заданным силам. Но на практике при решении- второй задачи динамики системы возникают большие математические трудности и ее точные решения для системы из трех и более материальных точек неизвестны. Поэтому большое значение приобретают общие теоремы динамики системы, позволяющие просто  [c.130]

Допустим, что консервативная механическая система, состоящая из п материальных точек и имеющая одну степень свободы, находится в некотором положении в устойчивом равновесии. Исследуем, какое движение будет совершать эта система, если ее вывести из равновесия малым возмущением. Условимся опять определять положение системы обобщенной координатой q, выбранной так, что при равновесии равновесие устойчиво, а возмущения малы, то координата q и обобщенная скорость q будут во все время движения тоже оставаться величинами малыми. Для составления дифференциального уравнения движения системы воспользуемся уравнением Лагранжа, которое, если выразить обобщенную силу Q через потенциальную энергию системы,П [(см. 143, формулы (115)], примет вид  [c.389]

Далее мы получим два закона сохранения, имеющие место при рассмотрении замкнутых систем. В связи с этим сделаем следующее общее замечание. Требование замкнутости системы означает, что все силы, действующие на материальные точки системы, зависят лишь от взаимного расположения точек и расстояний между ними. В связи с этим любые преобразования координат, сохраняющие взаимное расположение точек и расстояния между ними, не изменяют уравнения движения, т. е. не меняют вид лагранжиана.  [c.291]

В задаче о двил<еиии точки член —ша представляет эффект действия силы F, в то время как в задаче об уравновешенности сил, действующих на точку, член —та представляет силу, которую надо приложить к точке, чтобы уравновесить силу F. Это отличие не находит своего отражения в уравнениях. Таким образом, формально принцип Даламбера позволяет (свести задачу о движении точки к задаче о равновесии действующих на нее сил и сил инерции. Переходя к системе материальных точек с идеальными связями, запишем принцип Даламбера для каждой точки системы р. виде  [c.115]

Силовой расчет механизмов можно выполнить различными способами. Однако в последнее время пользуются преимущественно принципом Даламбера, который формулируется так если к каждой точке материальной системы, кроме равнодействующей заданных сил и реакций связей, приложить еще силу инерции этой точки, то уравнениям динамики можно придать форму уравнений статики. Основанный на принципе Даламбера силовой метод расчета, который состоит в перенесении методов статики в решение задач динамики механизмов и машин, называют кинетостатическим расчетом механизмов в отличие от статического расчета, при котором силы инерции звеньев не учитываются. Таким образом, если закон движения материальной системы известен, то, присоединяя к точкам этой системы, кроме задаваемых сил и реакций связей, также фиктивные силы инерции, можно рассматривать эту систему условно находящейся в равновесии и определять неизвестные силы методами статики, т. е. с помощью уравнений равновесия или принципа возможных перемещений.  [c.342]

Т. е. к подстановке в эти уравнения известных сил, действующих на материальные частицы системы, и выполнению определенных математических операций, дающих решение задачи. Однако даже с чисто теоретической точки зрения такое представление является чрезмерно упрощенным. Дело в том, что может оказаться необходимым учесть связи, ограничивающие движение системы. Один вид такой системы нам уже встретился — это было твердое тело. Связи, накладываемые на его движение, состоят в том, что расстояния между его точками должны оставаться неизменными. Легко привести и другие примеры систем со связями так, например, косточка на конторских счетах ограничена в своем движении проволокой, на которую она надета, и поэтому имеет одну степень свободы (если рассматривать только поступательное движение).  [c.22]


Но иначе, нежели с поступательным движением Земли, обстоит дело с движением ее вокруг оси, которое оказывает заметное влияние на движения тел относительно Земли. Чтобы найти это влияние, представим себе систему материальных точек, на которые действуют произвольные силы и которые подчинены любым уравнениям связей рассмотрим положения, которые имеют эти точки в момент времени / одновременно в двух системах координат, из которых одна покоится в пространстве, другая движется. Пусть т—масса одной из точек х, у, г — ее координаты X, У, 2 — составляющие действующей на нее силы в момент времени I в покоящейся системе координат х, у, г, X, У, 2 — эти же величины в движущейся системе координат наконец, 6х, 6у, 6г — виртуальные изменения X, у, г и 6х, б//, 6г — соответствующие вариации х , у. Тогда по принципу Даламбера  [c.76]

Это и будут уравнения Маджи [ ]. Они вместе с уравнениями (77) с аналитической точки зрения дают в дифференциальной форме полную постановку задачи о движении для системы 5 с двусторонними идеальными (в том числе и неголономными) связями. Действительно, если представим себе, что в уравнения (82) вместо величин q подставлены их выражения (77) через е и и выполнено дифференцирование по t, то будет очевидно, что после выполнения всех преобразований в уравнениях останутся, помимо q, е, t, только v производных ё от е, которые войдут в них линейно. Замечания, совершенно аналогичные тем, которые были сделаны в п. 36, приводят к выводу, что полученные таким образом из системы (82) v уравнений разрешимы относительно этих v производных е, так что мы заключаем, что уравнения (77) и (82) вместе составляют дифференциальную систему уравнений первого порядка, приводимую к нормальному виду относительно я-f-v неизвестных функций времени q VI е. Если конфигурация и состояние движения материальной системы в начальный момент заданы, т. е. заказаны произвольные численные начальные значения q (позиционных координат)и е (кинетических характеристик), то движение неголономной системы будет однозначно определено.  [c.326]

Общие замечания о теоремах и законах динамики. Рассмотрим движение системы материальных точек Pj = 1, 2,. .., N) в некоторой инерциальной системе координат. Пусть — масса точки а — ее радиус-вектор относительно начала координат. Если система несвободна, то ее можно рассматривать как свободную, если помимо активных сил, приложенных к точкам системы, учесть реакции связей. Если затем все силы, приложенные к системе, разбить на внешние и внутренние, то из аксиом Ньютона получим дифференциальные уравнения движения рассматриваемой механической системы в виде  [c.156]

Форма, которую Лагранж придал дифференциальным уравнениям динамики, до сего времени служила только для того, чтобы с изяществом выполнять различные преобразования, для которых пригодны эти уравнения, и для того, чтобы с легкостью и притом во всей их широте выводить общие законы механики. Однако из этой же формы можно извлечь важную выгоду с точки зрения самого интегрирования этих уравнений, что, как мне кажется, добавляет новую ветвь к аналитической механике. Я наметил ее основные черты в сообщении, сделанном 29 истекшего ноября Берлинской академии, после того, как имел честь представить Вашей прославленной академии, приблизительно год назад, пример, способный дать почувствовать дух и полезность нового метода. Я нашел, что всякий раз, когда имеет место принцип наименьшего действия, можно следовать по такому пути в интегрировании дифференциальных уравнений движения, что каждый из интегралов, найденных последовательно, понижает порядок этих уравнений на две единицы, если отождествлять постоянно порядок системы обыкновенных дифференциальных уравнений с числом произвольных постоянных, которое вводит их полное интегрирование. Высказанное предложение имеет место также и в случаях, когда функция, производные которой дают составляющие сил, действующих на различные материальные точки, содержит явно время. Мы находим, например, в случае одной точки, вынужденной оставаться на заданной поверхности и подверженной действию только центральных сил, что дифференциальное уравнение второго порядка, которым определяется это движение, приводится к квадратурам, как только найден один-единственный интеграл. Наикратчайшие линии на поверхности входят в этот случай.  [c.289]

Согласно принципу Даламбера, задачи динамики могут сводиться к задачам статики, если к действительно действующим силам присоединить условно вводимые силы инерции. Приняв это условие и составив уравнения равновесия, т. е. уравнения статики, можем получить дифференциальные уравнения движения системы материальных точек (18).  [c.32]

Перейдя к механике, Гамильтон показал значение в ней своего нового вариационного принципа, а его характеристическая функция для задач механики ( функция Гамильтона Н) оказалась, при довольно широких условиях, совпадающей с энергией механической системы. Зная, как выражается функция Н через координаты и импульсы составляющих систему материальных точек, можно сразу составить дифференциальные уравнения, определяющие координаты и импульсы. Получающаяся система дифференциальных уравнений ( канонические уравнения ) равносильна системе уравнений движения, в частности — системе уравнений Лагранжа второго рода, но обладает некоторыми особыми свойствами, облегчающими ее исследование.  [c.208]

Если по условию требуется определить какую-либо реакцию связи, то надо с помощью уравнений Лагранжа определить обобщенные ускорения системы (т.е. вторые производные по времени обобщенных координат), затем, применив закон освобождаемости, составить дифференциальное уравнение движения соответствующей материальной точки или применить метод кинетостатики и из составленного уравнения, решая первую задачу динамики, найти искомую реакцию.  [c.549]


В предыдущих разделах мы рассмотрели случай материальных точек, которые непрерывно взаимодействуют одна с другой согласно уравнениям движения (1.1). Часто бывает удобно рассматривать предельные случаи, в которых между точками происходят только дискретные взаимодействия с конечными импульсами (жесткие столкновения) при этом силы не могут быть описаны обычными функциями и с уравнением Лиувилля нужно обращаться иначе. Предельный случай жесткого столкновения полезен, так как он дает более наглядное представление об эволюции системы и служит хорошим приближением для интенсивных сил отталкивания, с которыми реальные молекулы взаимодействуют на близких расстояниях. Эти соображения приводят к концепции газа из твердых сфер, т. е. системы многих биллиардных шаров , которые не взаимодействуют на расстоянии и сталкиваются по законам упругого удара. Диаметр сфер о эквивалентен радиусу действия сил взаимодействия реальных молекул. Фактически газ из твердых сфер можно представлять как систему материальных точек, которые не взаимодействуют, если расстояние между ними больше а, и взаимодействуют с формально бесконечной центральной силой отталкивания, когда это расстояние становится в точности равным а, так что большее сближение невозможно.  [c.23]

Дифференциальные уравнения относительного движения мате-риальной точки следует писать в том же виде, как и уравнения ее движения относительно неподвижной системы отсчета, но только к действующим на точку заданной силе и реакции связей нужно присоединить еще переносную силу инерции и силу инерции Кориолиса, или, другими словами относительно подвижных осей материальная точка движется так же, как если бы эти оси были неподвижны и если бы к этой точке, кроме действующих на нее сил, были приложены еще силы РТ и Р .  [c.453]

Уравнение (16) и выражает теорему о движении центра масс системы произведение массы системы на ускорение ее центра масс равно геометрической сумме всех действующих на систему внешних сил. Сравнивая уравнение (16) с уравнением движения материальной точки ( 100, формула (3)), получаем другое выражение теоремы центр масс системы движется как материальная точка, масса которой равна массе всей системы и к которой приложены все внешние силы, действующие на систему.  [c.344]

Полученное уравнение движения точки определяет ее ускорение относительно подвижной системы отсчета. Но в правой части этого уравнения появилось два новых члена (—гп ]е) и (—т] ). Эти новые члены имеют значение сил, действующих на материальную точку в подвижной системе координат. Их называют силами Кориолиса. Будем в дальнейшем называть We = —т силой Кориолиса от переносного ускорения, а Wfe = —т силой Кориолиса от добавочного ускорения. Уравнения движения можно теперь представить в виде  [c.285]

Пример 3.5.2. Рассмотрим движение материальной точки массы т в поле параллельных сил Г = Ге, где Г — положительная постоянная, е — постоянный единичный вектор, задающий направление силы. Выберем инерциальный ортонормированный репер 0616362 так, что 62 = —6, а единичные векторы 61 и 62 образуют плоскость, перпендикулярную силе Г (в том случае, когда Г — сила тяжести, векторы б1 и б2 задают горизонтальную плоскость). Пусть г = Г1б1 -1-Г262-I-гв2 — радиус-вектор точки. Система дифференциальных уравнений движения принимает вид  [c.172]

Более сложные модели виброперемещения. В качестве примеров более сложных моделей процессов виброперемещения рассмотрим системы соответственно с двумя и тремя степенями свободы, схемы которых и уравнения движения приведены в пп 8 и 9 таблицы. Первая система (п. 8) представляет собой гело, рассматриваемое в виде материальной точки, которое движется по шероховатой наклонной плоскостн. совершающей гармонические колебания в двух взаимно перпендикулярных направлениях [4, 8]. Приняты следующие обозначения т — масса тела g — ускорение свободного падения а — угол наклона плоскости к горизонту Т и Q — соответственно продольная и поперечная постоянные силы, действующие на тело F — сила сухого трения N — нормальная реакция А и В — амплитуды продольной и поперечной составляющих колебаний плоскости е — сдвиг фаз (О — частота колебаний / н — соответственно коэффициенты трення скольжения и покоя и Л — соответственно коэффициенты восстановления и мгновенного трения при соударении тела с плоскостью  [c.256]

Уравнения движения, записанные в ковариантной форме (уравнения Лагранжа), имеют одинаковый вид в любой системе отсчета и поэтому в равной мере пригодны для описания движения в инерциальных и в неинерциальных системах. Для того чтобы описать движение материальной точки по отношению к неинерциальной системе отсчета, надо лишь в качестве новых координат принять отрюсительные ( греческие ) координаты неинерциальной системы. Заданное переносное движение определяет тогда все функции ф,- и г ),-, т. е. преобразование (8) новых ( гре-  [c.160]

Задача 875. Материальная точка массой т движется в системе отсчета Oxyz под действием силы f = if sin со/ н силы сопротивления среды R = — kv. В начальный момент точка находилась а начале координат и имела начальную скорость направленную по оси Оу. Найти уравнения движения точки, пренебрегая ее весом.  [c.316]

Как было показано ( 225—226 т. I), материальная точка, движущаяся по некоторой идеально гладкой поверхности при отсутствии активных сил, описывает на этой поверхности геодезическую, т. е. в определенном смысле прямейшую линию. Это заключение распространяется и на случай движения системы. Последнее утверждение основывается на форме уравнений движения системы (II. 101), примененных к системам с голоном-ными связями.  [c.526]

Эта глава посвящена трем вопросам динамике материальной точки, основы которой изучались в курсе физики средней школы, применению элементов математического анализа к физике и применению начал векторного исчисления, изложенных в гл. 2. Мы составим и решим уравнения движения для некоторых простых случаев, имеющих отношение к теории лабораторных работ по физике. Эти уравнения I описывают движение заряженных частиц в Vi-(vi f однородных электрических и магнитных I полях, т. е. явления, нашедшие исключи-/ тельно широкое применение в экспериментах I тальной физике. Глава заканчивается по----- дробным анализом различных преобразований от одной системы отсчета к другой.  [c.112]

Описание задания. Цель расчета — приобретение опыта построения расчетной механической модели по описанию задачи, освоение методики составления дифференциальных уравнении движения выбранной модели — материальной точки, знакомство с методами аналитического и численного исследования уравнений. Аналитически находим установившееся движение и оцениваем характерное время переходного процесса. Эти оценки используем для выбора интервала интегрирования при численном анализе уравнений. Счетом на ЭВМ определяем переходный процесс выхода системы на установившийся режим при заданных начальных условиях. Варианты заданий представлены на рис. 38—41. В описании каждого задания на рис. а схематически изображен исследуемый объект, на рис. 6 — его расчетная механическая модель. В качестве модели рассматривается материальная точка М, совершающая плоское движение. Моделью определяются силы следующего вида сила /о, приводящая точку в движение или тормозящая ее, вес G, разность архимедовой силы и веса, задаваемая в варианта.ч 2, 10, 12,  [c.54]


К замкнутой системе твердых тел, так же как к замкнутой системе материальных точек, могут быть применены законы сохранения импульса и момента импульса. При суммировании уравнений движения и уравнений моментов внутренние силы, действующие между отдельными твердыми телами, исключаются (в силу третьего закона Ньютона). Поэтому, если на систему твердых тел не действуют внешние силы, то ее общий импульс остается постоянным. Точно так >ке, если сумма моментов всех внешних сил равна нулю, ю общий момент импульса системы твердых тел остается 1ЮСтоянным, Применение закона сохранения импульса к системе твердых тел ла т, по существу, то же самое, что н в случае системы материальных точек, — jaKOH движегни) центра тяжести системы тел.  [c.421]

Отсюда следует, что две материальные системы совершенно различной материальной структуры с точки зрения аналитнческогв представления движения динамически эквивалентны, т. е. при подходящих силах имеют одни и те же уравнения движения, если только при надлежащем выборе лагранжевых координат они допускают одно и то же выражение для живой силы. Очень простор пример такой динамической эквивалентности материальных систем, физически различных между собой, мы будем иметь (как это будет видно в п. 49), рассматривая, с одной стороны, одну свободную материальную точку в пространстве (отнесенную к декартовым координатам), а с другой стороны, материальный диск, свободно дви-мсущиНся II своей плоскости (если за его лагранжевы координаты примем декартовы координаты какой-нибудь неизменно связанной с ним точки, а третий параметр выберем пропорциональным углу, определяющему его ориентировку в плоскости относительно непо движных осей).  [c.294]

Для получения уравнений движения введем инерциальную систему координат OaXYZ ее начало совпадает, например, с центром масс Солнечной системы, а оси направлены на неподвижные звезды. Положения материальных точек Р и О задаются их радиусами-векторами ри R соответственно (рис. 120). С точкой О свяжем поступательно движущуюся систему координат Oxyz оси которой параллельны соответствующим осям системы OaXYZ. Положение точки Р относительно точки О задается радиусом-вектором г.  [c.234]

Теперь видно, что уравнения связей действительно представляют собой в рассматриваемом случае частные интегралы уравнений движения рассматриваемой свободной системы при значениях произвольных постоянных >1 =0, // =0, Если указанный случай оставить в стороне, то ускорения да,, сообщаемые системе прилбжениыми силами будут относиться к числу ускорений невозможных. Чтобы эти ускорения системы стали возможными, необходимо допустить,-что присутствие связей является причиной проявления некоторых добавочных сил, действующих на частицы системы. Эти добавочные силы называются реакциями связей. Эффектом совокупного действия на материальную систему приложенных сил и реакций и является появление у частиц системы таких ускорений, которые не противоречат равенствам (30.3) и (30.4), т. е. ускорений возможных. Такой взгляд находится в полном соответствии с нашим представлением о том, что источником сил служат материальные тела, потому что связи так или иначе реализуются всегда с помощью некоторой системы материальных приспособлений. Если реак-  [c.292]

Систему координат Oxyz будем считать инерциальной, т. е. примем, что материальная точка, не подвергающаяся никаким воздействиям, двигается в этой системе координат с нулевым ускорением. Это — допущение, которое на практике можно проверить лишь с точностью, присущей принятому способу измерений и в рамках, определяемых нашим умением распознавать воздействия. Коль скоро воздействия описаны (в рамках некоторой модели или сочетания моделей), мы можем дать выражения для силы, действующей на точку, и выписать уравнение движения  [c.34]

Лагранж в 60-е годы отправлялся от этих работ в своих исследованиях колебаний системы конечного числа материальных точек. Ему было нетрудно придать утверждению Д. Бернулли форму математической теоремы, так как в 40-е годы XVIII в. Эйлер показал, как проинтегрировать линейное дифференциальное уравнение произвольного порядка с достоянными коэффициентами, а Даламбер — как интегрируются системы таких уравнений. Это позволяло просто сослаться на то, что общий интеграл дифференциальных уравнений описывающих малые колебания, является суммой слагаемых, каждое из которых соответствует малым изохронным колебаниям простого маятника. При этом, однако, надо было допустить, что корни алгебраического уравнения (уравнения частот, или векового уравнения ), которое попутно приходится решать, вещественны, положительны и не равны между собой. Однако Лагранж этим не ограничился и провел все исследование в общем виде, используя открытую им форму уравнений движения — уравнения Лагранжа второго, рода. В первом издании Аналитической механики Лагранжа (1788 г.) эти результаты даны в улучшенной редакции, в окончательном виде они вошли во. второе издание Аналитической механики (т. I., 1813 г.).  [c.265]

В 1945 г. появилась работа американского исследователя Дж. Джаратаны Уравнения классической динамики системы переменной массы Автор указывает причины изменения массы системы непрерывная деформация и движение ограничивающей тело поверхности (например, случай горения свечи) движение точек по отношению к системе в целом воздействие обоих этих факторов. Рассматривается сплошная среда, находящаяся внутри и на границе некоторой замкнутой поверхности S в данный момент времени. Кроме того, рассматривается та же материальная система S для которой введено предположение о мгновенном отождествлении (замораживании) частей и частиц в момент времени t. Такая схема близка к схеме тела переменной массы Гантмахера и Левина, более глубоко разработанной ими с математической и механической точек зрения. В их работе 1947 г. нет представления о системе переменной массы как о совокупности точек переменной массы, движение которых описывается уравнением Мещерского. Авторы рассматривали материальную систему 2, состоящую из твердых, жидких и газообразных частей в момент времени независимо от того, имеют ли части этой системы относительное движение по отношению друг к другу или они жестко скреплены. Кроме того, в рассмотрение вводится другая материальная система S, состоящая из тех же самых частей, что и система 2, но как бы затвердевшая в момент времени Все механические характеристики обеих систем в общем случае различны. При такой картине движения удачно разделяются две части абсолютной скорости каждой частицы переносная и относительная. Все слагаемые дифференциальных уравнений движения ракеты, соответствующие реактивной силе или ее моменту, кориолйсовым  [c.241]


Смотреть страницы где упоминается термин Материальная система и уравнения движения ее точек : [c.158]    [c.389]    [c.403]    [c.196]    [c.245]    [c.333]    [c.19]    [c.211]    [c.551]    [c.268]    [c.199]   
Смотреть главы в:

Теоретическая механика Очерки об основных положениях  -> Материальная система и уравнения движения ее точек



ПОИСК



ДВИЖЕНИЕ В НЕИНЕРЦИАЛЬНЫХ СИСТЕМАХ ОТСЧЕТА Уравнения движения материальной точки относительно произвольной неинерциальной системы отсчета

Движение материальной точки

Движение системы

Дифференциальные уравнения движения материальной точки в простейших системах координат

Дифференциальные уравнения движения системы материальных точек

Дифференциальные уравнения движения системы материальных точек в декартовой системе координат (уравнения Лагранжа первого рода)

Лекция вторая (Движение несвободней материальной точки. Простой маятник. Движение системы точек, для которой имеют место уравнения связей.. Масса материальной точки. Движущая сила. Лагранжевы уравнения механики)

Материальная

Материальные уравнения

О неудерживающих связях Уравнения движения системы материальных точек с идеальными связями

ОСНОВНЫЕ ПОНЯТИЯ и ТЕОРЕМЫ ДИНАМИКИ СИСТЕМЫ Дифференциальные уравнения движения системы материальных точек в декартовых координатах

Общие замечания об интегрировании системы дифференциальных уравнений движения материальной точки

Система материальная

Система материальных точек

Система свободных материальных точек и уравнения ее движения. Теоремы об изменении количества движения и о движении центра масс

Система точек

Системы Уравнение движения

Точка материальная

Точка — Движение

Уравнение движения материальной точка

Уравнение движения материальной точки в равномерно вращающейся системе отсчета

Уравнение движения материальной точки в равноускоренной системе отсчета. Силы инерции

Уравнение движения материальной точки относительно неинерциальной системы отсчета силы инерции

Уравнение точки

Уравнения движения всеобщие точек материальной системы

Уравнения движения материально

Уравнения движения материально точки

Уравнения движения материальной точ

Уравнения движения материальной точки в декартовой и криволинейной системах координат, в проекциях на оси естественного трехгранника

Уравнения движения системы свободных материальных точек Интегралы

Уравнения движения точки



© 2025 Mash-xxl.info Реклама на сайте