Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Силовой расчет механизмов

Силовой расчет механизмов. Определение реакций в кинематических парах  [c.103]

Примеры на силовой расчет механизмов.  [c.104]

Пели известны внешние силы, действующие на звенья механизма, и известны законы движения всех его звеньев, то можно методами, излагаемыми в механике, определить силы трения и реакции связей в кинематических парах, силы сопротивления среды, силы инерции звеньев и другие силы, возникающие при движении механизма, и тем самым произвести так называемый силовой расчет механизма.  [c.204]


ЗАДАЧИ СИЛОВОГО РАСЧЕТА МЕХАНИЗМОВ 205  [c.205]

Задачи силового расчета механизмов  [c.205]

Г. Как было указано выше ( 38), силовой расчет механизмов заключается в определении тех сил, которые действуют на отдельные звенья механизмов при их движении.  [c.205]

Силовой расчет механизмов может быть произведен самыми разнообразными методами. В теории машин и механизмов весьма широкое применение получил метод силового расчета механизмов на основе обыкновенных уравнений равновесия твердых тел.  [c.205]

При решении задач силового расчета механизмов закон движения ведущего звена предполагается заданным точно так же предполагаются известными массы и моменты инерции звеньев механизма. Таким образом, всегда могут быть определены те силы инерции, которые необходимы для решения задач силового расчета с помощью уравнений равновесия.  [c.247]

Вопрос о силовом расчете механизмов начнем с рассмотрения вопроса об определении реакций в кинематических парах.  [c.247]

Зная угловую скорость со и угловое ускорение е звена приведения, можно определить скорость и силы инерции отдельных звеньев, а также провести полный силовой расчет механизма в условиях неравномерно вращающегося звена приведения.  [c.355]

В задачу синтеза входит проектирование по заданным условиям структурной схемы механизма. Следует отличать структурную схему механизма от кинематической. В структурной схеме указываются стойка, виды кинематических пар и их взаимное расположение в механизме. Размеры звеньев не учитываются. Составление структурной схемы необходимо в первую очередь для проведения структурного анализа механизма. В кинематической схеме известны размеры, необходимые для кинематического анализа, силового расчета механизма и дальнейшей разработки его конструкции.  [c.7]

СИЛОВОЙ РАСЧЕТ МЕХАНИЗМОВ  [c.138]

Аналитический метод силового расчета механизмов. При  [c.141]

Силовой расчет механизмов с высшими кинематическими парами. Силовой расчет механизмов с высшими кипе.матическими парами может быть выполнен изложенными выше. методами, если предварительно построить заменяющий механизм с низшими парами. Однако это не является обязательным. Достаточно рассмотреть равновесие отдельных звеньев, представляющих собой статически определимые системы 3n = 2ps + р ). Расчленив механизм на структурные группы (звенья), следует рассчитать каждое звено, начиная с наиболее удаленного от начального.  [c.157]


Силовой расчет механизмов  [c.180]

На основании вышеизложенного можно сформулировать общую методику силового расчета силовой расчет механизма без избы  [c.184]

По программе, составленной на языке ФОРТРАН для машины ЕС-1022, в числах сделан силовой расчет механизма дизеля, работающего в установившемся режиме с малым коэффициентом неравномерности. Шаг изменения обобщенной координаты (pi в пределах одного оборота коленчатого вала Дф =5°. ЭВМ выполнила весь расчет (решение 33 уравнений 72 раза каждое) за 46 с.  [c.199]

В гл. 5 был рассмотрен силовой расчет механизмов без учета трения в кинематических парах. Наличие трения изменяет величину и направление действующих сил. Согласно положениям теоретической механики при наличии трения скольжения сила взаимодействия двух соприкасающихся тел отклоняется от общей нормали к их поверхностям на угол трения. Тангенс угла трения равен коэффициенту трения скольжения  [c.230]

Силовой расчет механизма с учетом трения  [c.235]

В дальнейшем будет показано, что кинематический и силовой расчет механизмов наиболее удобно проводить для структурных групп, составляющих механизм, и именно для структурных групп различных классов разработаны методы расчетов. Рассмотренная классификация плоских механизмов с низшими парами [3, 36] может быть распространена на механизмы с высшими парами путем замены высших пар низшими.  [c.26]

ГЛАВА 6. СИЛОВОЙ РАСЧЕТ МЕХАНИЗМОВ  [c.58]

Силами вредного сопротивления / в называют силы, на преодоление которых затрачивается энергия, не дающая производственного эффекта. Это, главным образом, силы трения в кинематических парах при относительном движении звеньев. Силы реакций R в кинематических парах, или силы действия звеньев механизма друг на друга, определяются силовым расчетом механизма. Силы трения являются касательными состав-  [c.58]

Силовой расчет механизмов без учета сил трения  [c.61]

Целью силового расчета механизма является определение сил, действующих на звенья данного механизма при заданном движении его ведущего звена. Для определения внешних сил необходимо знать движение звеньев механизма, поэтому прежде  [c.61]

Силовой расчет механизма без учета сил инерции называется статическим. Такой расчет производят в тех случаях, когда силы инерции невелики (при малых массах звеньев и в тихоходных механизмах). Силовой расчет механизма называется динамическим или кинетостатическим, если при расчете учитываются силы инерции звеньев механизма.  [c.62]

Уравнение структурной группы 3/г — 2/ 5 —/ 4 = О является условием ее статической определимости. Действительно, для каждого звена плоского механизма можно составить три уравнения равновесия, поэтому величина Зи соответствует числу уравнений равновесия для звеньев группы. Величина (2/ + р ) соответствует числу неизвестных реакций в кинематических парах структурной группы. Исходя из этого силовой расчет механизмов удобно вести как силовой расчет структурных групп, на которые расчленяется механизм. При этом действие отсоединенных звеньев заменяется реакциями, которые определяют или из уравнений статики или построением плана сил.  [c.62]

В конце силового расчета механизма определяют уравновешивающую силу или уравновешивающий момент, который должен быть приложен к ведущему звену для равновесия механизма. Уравнение (6.11) позволяет определить уравновешивающую силу Ру, используя план скоростей механизма. Рассмотрим этот способ на примере механизма, показанного на рис. 6.4, а.  [c.68]

Теорема Жуковского позволяет определить уравновешивающую силу Ру без силового расчета механизма. Практически можно не поворачивать план скоростей, а повернуть на угол 90° силы при переносе их на план скоростей.  [c.69]

О силовом расчете механизмов с учетом сил трения  [c.81]

Считают, что прочность детали обеспечена, если расчетные напряжения а или т в опасных сечениях не превышают доп --скаемых напряжений [а] или [т]. Для определения напряжений в деталях на основе кинематического и силового расчета механизма определяют значение, направление и место приложения наибольших сил и моментов, действующих на деталь, и составляют расчетную схему детали. Затем определяют опорные реакции, изгибающие и крутящие моменты, в результате чего находят опасные сечения или места возникновения наибольших напряжений. Выбирают материал и уточняют форму и размеры детали с учетом технологии ее изготовления.  [c.172]


Кинематические характеристики механизма необходимы не только для оценки качества синтеза схемы механизма, но и для решения задач, связанных с прочностным расчетом и конструированием его звеньев, оценки динамических свойств механизма. Например, для проведения силового расчета механизма необходимо определить силы инерции и сопротивления движению звеньев, для чего должны быть известны скорости и ускорения их. Для вписывания механизма в конструкцию машинного агрегата необходимо знать траекторию движения его звеньев и их положения, определяющие габаритные размеры механизма. Для многих механизмов траектории движения звеньев определяют форму корпусных деталей, являющихся наиболее материалоемкими в машинах (картеры двигателей внутреннего сгорания, корпуса насосов и турбин, головки элеваторов и т. п.).  [c.188]

СИЛОВОЙ РАСЧЕТ МЕХАНИЗМОВ 21.1. Реакции в кинематических парах  [c.255]

Силовой расчет механизмов с высшими кинематическими парами  [c.274]

Если при силовом расчете механизма в число известных внешних сил не включена инерционная нагрузка на звенья, то силовой расчет механизма называется статическим. Такой расчет состоит из а) определения реакций в кинематических парах механизма, б) нахождения уравновешивающих силы Яу или момента Л1у. Если же при силовом расчете механизма в число известных внешних сил, приложенных к его звеньям, входит инерционная нагрузка на звенья, то силовой расчет механизма называется кинетостатическим.Лдя проведения его необходимо знатг закон движения ведущего звена, чтобы иметь возможность предварительно определить инерционную нагрузку на звенья.  [c.103]

В применении к механизмам сущность метода может быть сформулирована так если ко всем внешним действующим на звено механизма силам присоединить силы инерции, то под действием всех этих сил можно звено рассматривать условно находящимся в равновесии. Таким образом, при применении принципа Далам-бера к расчету механизмов, кроме внешних сил, действующих на каждое звено механизма, вводятся в рассмотрение еще силы инерции, величины которых определяются как произведение массы отдельных материальных точек на их ускорения. Направления этих сил противоположны направлениям ускорений рассматриваемых точек. Составляя для полученной системы сил уравнения равновесия и решая их, определяем силы, действующие на звенья механизма и возникающие при его движении. Метод силового расчета механизма с использованием сил инерции и применением уравнений динамического равновесия носит иногда название кинетостатического расчета механизмов, в отличие от статического расчета, при котором не учитываются силы инерции звеньев.  [c.206]

В рассматриваемых примерах силового расчета механизмов мы предполагали все силы, действующие на каждое звено, расположенными в одной плоскости. В действительности силы лежат в различных плоскостях, что ясно видно на примере зубчатых механизмов, показанных на рис. 13.21, а или на рис. 13.22, а. Расположение действительных опор и их конструкции на этих рисунках не показаны. При расчете реальных конструкций, о чем было сказано выше, необходимо учитывать конструктив1 ое оформление как промежуточных кинематических пар, так и опор. Соответственно должна составляться и расчетная схема элементов механизма. Например, нами были определены силы / г-з. F-n и / /.у, действующие на колеса 2 н 2 (рис. 13.21, г). Все эти силы расположены в трех параллельных плоскостях. Сила р2>ъ расположена в плоскости колеса 2, сила F i — в плоскости колеса 2 и сила F-ifj — в плоскости, перпендикулярной к оси колес 2 и 2. Опоры оси колес 2 а 2 могут быть конструктивно выполнены различным образом в зависимости от требований прочности, надежности, габаритов конструкции, условий сборки и т. д.  [c.275]

Примеыепке рычага Жуковского позволяет определить искомые силы с помощью только одного уравнения моментов всех сил, действующих на механизм, относительно полюса плана скоростей. В случае применения метода планов сил пришлось бы произвести последовательно определение всех давлений в парах, т. е. произвести полный силовой расчет механизма. При применении  [c.332]

Пример 2. Произвести кииетостатический силовой расчет механизма (рис. 4.19), для которого выполнен кинематический анализ. Массы звеньев /Л] = 1 кг /Иг = 1 кг гпя=-2,5 кг т.% == 2,8 кг Шз = 1 кг и сосредоточены в точках А, б г, Г., St, F. Моменты инерции звеньев относительно осей, проходящих через центры масс, равны = 0,002 кг м % = 0,001 кг = 0,025 кг м 1 =  [c.145]

Силовой расчет механизмов методом планов. Последоваголь-пость определения p aKiuiii по этому методу рассмотрим па примере группы Ассура 2-го класса 1-го вида (рпс. 4.24).  [c.148]

Силы трения в кинематических парах механизмов значительно меньше сил нормальных реакций. Для учета трения при определении реакций можно считать результаты силового расчета механизма без учета сил трения первым приближением. По найденным при этом нормальным реакциям определяют силы трения в кинематических парах Ffij = R Jfij, где Т , —нормальные реакции в паре без учета трения fij — коэффициент трения в паре.  [c.81]

Добавив нзвестнрле теперь силы трения к другим силам, можно повторить силовой расчет механизма, определив нормальные реакции Rlj. Это будет вторым приближением, более точно определяющим значение реакций. Второе приближение дает результаты, отличающиеся от истинных не более чем на несколько процентов, что обеспечивает достаточную точность инженерных расчетов.  [c.81]


Графоана. штический метод определения ошибок положения механизмов применим также для определения ошибок механизмов с зазорами в низших кинематических парах и механизмов с высшими парами. В первом случае для определшшя ошибки положения необходимо знать, в каком направлении выбирается зазор. Это направление соответствует направлению действия реа1щии в кинематической паре, которое определяется при силовом расчете механизма. Рассмотрим, па-пример, механизм, показанный на рис. 9.4, д. Из-за наличия зазора 3 в центры цилиндрических элементов пары  [c.113]

При рассмотрении вопросов статики твердого тела и при силовом расчете механизмов оперируют с внешними силами, действующими на тело. В телах действуют также внутренние силы, с которыми частицы тела действуют друг на друга. Эти силы являются взаимоуравновешивающими и в уравнения статики не входят. При расчетах на ирочеюсть необходимо выяснить характер и значения внутренних сил в теле (детали), fIaxoдящeм я под действием внешних нагрузок, так как именно от них зави-висит свойство материалов, изделий а конструкций сопротивляться разрушению, а таклсе необратимому изменению первоначальной формы и размеров, т. е. прочность детали.  [c.116]

Инерционность звеньев способствует или препятствует движению рабочих органов механизмов. В соответствии с известными положениями динамики материального тела, рассматриваемого как системы материальных точек, силы инерции учитываются при решении ди( х[)еренциальных уравнений движения. звеньев, решение которых позволяет определить истинный закон движения. При инженерных расчетах часто вместо учета истинного закона [тзменення внешних сил при силовом расчете движущегося звена решением дифференциальных уравнений движения учитывают действие нагрузок на звено в конкретных его положениях, придавая уравнениям движения форму уравнений статики. Этот расчет проводится в соответствии с принципом Д Аламбера (с.м. прил.) механическая система может считаться находящейся в равновесии, если ко всем действующим на нее силам добавлены силы инерции. Следовательно, для выполнения силового расчета механизма необходимо определить силы и моменты сил инерции его звеньев для рассматриваемых их положений.  [c.244]


Смотреть страницы где упоминается термин Силовой расчет механизмов : [c.141]   
Смотреть главы в:

Курсовое проектирование по теории механизмов и машин  -> Силовой расчет механизмов

Механизмы приборных и вычислительных систем  -> Силовой расчет механизмов

Теория механизмов и машин  -> Силовой расчет механизмов

Теория механизмов и машин  -> Силовой расчет механизмов

Теория механизмов  -> Силовой расчет механизмов

Исполнительные механизмы захватывающих устройств  -> Силовой расчет механизмов

Курсовое проектирование по теории механизмов и механике машин Издание 2  -> Силовой расчет механизмов



ПОИСК



644 - 646 - Расчет силовых и технологических параметров: механизмов привода рабочей клети

644 - 646 - Расчет силовых и технологических параметров: механизмов привода рабочей клети обжатия 649 - 651 - Уравновешивание массы клет

Векторный способ силового расчета механизма

Динамика механизмов и машин Силовой расчет механизмов

Задачи силового расчета механизмов

Кинематический и силовой расчет механизмов по допускаемым напряжениям

Координатный способ силового расчета механизма

Краткие сведения о силовом расчете механизмов

Металлорежущие Механизмы главного движения — Кинематические расчёты—428 — Проверочный раснёт — 713 —Расчёт силовых возможностей

Методика расчёта силовых возможностей механизма главного движения

Особенности силового расчета кулисных механизмов

Расчет механизмов

СИЛОВОЙ РАСЧЕТ МЕХАНИЗМОВ. ВИБРАЦИЯ МАШИН И УРАВНОВЕШИВАНИЕ МАСС. НЕРАВНОМЕРНОСТЬ ХОДА МАШИН Определение усилий в звеньях механизмов и реакций в кинематических парах

Силовой расчет

Силовой расчет зубчатых механизмов с круглыми цилиндрическими колесами

Силовой расчет кулачкового механизма

Силовой расчет кулачковых механизмов с учетом трения

Силовой расчет механизУравнения движения механизмов с одной степенью свободы

Силовой расчет механизмов подач

Силовой расчет механизмов с высшими кинематическими парами

Силовой расчет механизмов. Определение реакций в кинематических парах

Силовой расчет многозвенных зубчатых механизмов

Силовой расчет плоских механизмов с высшими кинематическими парами

Силовой расчет плоских рычажных механизмов с учетом трения в низших кинематических парах

Силовой расчет плоских стержневых механизмов

Силовой расчет пространственных механизмов с низшими парами

Силовой расчет рычажных механизмов

Силовой расчет типовых механизмов

Силовые механизмы

Структура алгоритмов силового расчета плоских механизмов с низшими парами



© 2025 Mash-xxl.info Реклама на сайте